This HW uses material from Lectures 19-22. This HW is worth 15 points, half the usual.

- 1. Assume X is path connected.
 - (a) If $\phi: \pi_1(X, x_0) \to \pi_1(X, x_1)$ is an isomorphism show that it induces an isomorphism

$$\phi': \pi_1(X, x_0) / [\pi_1(X, x_0), \pi_1(X, x_0)] \to \pi_1(X, x_1) / [\pi_1(X, x_1), \pi_1(X, x_1)]$$

- (b) Recall that for a path α from x_0 to x_1 the induced isomorphism on fundamental groups is denoted $\hat{\alpha}$. For any two paths α, β from x_0 to x_1 show that the induced maps on the Abelianizations are the same, i.e. $\hat{\alpha}' = \hat{\beta}'$.
- 2. Given an equivalence relation on X let $Y = X/\sim$ with the quotient topology and quotient map $p: X \to Y$. Let Z be a topological space and $g: X \to Z$ a map that is constant on each set $p^{-1}(y)$.
 - (a) Show that there exists a map $f: Y \to Z$ so that $f \circ p = g$.
 - (b) Show that f is continuous if and only if g is continuous.
- 3. If M is a compact surface, show that $\pi_1(M \# S^2) \cong \pi_1(M)$
- 4. (a) For each n > 1, construct a space X with $\pi_1(X) \cong \mathbb{Z}_n$.
 - (b) Construct a space X with $\pi_1(X) \cong \mathbb{Z}_3 * \mathbb{Z}_5$.
- 5. Consider the octagon with labeling $abcda^{-1}b^{-1}c^{-1}d^{-1}$.
 - (a) Show that identifying the edges according to the labeling yields a compact surface.
 - (b) What surface is it? (be sure to prove your result).