TOPOLOGY HW 2 • FALL 2021 • PROF. BOYLAND

This HW uses material from Lectures 6-11.

1. Let W consist of all the functions from $\mathbb{Z}_+ \to \{1, 2\}$. Show that

 $\operatorname{card}(W) = \operatorname{card}(\mathcal{P}(\mathbb{Z}_+)) = \operatorname{card}(\{1,2\}^{\mathbb{Z}_+}).$

- 2. Let X be a set, and let \mathcal{T} be the collection of all subsets A of X such that X A is either countable or all of X. Prove that (X, \mathcal{T}) is topological space.
- 3. Prove that the dictionary order topology on $\mathbb{R} \times \mathbb{R}$ is the same as the product topology on $\mathbb{R}_d \times \mathbb{R}$, where \mathbb{R}_d denotes the set of real numbers with the discrete topology.
- 4. Let $K = \{1/n : n \in \mathbb{Z}_+\}$. Let \mathcal{B}_K be the set of all intervals $(a, b) \subset \mathbb{R}$ along with all sets of the form (a, b) K.
 - (a) Show that \mathcal{B}_K is a base. Let the topology on \mathbb{R} generated by \mathcal{B}_K be denoted \mathcal{T}_K .
 - (b) Prove that \mathcal{T}_K is strictly finer than the standard topology on \mathbb{R} .
 - (c) Prove that \mathcal{T}_K and the lower limit topology are not comparable.
- 5. Let \mathcal{B} denote the collection of all half-open intervals, [a, b) where a and b are rational numbers with a < b. Prove that \mathcal{B} is a basis for a topology on \mathbb{R} , and the topology generated by \mathcal{B} is different from the lower limit topology.
- 6. Let X be a topological space. Let $D = \{(x, y) \in X \times X : x = y\}$. Prove that X is a Hausdorff space if and only if D is a closed subset of $X \times X$, where $X \times X$ has the product topology.
- 7. Let X be a topological space. Suppose that A and B are open subsets of X with $\overline{A} = X = \overline{B}$. Prove that $\overline{A \cap B} = X$.
- 8. Define a collection \mathcal{T} of subsets of \mathbb{Z}_+ as follows:

 $W \in \mathcal{T}$ if and only if $n \in W$ implies that all positive divisors of n are also elements of W.

Verify that \mathcal{T} is a topology on \mathbb{Z}_+ . In this topology find $\overline{\{1\}}$ and $\overline{\{2\}}$.

- 9. Consider the space \mathbb{Z}_+ with the finite complement topology. Is this space a Hausdorff space? Is this space a T_1 space?
- 10. Determine if the statement is true of false. If true, give a proof. If false give a counterexample with proof.

If X is a topological space, and W is an open subset of X, then $W = Int(\overline{W})$.

- 11. Prove that every strict linearly ordered set with the order topology is a Hausdorff space.
- 12. Suppose that A_{α} is an indexed family of subsets of a topological space X. Prove that

$$\bigcup \overline{A_{\alpha}} \subset \bigcup A_{\alpha}.$$

Give an example with $X = \mathbb{R}$ to show that equality need not hold.