Topology HW $1 \bullet$ FALL 2021 • PROF. BOYLAND

This HW uses material from Lectures 1-6. Remember that I will be grading these on-screen, so make sure your pdf is clear and legible. Also, please do the problems in order with the problem number labeled clearly.

1. Prove that for any sets A and B,

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

2. Determine if the statement is true or false. If the statement is true, give a proof. If the statement is false, give a counterexample.
(a) For $f: A \rightarrow B$ and $A_{0}, A_{1} \subset A$,

$$
f\left(A_{0} \cup A_{1}\right)=f\left(A_{0}\right) \cup f\left(A_{1}\right)
$$

(b) For any sets A and B,

$$
A-(B-A)=A-B
$$

(c) For any sets $V_{1}, W_{1}, V_{2}, W_{2}$,

$$
\left(V_{1} \times W_{1}\right) \cup\left(V_{2} \times W_{2}\right)=\left(V_{1} \cup V_{2}\right) \times\left(W_{1} \cup W_{2}\right)
$$

(d) If $A \times B$ is finite then both A and B are finite.
(e) If A and B are nonempty and $A \times B$ is finite then both A and B are finite.
3. Suppose that X is a set and $\left\{A_{\alpha}: \alpha \in I\right\}$ is an indexed family of sets (which contains at least one set). Prove that

$$
X-\bigcup_{\alpha \in I} A_{\alpha}=\bigcap_{\alpha \in I}\left(X-A_{\alpha}\right) .
$$

4. Define a relation S on the set of real numbers \mathbb{R} by

$$
S=\{(a, b) \in \mathbb{R} \times \mathbb{R}: a-b \text { is an integer }\}
$$

Prove that S is an equivalence relation on \mathbb{R}.
5. Suppose that $<_{A}$ is a strict linear order on A, and $<_{B}$ is a strict linear order on B. Prove that dictionary order relation on $A \times B$ is a strict linear order on $A \times B$.
6. Suppose that $<_{A}$ is a strict linear order on A, and $<_{B}$ is a strict linear order on B and there exists a bijection $\phi: A \rightarrow B$ so that

$$
a<_{A} a^{\prime} \text { implies } \phi(a)<_{B} \phi\left(a^{\prime}\right) .
$$

Show that

$$
\left.\phi(a)<_{B} \phi\left(a^{\prime}\right)\right) \text { implies } a<_{A} a^{\prime} .
$$

7. Assuming that the set of real numbers \mathbb{R} has the least upper bound property show that it has the greatest lower bound property.
8. Suppose that A and B are sets. Suppose that A is countable, and there is a surjective function $f: A \rightarrow B$. Prove that B is countable.
9. Prove that the set of rational numbers is countable.
10. A real number is said to be algebraic if and only if it satisfies some polynomial equation of positive degree of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

where each a_{i} is an integer. Assuming that a degree n polynomial has at most n distinct roots, prove that the set of all algebraic numbers is countable.

