TOPOLOGY HW 5 • FALL 2021 • PROF. BOYLAND

This HW uses material from Lectures 23-28.

- 1. Assume A and B are compact subsets of the Hausdorff speae X. Prove or disprove:
 - (a) $A \cap B$ is compact
 - (b) $A \cup B$ is compact
- 2. Show that a compact subset of a metric space is bounded.
- 3. In the lower limit topology \mathbb{R}_{ℓ} is [0,1] compact, is it limit point compact? Justify your answer.
- 4. If A and B are disjoint compact subsets of Hausdorff space X, then there exist open sets U and V with $A \subset U$ and $B \subset V$ and $U \cap V = \emptyset$.
- 5. In $[0,1]^{\mathbb{Z}_+}$ with the uniform topology find an infinite subset with no limit point and thus with this topology $[0,1]^{\mathbb{Z}_+}$ is not compact.
- 6. Do problem 6 on page 178 of Munkres on the Cantor middle third set.
- 7. Do problem 7a (just part a) on page 182 of Munkres on a version of the contraction mapping theorem.
- 8. Let $X = \mathbb{R} \times \{0, 1\}$ be given the product topology with \mathbb{R} having the standard topology and $\{0, 1\}$ the indiscrete topology where the only open sets are $\{0, 1\}$ and \emptyset .
 - (a) Show that X is limit point compact.
 - (b) Show that projection onto the first coordinate \mathbb{R} is continuous and onto.
 - (c) Show that \mathbb{R} is not limit point compact.
- 9. Let $f: X \to Y$ be continuous and bijective and X is limit point compact, show that Y is limit point compact. (The previous problem shows this isn't true without the injectivity assumption).