This HW uses material from Lectures 1-6. Remember that I will be grading these on-screen, so make sure your pdf is clear and legible. Also, please do the problems in order with the problem number labeled clearly.

1. Prove that for any sets A and B,
 \[A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \]

2. Determine if the statement is true or false. If the statement is true, give a proof. If the statement is false, give a counterexample.

 (a) For $f : A \to B$ and $A_0, A_1 \subset A$,
 \[f(A_0 \cup A_1) = f(A_0) \cup f(A_1). \]
 (b) For any sets A and B,
 \[A - (B - A) = A - B. \]
 (c) For any sets V_1, W_1, V_2, W_2,
 \[(V_1 \times W_1) \cup (V_2 \times W_2) = (V_1 \cup V_2) \times (W_1 \cup W_2). \]
 (d) If $A \times B$ is finite then both A and B are finite.
 (e) If A and B are nonempty and $A \times B$ is finite then both A and B are finite.

3. Suppose that X is a set and \(\{ A_\alpha : \alpha \in I \} \) is an indexed family of sets (which contains at least one set). Prove that
 \[X - \bigcup_{\alpha \in I} A_\alpha = \bigcap_{\alpha \in I} (X - A_\alpha). \]

4. Define a relation S on the set of real numbers \mathbb{R} by
 \[S = \{(a, b) \in \mathbb{R} \times \mathbb{R} : a - b \text{ is an integer}\}. \]
 Prove that S is an equivalence relation on \mathbb{R}.

5. Suppose that $<_A$ is a strict linear order on A, and $<_B$ is a strict linear order on B. Prove that dictionary order relation on $A \times B$ is a strict linear order on $A \times B$.

6. Suppose that $<_A$ is a strict linear order on A, and $<_B$ is a strict linear order on B and there exists a bijection $\phi : A \to B$ so that
 \[a <_A a' \text{ implies } \phi(a) <_B \phi(a'). \]
 Show that
 \[\phi(a) <_B \phi(a') \text{ implies } a <_A a'. \]
7. Assuming that the set of real numbers \(\mathbb{R} \) has the least upper bound property show that it has the greatest lower bound property.

8. Suppose that \(A \) and \(B \) are sets. Suppose that \(A \) is countable, and there is a surjective function \(f : A \to B \). Prove that \(B \) is countable.

9. Prove that the set of rational numbers is countable.

10. A real number is said to be algebraic if and only if it satisfies some polynomial equation of positive degree of the form

\[
a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0,
\]

where each \(a_i \) is an integer. Assuming that a degree \(n \) polynomial has at most \(n \) distinct roots, prove that the set of all algebraic numbers is countable.