TOPOLOGY HW 3 • FALL 2021 • PROF. BOYLAND

This HW uses material from Lectures 11-18a.

- 1. Say $A \subset X$ is dense if $\overline{A} = X$.
 - (a) Show that A is dense in X if and only if every nonempty open subset V in X satisfies $V \cap A \neq \emptyset$.
 - (b) Assume that X and Y are topological spaces with Y Hausdorff and A is dense in X. Suppose that $f: X \to Y$ and $g: X \to Y$ are continuous functions with f(a) = g(a) for all $a \in A$. Prove that f(x) = g(x) for all $x \in X$.
- 2. A is a subset of the topological space X.
 - (a) Show that $x \in \text{Int}(A)$ if and only if there is an open set U with $x \in U \subset A$.
 - (b) Let the boundary of A be $Bd(A) = \overline{A} \cap \overline{(X A)}$. Show that $x \in Bd(A)$ if and only if every open set V with $x \in V$ contains points of both A and X A.
 - (c) Prove that $Bd(A) \cap Int(A) = \emptyset$ and that $\overline{A} = Int(A) \cup Bd(A)$.
- 3. Consider \mathbb{Z}_+ with the finite complement topology. Determine if the following sequences converge and if so, to which point or points.
 - (a) $x_n = 2n + 3$
 - (b) $x_n = 3 + (-1)^n$
- 4. Recall that two topological spaces X and Y are homeomorphic if and only if there is a homeomorphism $h: X \to Y$. Suppose that $\{X_{\lambda} : \lambda \in \Lambda\}$ and $\{Y_{\lambda} : \lambda \in \Lambda\}$ are indexed families of topological spaces with X_{λ} homeomorphic to Y_{λ} for each $\lambda \in \Lambda$. Prove that $\prod_{\lambda \in \Lambda} X_{\lambda}$ and $\prod_{\lambda \in \Lambda} Y_{\lambda}$ are homeomorphic. Use the product topology on the product spaces.
- 5. Assume that d and d' are metrics on X and that there are positive constants c_1, c_2 with

$$c_1 d(x, y) \le d'(x, y) \le c_2 d(x, y)$$

for all $x, y \in X$. Show that d and d' induce the same topology.

- 6. We showed in class that on $\mathbb{R}^{\mathbb{Z}_+}$ the box topology is finer than the uniform topology which in turn is finer than the product topology. Give examples that show that the box topology is *strictly* finer than the uniform topology which in turn is *strictly* finer than the product topology. You can use the fact that the product topology is induced by the metric D.
- 7. Give $X^{\mathbb{Z}_+}$ the product topology and let $\{\underline{x}_n\}$ be a sequence in $X^{\mathbb{Z}_+}$.
 - (a) Show that $\underline{x}_n \to \underline{x}$ if and only if for each $i \in \mathbb{Z}_+$, $\pi_i(x_n) \to \pi_i(x)$. In other words, a sequence converges if and only if all its components converge.
 - (b) Is this result true when we give $X^{\mathbb{Z}_+}$ the box topology?

- 8. Let (X, d) be a metric space.
 - (a) Show that $d: X \times X \to \mathbb{R}$ is continuous where $X \times X$ is given the product topology.
 - (b) If the sequences $x_n \to x$ and $y_n \to y$ convergence in X show that the sequence of real numbers $d(x_n, y_n) \to d(x, y)$.
- 9. Given metric spaces (X_i, d_i) for i = 1, ..., n show that

$$\rho(x,y) = \max\{d_1(x,y),\dots,d_n(x,y)\}\$$

is a metric on $\prod_{i=1}^{n} X_i$.