This HW uses material from Lectures 6-11.

1. Let \(W \) consist of all the functions from \(\mathbb{Z}_+ \to \{1, 2\} \). Show that
\[
\text{card}(W) = \text{card}(\mathcal{P}(\mathbb{Z}_+)) = \text{card}(\{1, 2\}^{\mathbb{Z}_+}).
\]

2. Let \(X \) be a set, and let \(\mathcal{T} \) be the collection of all subsets \(A \) of \(X \) such that \(X - A \) is either countable or all of \(X \). Prove that \((X, \mathcal{T}) \) is topological space.

3. Prove that the dictionary order topology on \(\mathbb{R} \times \mathbb{R} \) is the same as the product topology on \(\mathbb{R}_d \times \mathbb{R} \), where \(\mathbb{R}_d \) denotes the set of real numbers with the discrete topology.

4. Let \(K = \{1/n : n \in \mathbb{Z}_+\} \). Let \(\mathcal{B}_K \) be the set of all intervals \((a, b) \subset \mathbb{R}\) along with all sets of the form \((a, b) - K\).

 (a) Show that \(\mathcal{B}_K \) is a base. Let the topology on \(\mathbb{R} \) generated by \(\mathcal{B}_K \) be denoted \(\mathcal{T}_K \).

 (b) Prove that \(\mathcal{T}_K \) is strictly finer than the standard topology on \(\mathbb{R} \).

 (c) Prove that \(\mathcal{T}_K \) and the lower limit topology are not comparable.

5. Let \(\mathcal{B} \) denote the collection of all half-open intervals, \([a, b) \) where \(a \) and \(b \) are rational numbers with \(a < b \). Prove that \(\mathcal{B} \) is a basis for a topology on \(\mathbb{R} \), and the topology generated by \(\mathcal{B} \) is different from the lower limit topology.

6. Let \(X \) be a topological space. Let \(D = \{(x, y) \in X \times X : x = y\} \). Prove that \(X \) is a Hausdorff space if and only if \(D \) is a closed subset of \(X \times X \), where \(X \times X \) has the product topology.

7. Let \(X \) be a topological space. Suppose that \(A \) and \(B \) are open subsets of \(X \) with \(\overline{A} = X = \overline{B} \). Prove that \(\overline{A \cap B} = X \).

8. Define a collection \(\mathcal{T} \) of subsets of \(\mathbb{Z}_+ \) as follows:

 \(W \in \mathcal{T} \) if and only if \(n \in W \) implies that all positive divisors of \(n \) are also elements of \(W \).

 Verify that \(\mathcal{T} \) is a topology on \(\mathbb{Z}_+ \). In this topology find \(\{1\} \) and \(\{2\} \).

9. Consider the space \(\mathbb{Z}_+ \) with the finite complement topology. Is this space a Hausdorff space? Is this space a \(T_1 \) space?

10. Determine if the statement is true of false. If true, give a proof. If false give a counterexample with proof.

 If \(X \) is a topological space, and \(W \) is an open subset of \(X \), then \(W = \text{Int}(W) \).

11. Prove that every strict linearly ordered set with the order topology is a Hausdorff space.

12. Suppose that \(A_\alpha \) is an indexed family of subsets of a topological space \(X \). Prove that
\[
\bigcup \overline{A_\alpha} \subset \overline{\bigcup A_\alpha}.
\]

 Give an example with \(X = \mathbb{R} \) to show that equality need not hold.