This HW uses material from Lectures 18b-22.

1. Say that $(x, y) \sim (x', y')$ if and only if

$$x^{2} + y^{2} = (x')^{2} + (y')^{2}$$

- (a) Show that this is an equivalence relation on \mathbb{R}^2 .
- (b) Describe \mathbb{R}^2/\sim . You don't need to give a complete proof, just some justification for your answer.
- 2. Show that $\mathbb{R}^{\mathbb{Z}_+}$ with the uniform topology is not connected. Hint: consider bounded vs. unbounded sequences.
- 3. Is \mathbb{R}_{ℓ} (the real line with the lower limit topology) connected? Prove your result.
- 4. A chain of subsets is a collection A_n for $n \in \mathbb{Z}_+$ with the property that for all $i, A_i \cap A_{i+1} \neq \emptyset$. If each A_n in a chain is connected, show that $\bigcup_{n \in \mathbb{Z}_+} A_n$ is also connected.
- 5. In \mathbb{R} with the finite complement topology, show that every infinite set is connected.
- 6. The unit circle is $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ with the subspace topology.
 - (a) Show that S^1 is connected.
 - (b) If $f: S^1 \to \mathbb{R}$ is continuous, show there exist some $(x, y) \in S^1$ so that f(x, y) = f(-x, -y). ((x, y) and (-x, -y) are called antipodal points)
- 7. If A is a countable set, show that $\mathbb{R}^2 A$ is path connected. (Hint: How many lines are there coming out of a single point? You may use the fact that \mathbb{R} is uncountable.)
- 8. Prove or disprove:
 - (a) If A is connected, then Bd(A) and Int A are also.
 - (b) If Bd(A) is connected, then A is connected.
 - (c) If Int(A) is connected, then A is connected.
- 9. If X is locally path connected show that connected open sets are path connected.