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Abstract 

This paper surveys applications of low-dimensional topology to the study of the dynamics 
of iterated homeomorphisms on surfaces. A unifying theme in the paper is the analysis and 
application of isotopy stable dynamics, i.e. dynamics that are present in the appropriate sense in 
every homeomorphism in an isotopy class. The first step in developing this theme is to assign 
coordinates to periodic orbits. These coordinates record the isotopy, homotopy, or homology 
class of the corresponding orbit in the suspension flow. The isotopy stable coordinates are then 
characterized, and it is shown that there is a map in each isotopy class that has just these periodic 
orbits and no others. Such maps are called dynamically minimal representatives, and they turn 
out to have strong global isotopy stability properties as maps. The main tool used in these results 
is the Thurston-Nielsen theory of isotopy classes of homeomorphisms of surfaces. This theory 
is outlined and then applications of isotopy stability results are given. These results are applied 
to the class rel a periodic orbit to reach conclusions about the complexity of the dynamics of a 
given homeomorphism. Another application is via dynamical partial orders, in which a periodic 
orbit with a given coordinate is said to dominate another when it always implies the existence of 
the other. Applications to rotation sets are also surveyed. 

Keywords: Dynamical systems; Periodic orbits; Thurston-Nielsen theory 

0. Introduction 

Dynamical systems theory studies mathematical structures that are abstractions of 

the most common scientific models of deterministic evolution. The two main elements 

in the theory are a space X that describes the possible states or configurations of the 

system and a rule that prescribes how the states evolve. The mathematical expression 

of this evolution rule is the action of a group or semi-group on the space. The group 

is often thought of as time, and dynamical systems theory is usually restricted to the 
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cases where the (semi-) group is the non-negative integers, N, the integers, Z, or the 

real numbers, R.. In the first two cases one has discrete steps of evolution in time, and 

in the latter, continuous evolution. The action of these groups on the space X is realized 

by the forward iterates of a non-invertible map, all iterates of an invertible map, and a 

flow (i.e. the solution to a differential equation), respectively. In the latter two cases the 

evolution can be reversed in time and in the first it cannot. 

Since one would hope that most spaces of configurations are at least locally Euclidian, 

it is common to restrict attention to dynamics on manifolds. There are thus a variety 

of situations to study determined by the dimension of the manifold and the type of 

dynamical system. One can also work with holomorphic maps on complex manifolds, 

or else restrict to the real case. In addition, within dynamics there are at least three points 

of view that can be taken. In the topological theory one studies topological properties 

of the orbit structure. The smooth theory uses invariants that can only be defined 

using the differentiability and often isolates dynamical phenomenon whose presence 

depends on the smoothness of the system. Ergodic theory studies statistical and measure 

theoretic aspects of the orbit structure. In the tradition of Klein one could say that the 

topological theory studies those structures that are invariant under continuous changes 

of coordinates, the smooth theory those that are invariant under smooth changes of 

coordinates, and ergodic theory those that persist under measure isomorphism. As is 

typical in mathematics, some of the most interesting questions in the field lie at the 

intersection of various points of view. 

Within dynamical systems, then, there are many possible theories as determined by 

the dimension of the manifold, the type of dynamical system and the point of view. This 

paper will focus on the topological theory of the dynamics of iterated homeomorphisms 

in real dimension two. For iterates of surface homeomorphisms, orbits are codimension 

two, which topologists will recognize as the knotting codimension. This accounts for 

the combinatorial character of much of the theory presented here. 

There is a useful heuristic in dynamics that says that N-actions in dimension n, behave 

roughly like Z-actions in dimension y1+ 1, which in turn, behave roughly like R-actions 

in dimension n + 2. One must approach this heuristic with caution. There are always 

new phenomena that arise when the dimension is increased even if the size of the group 

acting is increased as well. Despite this caution there will be many instances in our 

study of iterated homeomorphisms on surfaces when it will be useful to use tools and 

examples involving flows on 3-manifolds or involving iterated endomorphisms on the 

circle. These examples are given along with some basic definitions in Section 1. 

In Section 2 we begin the development of one of the main themes of the paper. The 

goal of dynamical systems theory is to understand the orbit structure of a dynamical 

system. To further this goal, it is natural to assign a number or other algebraic invariant 

to an orbit. In the topological theory this is often accomplished by using an algebraic 

object (e.g. a homology or homotopy class) that measures the motion of the orbit around 

the manifold. A fair amount of this paper deals with the theory of these invariants for 

periodic orbits. The situation for general orbits is considered in Sections 6 and 11. 

The material in Sections 2 and 3 concerns three types of invariants for periodic 
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orbits. These three invariants measure the isotopy, homotopy, and homology class of the 

orbit in the suspension flow. Each invariant is naturally associated with an equivalence 

relation, namely, periodic orbits are equivalent if they are assigned the same invariant. 

In Section 4 we address the question of which of these invariants are isotopy stable, 

i.e. are present in the appropriate sense for every homeomorphism in the isotopy class. 

The identification of these classes allows one to assign a collection of invariants to an 

isotopy class. The size of this collection gives a lower bound for the complexity of the 

dynamics of any element in the class. 

The existence of a dynamically minimal representative in an isotopy class is closely 

connected with the isotopy stable classes of periodic orbits. A dynamically minimal 

representative is a map that just has the dynamics that must be present (i.e. the isotopy 

stable dynamics) and nothing more. The existence of these maps for the class of 

dynamical systems studied here is given in Section 5. Having obtained a dynamically 

minimal representative one then asks about the isotopy stability of the other, non-periodic 

orbits of the minimal representative. This leads to the notion of isotopy stability for a 

map which is considered in Section 6. 

The Thurston-Nielsen theory is undoubtedly the most important tool in the topological 

theory of surface dynamics. This theory is outlined on Section 7. It is the Thurston- 

Nielsen theory that allows one to understand isotopy stable dynamics on surfaces. The 

dynamical minimal models discussed in Section 5 are a refinement of the Thurston- 

Nielsen canonical map in the isotopy class. This Thurston-Nielsen form can be computed 

via the algorithm of Bestvina and Handel that is summarized in Section 10 (Section 10 

was written by T.D. Hall). 

It is perhaps not immediately obvious how studying isotopy stable dynamics is useful 

in understanding the dynamics of a single homeomorphism. For example, if the home- 

omorphism is isotopic to the identity, the isotopy stable dynamics consists of a single 

fixed point. The key idea involved in the application of isotopy invariant information 

goes back to Bowen [ 161. When the given homeomorphism has a periodic orbit, one 

studies the isotopy class rel the periodic orbit. The isotopy stable dynamics in this class 

clearly must be present in the given homeomorphism. There are many applications of 

this basic idea. In Section 8 we give conditions on a periodic orbit that imply the am- 

bient dynamics are complicated, for example, there are periodic orbits with infinitely 

many periods. 

The implications of the existence of a periodic orbit of certain type is examined more 

closely in Section 9 using dynamical order relations. One defines an order relation on 

the algebraic invariants assigned to periodic orbits by declaring that one invariant is 

larger than a second if whenever a homeomorphism has a periodic orbit of the first type 

it has also has one of the second. These order relations are a generalization of the partial 

order that occurs in Sharkovski’s theorem about the periods of periodic orbits for maps 

of the line. 

Instead of connecting the invariants of periodic orbits from isotopic maps, one can 

collect together all the invariants associated with all the periodic orbits of single home- 

omorphism. This set will encode a great deal of information about the dynamics of the 
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homeomorphism. The set of all the invariants of orbits is best understood in the Abelian 

theory. The rotation vector measures the rate of rotation of an orbit around homology 

classes in the surface. A rotation vector can be assigned to a general orbit that may 

not be periodic. The set of all the rotation vectors for a homeomorphism is called its 

rotation set. In Section 11 we discuss some of what is known about the rotation sets of 

surface homeomorphisms. 

1. Basic definitions and examples 

This section is devoted to definitions and examples that will be used at various 

points in this paper. Although our focus in this paper is the dynamics of iterated surface 

homeomorphisms, as is typical in mathematics, knowledge of a broad range of examples 

of various dimensions and types will be useful in our study of this more restricted class. 

The examples will be studied in further detail at various points in the paper. We begin 

by precisely specifying the primary objects of study in this paper. 

Standing assumption. Unless otherwise noted, M denotes a compact, orientable two- 

manifold (perhaps with boundary). Any self-maps f : M -+ M will be orientation- 

preserving homeomorphisms. 

1. I. Basic dejinitions 

For the purposes of this paper, a dynamical system is a topological space X and a 

continuous self map f : X + X. The system is denoted as a pair (X, f). The main 

object of study are orbits of points. These are obtained by repeatedly applying the 

self-map. If f composed with itself n times is denoted f”, then the orbit of a point 

x is o(n, f) = {. . . , f-‘(~) , f-’ (x), x, f(x), f2( x), . . .} when f is invertible, and 

4x3 f) = (x7 f(x) 9 f2W 9. . .}, when it is not. If the map is clear from the context an 

orbit is denoted o(x). 

A periodic point is a point x for which f”(x) = x for some n > 0. The least such 

n is called the period of the periodic point. A periodic orbit is the orbit of a periodic 

point. Clearly the notions of periodic orbit and periodic point are intimately connected, 

but in certain circumstances the distinction between the two concepts is essential. The 

set of all periodic points with period n is denoted P,,(f), and the set of points fixed 

by f is Fix(f). Note that, in general, Fix( f”) may be larger than P,,(f). A point x is 

recurrent if there exists a sequence ni + 00 with f” (x) --) x. The recurrent set is the 

closure of the set of recurrent points. In the examples we will study all the interesting 

dynamics takes place on the recurrent set. 

A dynamical system (X, f) is said to be semiconjugate to a second (Kg) if there 

is a continuous onto function h : X + Y with hf = gh. In this case, (Kg) is said to 

be a factor of (X, f), and (X, f) is called an extension of (Kg). If the map h is a 

homeomorphism, the systems are said to be conjugate. From the topological point of 
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view the dynamics of conjugate systems are indistinguishable. If the systems are only 

semiconjugate, the dynamics of the extension are at least as complicated as that of its 

factor. 

There are a number of good general texts on dynamical systems; a sampling is 

[3,32,59,109,110,113]. 

1.2. Subshifts of jinite type 

Our first examples are zero-dimensional. The symbolic description of these systems 

makes it fairly easy to analyze their dynamics. For this reason they are often used to 

model the dynamics of pieces of higher dimensional systems. For more information on 

subshifts of finite type see [ 1191 or [ 401. 

The first ingredient of these systems is a set of letters forming an “alphabet set” 

A, ={1,2,... ,n}. The set of all bi-infinite words in the alphabet is & = A:. The set 

& is topologized using the product topology in which case it is a Cantor set. There 

is a natural self-homeomorphism c : 2, + &, namely shifting a sequence to the left 

by one place. The dynamical system (&,, a) is called the full shift on n symbols. In a 

slight abuse of language, sometimes just the space itself is called the full shift. 

There are certain shift invariant subsets of the full shift which have a simple finite 

description. To construct these so-called subshifts, let B be an n x n matrix with all 

entries equal to zero or one, and & consists of those sequences s from &, which contain 

consecutive letters si = j and si+t = k for just those j and k for which Bj,k = 1. A more 

succinct description of & is {s E Z,, : BSi,Si,, = 1). The dynamical system (A,, U) (or 

sometimes just the space &) is called a subshift ofjnite type. It is easy to check that 

subshifts of finite type are compact and shift invariant. 

The matrix B is called the transition matrix. Subshifts of finite type are also sometimes 

called topological Markov chains (see [ 301). The idea here is that the letters in the 

alphabet represent various states and an element of the subshift represents the coding of 

a single outcome of the process. The symbol ak can follow the symbol aj precisely when 

the system can make a transition from the state represented by aj to that represented 

by Uk. This happens if and only if the (j, k) th entry in the transition matrix is equal to 

one. 

Of particular interest are those matrices that are irreducible. These matrices are defined 

by the property that for all (i, j), there is an n > 0 so that (B”)ij > 0. In this case the 

set of periodic orbits of the system (&, (T) is dense in A,. Further, there is a dense 

orbit, and in fact, the set of points whose orbits are dense is a dense-G6 set in A,. 

Subshifts of finite type have been studied in great detail. They have a number of 

other properties that will be useful here. To present these properties we first need a few 

definitions. The topological and measure-theoretic entropies are well known measures 

of the complexity of a dynamical system (see [ 119,96,107] for definitions and various 

properties). The topological entropy of a map f is denoted htop( f). If ,U is an f- 
invariant probability measure, then h,(f) is the measure-theoretic entropy of f with 

respect to ,u. It turns out that for any such measure ,x, h,(f) < htop( f) . Any measure 
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for which equality holds is called a measure of maximal entropy. Irreducible subshifts 

of finite type always have a unique measure of maximal entropy. In addition, the shift is 

ergodic with respect to the measure of maximal entropy. This means that invariant sets 

have measure zero or one. The Birkhofs ergodic theorem says that if the system (X, T) 

is ergodic with respect to the invariant measure ,u, then for any u E L’ (,u), 

1 n -c n+l iz0 

a(T’(x)) --+ s a@ 

for p almost every point x E X. 

Given a sequence a,, its exponential growth rate is 

growth( a,) = lim sup 
log, (anI 

n+cC n 

Roughly speaking, a sequence that has exponential growth rate log(A) will grow like 

A” as n --f CO. In what follows, we will sometimes consider the exponential growth rate 

of periodic orbits by considering Fixm (f) = growth(card(Fix( f”) ). For irreducible 

subshifts of finite type this quantity is related to the topological entropy and the spectral 

radius of B by 

FixW(gIn,) = htop(~l,t,) =log(spec(B)). 

An irreducible transition matrix B satisfies the hypothesis of the Perron-Frobenius 

theorem and so, in particular, the spectral radius of B is always strictly bigger than one 

and thus there is positive topological entropy. Note that fixed points of 8 are created 

by transitions from a state back to itself under the nth iterate and are therefore counted 

by the trace of B”. Since B has an eigenvalue of largest modulus A > 1, trace( B”) is 

growing like A”. This explains the connection of spec( B) to Fixa. 

There is a theory of one-sided subshifts ofjnite type that is analogous to the two-sided 

theory. In this case one considers only one-sided infinite words from the alphabet set 

to get the full one-sided shift on n symbols 2,, + = A;. The shift map is now n-to-one. 

Given a transition matrix, one defines the corresponding subshift as in the two-sided 

case. Most other features of the two theories are identical. 

1.3. Circle endomorphisms 

The circle is the simplest manifold that is not simply connected. The rotation number 

of a point measures the asymptotic rate at which the orbit goes around the circle. In 

Section 11 the rotation number will be generalized to measure the rates of motion 

around various loops in a surface. For more information on the dynamics of circle 

endomorphisms see [ 1,14,32,3 11. 

Given a degree-one map f : S’ --f S’ and a point x E S’, fix a lift to the universal 

cover f : R -+ R and let the rotation number of x under f be 

p(x, J‘) = lim 
r”(Z) -P 

n-03 n 
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2 ’ I I I 
1 3 5 2 4 

Fig. 1.1. The graph of the lift of the map G,. 

when the limit exists, where R E lR is a lift of x. The rotation set is p(f) = {p(x, f) : 

x E S’}. The rotation set is always a closed interval. The rotation number of a point 

x does not depend on the choice of its lift Z, but changing the choice of the lift of f 

will change rotation numbers and the entire rotation set by an integer. This ambiguity 

usually does not cause confusion and the rotation set is thus written as a function of f, 

p(f), not of J 
If f is a homeomorphism, then every point has a rotation number, and this number 

is the same for all points x E S’. For this reason a circle homeomorphism is said to 

have a rotation number rather than a rotation set. If f is not injective, rotation numbers 

have features that are analogous to rotation vectors in two-dimensional dynamics. For 

example, different orbits can rotate at different asymptotic rates, and there can be points 

for which the rotation number does not exist. Another feature is that a periodic orbit 

can have rotation number p/q, but have period a multiple of q. 

We will now focus on a specific example that will introduce the one-dimensional 

analogs of many of the notions that will be used in our two-dimensional examples. Let 

G, : S’ + S’ be the piecewise-linear map whose lift is pictured in Fig. 1.1. Let c E S’ 

denote the point at which the lift has a local maximum. Note that both turning points 

are on the same orbit of f and that c has period 5 and p(c) = 2/5. Label the closed 

intervals between elements of o(c, G,) as {Ii,. . . ,15} as shown in Fig. 1.3. The crucial 

feature of these intervals is that the image of any interval consists of a finite union of 

other intervals. This feature makes these intervals what is called a Markov partition for 

the map. This notion will be defined more precisely below in the two-dimensional case. 

The elements of a Markov partition can be thought of as states in a Markov process. 

They allow one to code the orbits by their passage through these states. This allows one 

to treat the map as a factor of a one-sided subshift of finite type. There are ambiguities 

in the coding of a point whose orbit hits the boundary of a Markov interval. Initially 

we will only define the coding away from this bad set X = {x : o(x) n o(c) f @}. 
To accomplish the coding, for each x E S’ - X, define an element W(x) of 2; by 

( W(x) ) n = i if G:(x) E Ii. To get a description of all the possible codes of orbits we 

need to compute the transition matrix B of the Markov partition. This matrix is defined 
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Fig. 1.2. The transition diagram of the matrix B. 

by Bi,j = 1 if G, (Ii) c1 Zj Z 8, and Bi,j = 0, otherwise. For example, the ( 1,3) element 

of B is 1 because G, (Ii ) fl Zs # 8. The entire matrix is: 

00110 

00100 

B= 0 0 0 1 1 . 

i 1 

1 0 0 0 0 

0 1 1 1 0 

It is also useful to have a transition diagram of the process as shown in Fig. 1.2. In this 

diagram one draws an arrow from i to j if there is a transition from state i to state j, 

i.e. if Bi,j = 1. 

Now note that we can treat the assignment of W(x) to x as a map defined on S’ - X 

and that B has been defined precisely so that the image of W is contained in &. 

Further, W is injective where we have defined it and we let w : W( S’ - X) -+ S’ - X 

be its inverse. One can check that w is uniformly continuous so it can be extended to a 

semiconjugacy (Aa, g) + (S’ , G,). There are in fact only a few sequences in &i that 

are missed by the image of W. The missed orbits are precisely the inverses under g in 

& of the periodic sequence (4 1341) M. 

Note that the matrix B is irreducible. Also, a simple calculations shows that spec( B) G 

1.72208, and so the fixed points of GE are growing approximately at the rate of 

( 1.72208)“. 

In order to study the rotation set of G, we need to include information about motion 

in the circle in our description of the transitions between states. For this we consider the 

lifts of the Markov intervals to the universal cover R. Fix a fundamental domain and 

continue to label the intervals in this region as before. If we let the symbol r represent 

the deck transformation (i.e. translation to the right by one unit), then we can label the 

intervals in the next fundamental domain to the right as I( Ii) , r( 12)) . . . and those in 

one fundamental domain to the left as I-’ (Ii ) , r-l (12)) . . ., etc. (See Fig. 1.3.) 

Now we construct a matrix B’ with Bi,j = rk if G,( Ii) n rk( Ij) # 8. The resulting 

matrix is 
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r-l (14) r, I, ‘(I* > r(I, > 

5 12 3 4 5 12 3 4 5 

r-’ (I,) I, I, I, I, I, 41, > rQ2) r(13) r(I, > 
Fig. 1.3. The image of the lift of G, is shown above the line. An overline indicates an image. 

Fig. 1.4. The transition diagram of the matrix B’. 

r 0 0 0 0 

0 Y Y r 0 

A transition diagram is given in Fig. 1.4. Now the arrows that represent transitions are 

labeled with the appropriate power of r. 

To obtain rotation number information from these diagrams we need one more def- 

inition. If B is the transition matrix for a subshift of finite type, a minimal loop is 

a periodic word whose repeating block contains each letter from the alphabet at most 

once. The repeating blocks of the minimal loops for our matrix B are 14, 35, 134, 235 

and 5413. The crucial observation is that any sequence in the subshift of finite type 

can be obtained by the pasting together of minimal loops. This means that the rotation 

number of any word can be obtained by knowing the rotation numbers of its constituent 

minimal loops. 

For example, the minimal loop 14 contains a one transition labeled with an r and 

thus the corresponding orbit has rotation number l/2. Similarly, the minimal loop 134 

has a single r transition and thus represents a periodic orbit with rotation number l/3. 

Thus the concatenated and repeated block 141341 contains two r transitions and yields 

a periodic orbit with rotation number ( 1 + 1)/(2 + 3). Thus by using so-called Farey 
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arithmetic one can obtain the rotation numbers of all orbits from the pasting structure 

of the minimal loops of their sequences in An. In particular, the rotation set of G, is 

precisely the convex hull of the rotation numbers of the periodic orbits coming from 

minimal loops. It is easy to compute then that G, = [ l/3,1/2]. 

This technique of encoding information about motion of Markov boxes in the covering 

spaces is due to Fried. Theorem 11 .l is a consequence of using the two-dimensional 

analogs of these ideas. We also want to comment here on another feature of this example 

that has an important two-dimensional analog. If another map of the circle has a periodic 

orbit with the same permutation on the circle as that of c under G,, it seems reasonable 

that the second map’s dynamics must be at least as complicated as that of G,. This is 

true, and in fact, the second map will always have a compact invariant set that has G, as 

a factor. Thus, in particular, its entropy will be greater than equal to that of G, and its 

rotation set will contain that G,. These are the one-dimensional analogs of Corollaries 

7.5(a) and 11.2. To develop a further analog to the pseudoAnosov maps of the two- 

dimensional theory (see Section 7), note that we can find a map that is conjugate to G, 

but whose slope has a constant absolute value of spec(B). In this case the measure of 

maximal entropy is Lebesgue measure. For more remarks on the connection of the one 

and two-dimensional theories, see [ 181. 

We leave most aspects of our final circle map example as an exercise. The angle 

doubling map is a degree-two map of the circle defined by Hd (0) = 28. Show that the 

two intervals [0,1/2] and [ l/2,1 ] give a Markov partition for Hd and a semiconjugacy 

from the full one-sided shift on two symbols to Hd. As a consequence, show that the 

periodic orbits of Hd are dense in the circle and there are points whose orbits are dense. 

What is the topological entropy of Hd? Can one make any sense out of rotation numbers 

in this case? 

1.4. Markov partitions 

As we saw in the previous examples, a Markov partition gives a symbolic coding 

of a system. We shall use these partitions in a variety of situations and each situation 

would require its own definition. Instead we take an operational approach; we simply 

state what a Markov partition does and allow the reader to consult the literature for 

precise definitions in various cases. 

If Y is a compact invariant set for a surface homeomorphism f, a Markov partition 

for (I: f) is a finite cover by topological closed disks {RI,. . . , I&}, so that for each 

i # j, RiflInt(Rj) =0 and f( Ri) n Rj is either empty or connected. Further, if B is 

the k x k matrix (called the transition matrix) defined by Bi,j = 1 if f( Ri) fl Rj # 8, 

and 0 otherwise, then (An, a) is semiconjugate to (Y f) . The semiconjugacy is one-to- 

one except at points whose orbits intersect the boundary of some Ri. On these points 

the semiconjugacy is finite-to-one. The semiconjugacy is defined using the inverse of 

the coding of points as was done with the map W in Section 1.3. In particular, for 

any sequence ai of elements from { 1,2,. . . , k}, ni,, f’(Int( R,) ) is either empty or a 

single point. 
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1.5. Linear toral automorphisms 

Next we discuss homeomorphisms on the two torus T* = S’ x S’ which are induced 

by linear maps acting on the universal cover of the torus, IR*. The deck transformations 

of this cover are {T,,, : (m,n) E Z”} where T,,,,(x,y) = (x+m,y +n). A matrix 

C E SLz(Z), i.e. C is a 2 x 2 matrix with integer entries whose determinant is equal 

to one, always descends to a homeomorphism fc : T* + T*. This is because for any 

(m, n), C TV,, = T,,~,,I C where (m’,n’) = C(f). 

We will be using two specific instances of this construction. Let Hf denote the 

homeomorphism induced by the matrix 

0 
cf= ,’ _1 ( > 

and HA denote the homeomorphism induced by 

CA = 
2 1 ( > 1 1. 

The dynamics of Hf are fairly simple. There are exactly four fixed points. These are 

the points on T* that are the projections of the points (O,O), ( l/2,0), (0, l/2), and 

( l/2,1/2). Every other point has period 2 and in fact, Hf” = Id (the subscript “f” stands 

for finite-order). 

The dynamics of HA are considerable more complicated and there is a Markov 

partition that codes orbits on the entire torus. The crucial data in constructing the 

partition are the eigenvalues and eigenvectors of C; At = A = i(3 + v%), A2 = l/A = 

i(3 - &), ut = (i(l + &),I), and uz = (i(1 - &),l>. The vectors u1 and u:! 

are usually called the unstable and stable directions, respectively, because these are the 

directions of the linear expansion and contraction, and thus give the directions of stable 

and unstable manifolds for periodic points. 

The Markov partition is constructed using these stable and unstable directions. The 

actual details of the construction are somewhat complicated to describe, so we refer the 

reader to [ 1091 or [ 321. It should be mentioned that there is a standard technique for 

constructing a subshift of finite type from any matrix of positive integers, not just from 

matrices of zeros and ones as considered here (see [ 40, p. 191) . Using this construction 

the subshift modeling the dynamics of HA is constructed using the matrix CA. 

The semiconjugacy with the irreducible subshift of finite type implies that periodic 

orbits are dense (in fact, it is easy to check that set of periodic orbit is exactly the 

projection to T* of Q2). There is also a dense orbit which implies that the recurrent 

set is all of T*. Lebesgue measure is HA-invariant since the matrix CA has determinant 

equal to one, and it is the unique measure of maximal entropy. 

Any C E SLz(Z) with 1 trace(C) 1 > 2 will induce a toral automorphism that has a 

Markov partition and will be a factor of a irreducible subshift of finite type. These maps 

are often called hyperbolic toral automorphisms. In this language the finite-order map 

Hf is called elliptic. Hyperbolic toral automorphisms are the simplest case of Anosov 
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Fig. 1 S. A saddle fixed point and its blow up 

diffeomorphisms (see [ 1131, [ 1091, or [38] ). (The subscript “A” in HA stands for 

Anosov.) 

1.6. Blowing up periodic orbits 

It is often useful to use a diffeomorphism on a closed surface to obtain one on a 

surface with boundary by replacing periodic points with boundary components. This is 

accomplished through the procedure of blowing up. It is a local operation so it suffices to 

describe the operation in the plane. Assume that f : IK2 --+ Et2 a homeomorphism that is 

differentiable at the origin and f(0) = 0. Let R’ be the surface obtained by removing the 

origin from the plane and replacing it by a circle, thus R’ = [ 0,~) x S’. After expressing 

f : El2 + Et2 in polar coordinates, we define f’ : R’ -+ R’ via f’( r, 0) = f(r, 0) if 

Y > 0 and f’( 0,0) = Dfc( 0)) where we have used Dfn to denote the map induced on 

angles by the derivative of f at zero. Its clear that f’ will be a homeomorphism. We 

can use a similar procedure to blow up along a periodic orbit of a diffeomorphism. An 

illustration is given in Fig. 1.5. 

1.7. Mapping class and braid groups 

If two homeomorphisms fc and fi are isotopic, this is denoted by fa E fi. If 

there is a specific isotopy given it is written ft : fo N fl. If M is a closed surface, 

then the collection of isotopy classes of orientation preserving homeomorphisms on 

M with the operation of composition is called the mapping class group of M, and is 

denoted MCG( M). An isotopy class is sometimes called a mapping class. If M has 

boundary, there are two choices. The first is to just allow mapping classes consisting 

of homeomorphisms that are the identity on the boundary and isotopies that fix the 

boundary pointwise. This mapping class group will be denoted MCG( M, aM>. The 

second choice is to allow the boundary to move under both the homeomorphisms and 

the isotopies. This case will be denoted as MCG( M). In dynamical applications it is 

often useful to consider isotopy classes rel a finite set A, i.e. all homeomorphisms must 
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Fig. 1.6. The element rrlv;‘q? from B4. 

leave A invariant, and all isotopies are rel A. This group is denoted MCG( M rel A). 

If there is both boundary and a distinguished set of points A, then the notations are 

combined. For example MCG( 0’ rel A, dD*) is all isotopies classes of the disk that fix 

the boundary pointwise and leave the set A invariant. 

The mapping class groups have been extensively studied, see for example [ 10,751. 

The mapping class group is sometimes called the modular group of the surface in analogy 

with the fact that SL2 (Z) is the mapping class group of the torus. The construction in 

Section 1.5 shows how to get a homeomorphism of the torus and thus a mapping class 

from an element of SL2( Z) . The two groups are isomorphic because each mapping 

class contains exactly one linear model. 

Another mapping class group that is fairly well understood is MCG( D* rel A, dD*) 

These groups can be identified with Artin’s braid group on n-strings, B,, as follows (see 

[lo] for more details). We will just describe the correspondence for the braid group on 

4 strings, the other cases being similar. 

The elements of the braid groups are geometric braids. Braids that are isotopic are 

considered equivalent. The group B4 has generators ,f’, c$‘, and (T$‘. The generators 

are combined into words by placing one below the other. Thus Fig. 1.6 shows the 
-1 element (~1 cr2 ~3. The relations in B4 are (~1~3 = gj~t, UIU~(T~ = (~2~1~2, and 

~21~3~2 = ~3~2~3. The commutativity relation is clear geometrically, the other relations 

are somewhat more subtle (see Fig. 2 in [ lo] ). 

In connecting the braid groups with mapping class groups, we once again focus on 

BJ. Let A = {Al,A2.A3, Ad} be four points in the interior of the disk. Let 41 be a 

homeomorphism that interchanges Al and A2 in a clockwise direction in the simplest 

possible way while fixing JO* pointwise. Let 42 interchange A2 and As, and 43 do the 

same with A3 and Ad. The map B4 + MCG(D* rel A,dD*) generated by sending ci 

to the isotopy class of & gives an isomorphism of the groups. 

Informally, one can think of sliding a rubber sheet down the braid to obtain a mapping 
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class. To go from a mapping class to a braid, construct the suspension flow (see 

Section 2.1) of an element of the class, and then cut the strings of the orbit of the 

distinguished set of points. 

1.8. Homeomorphisms of the disk 

We will first give a standard way of going from a linear toral automorphism to a 

homeomorphism of the disk (see [ lo] and [ 841) . Let 3 E SL2 (Z) be 

-1 0 ( > 0 -1 

and S : T2 + T2 be the induced homeomorphism on the torus. Note that S is just the map 

Hf from Section 1.5, but we use different notation here as the map in used a different 

way. The quotient map T2 -+ T2/S gives a 2-fold branched cover with the 4 branch 

points at the fixed points of S. The quotient space T2/S is the two sphere. Since for any 

C E SL2 (Z) , SC = CS, the map induced by C on T2 descends to a homeomorphism on 

the sphere. This homeomorphism will leave the set of downstairs branch points invariant 

and will be differentiable everywhere except those 4 points. We would like to blow up 

one of these points (the projection of the origin) to get a homeomorphism of the disk, 

but the lack of differentiability prevents this. 

To circumvent this difficulty we apply the blow-up construction at the points of Z2 

under C and 3 treated as maps R2 4 IR 2. Since the integer lattice is fixed setwise by C, 

and C and 3 still commute after the blowup, the map C descends to a homeomorphism of 

the disk. We let HK denote the homeomorphism of the disk obtained by using the matrix 

CA from Section 1.5. (The subscript “K’stands for Katok.) As noted in Section 1.5, 

when / trace(C) 1 > 2, the induced toral automorphism has a Markov partition and is 

the factor of a irreducible subshift of finite type. This structure will descend to the disk 

and so HK will have a dense orbit, its periodic orbits will be dense, etc. 

We also want to consider the homeomorphism obtained by blowing up all points in 

iZ2 and then projecting. This homeomorphism, denoted Hk, is defined on the disk 

with three open disks removed. Finally, we also study a map that is isotopic to Hf, but 

does not have a dense orbit. The construction given here is a sketch of a more careful 

procedure described in [ 393 and [ 631. The action of the isotopy class of Hf, on a spine 

is shown in Fig. 1.7. To obtain the map Hf, fatten up the spine as is also shown in the 

figure. We make the three permuted boundary components attractors, and assume the 

third iterate restricted to these components is the identity. The outer boundary component 

is a repeller and we assume that the map is the identity there. The subscript “P” is for 

Plytkin, see [ 106,59,104]. Note that the map Hb is closely related to Plytkin’s map, but 

not identical. Plytkin’s map has a hyperbolic attractor, while the map Hb does not. 

The map is assumed to act linearly on the boxes so the recurrent set consists the 

boundary components and a Cantor set X contained in the union of the Ri. The rectangles 

Ri will be a Markov partition for Hb with irreducible transition matrix 
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Fig. 1.7. The map Hb; the action of the isotopy class on a spine is shown above and the Markov rectangles 

(labeled RI, R2, and R3 from left to right) and their images are shown below. 

In this case X will actually be conjugate to the subshift of finite type as the partition 

does not have the boundary overlap that leads to ambiguity in the coding. By collapsing 

each inner boundary component to a point we obtain a homeomorphism denoted Hp. It 

will have an attracting periodic orbit of period 3. 

1.9. An annulus homeomorphism 

The rotation number of an annulus homeomorphism is defined similarly to that of a 

circle homeomorphism. It measures the asymptotic rate of rotation of an orbit around 

the annulus, A, and is also denoted p( x, f). Fig. 1.8 shows a homeomorphism HL of 

the annulus with 5 open disks removed. (The “B” stands for p as explained in Section 

9.4). The homeomorphism is defined by using the map G, from Section 1.3 defined on a 

circular spine. It is fattened in a manner similar to the example of the last section. Once 

again the main piece of the recurrent set is a Cantor set that is conjugate to the subshift 

of finite type that arises from the transition matrix of the partition. This transition matrix 

is the same as the matrix B from Section 1.3. 
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Fig. 1.8. The annulus homeomorphism Hk. The grey box is labeled Rd. 

By collapsing each inner boundary component to a point we obtain a homeomorphism 

denoted HB. It will have an attracting periodic orbit of rotation number 2/5. 

2. Equivalence relations on periodic orbits 

One goal of this paper is to present tools that help one understand the topological 

structure of the set of orbits of a surface homeomorphism. To further this goal it is useful 

to develop algebraic coordinates that can be assigned to the orbits. These coordinates 

reflect how the orbits behave under iteration with respect to the topology of the ambient 

surface. The theory is simplest and most complete in the case of periodic orbits. The 

assignment of coordinates naturally leads to equivalence relations on the orbits, namely, 

two periodic orbits are equivalent if they get assigned the same coordinates. 

It will be convenient to first define the equivalence relations on periodic orbits and 

then, in the next section, assign coordinates to the equivalence classes. We will focus 

here on three equivalence relations, which in order of increasing strength (and thus de- 

creasing size of equivalence classes) are: Abelian Nielsen equivalence, periodic Nielsen 

equivalence, and strong Nielsen equivalence. The use of Nielsen’s name in all these 

relations acknowledges the general origin of these ideas in his work on surfaces as well 

as the close connections with Nielsen fixed point theory. A stronger equivalence relation 

encodes more information about the orbit, but as usual, recording more information 

results in diminished computability. 

We restrict attention here to the category of orientation-preserving homeomorphisms 

of compact, connected, orientable surfaces. However, much of what is said is true in a 

wider context. The reader is invited to consult [78,82,72,99] for more information. 

2.1. Dejinitions using the suspension $0~ 

For each of the equivalence relations there is a definition that uses the suspension 

flow, another that uses arcs in the surface, and a third that uses a covering space (except 

the last in case of strong Nielsen equivalence). The definitions using the suspension 
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flow are perhaps the most conceptually apparent, but they are usually not the best for 

constructing proofs. The definitions that use the suspension flow define an equivalence 

relation on periodic orbits while the other definitions give relations on periodic points. 

The various notions are connected in Proposition 1.1. The importance of the suspension 

flow for understanding the theory of periodic orbits of maps was contained in [ 551 and 

used extensively in [ 48,51,52,82,72]. 

Recall that if f : M -+ M is a homeomorphism, the suspension manifold Mf is the 

quotient space of M x IR under the action T(x, s) = (f(x) , s - 1). (In the topology 

literature the suspension manifold is usually called the mapping torus and the suspen- 

sion of a manifold is a quite different object. We adhere to the usual conventions in 

dynamics.) To obtain the suspension$ow er on Mf, one takes the unit speed flow in the 

Iw direction on M x R and then projects it to Mf. If p : M x IR + Mf is the projection, 

let MO C Mf be a copy of M obtained as MO = p( M x (0)). Given a point x E M, yx 

denotes the orbit under & of p(x, 0). Note that when x is a periodic point, yX may be 

viewed as a simple closed curve in Mf. 

Given x, y E P,(f), say that the periodic orbits 0(x, f) and o(y, f) are strong 

Nielsen equivalent if yX is freely isotopic to yr in Mf. Note that we are just requiring 

an isotopy of the closed curves, not an ambient isotopy. The periodic orbits are periodic 

Nielsen equivalent if yX is freely homotopic to yr in Mf. Finally, they are Abelian 

Nielsen equivalent if the closed orbits are homologous in Mf, or more precisely, if 

they represent the same homology class in HI (Mf; Z). These situations are denoted 

by o(~,f) E o(y,f), o(~,f) z o(y,f), and o(x,f) E o(y,f), respectively. These 

relations are evidently equivalence relations and an equivalence class is called the strong 

Nielsen class and is denoted snc( x, f) , etc. 

The examples in Fig. 2.1 show the suspension of map isotopic to the identity on 

the disk with two holes. The figure to the left shows a pair of period 2 orbits that are 

periodic Nielsen equivalent but not strong Nielsen equivalent. Roughly speaking, the 

Fig. 2.1. Periodic orbits that are periodic Nielsen equivalent but not strong Nielsen equivalent (left) and 

Abelian Nielsen equivalent but not periodic Nielsen equivalent (right) 
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distinction here is that a homotopy allows one to pull strings of a closed loop through 

itself, while this is not allowed in an isotopy. The figure on the right shows a pair of 

orbits that are Abelian Nielsen equivalent but not periodic Nielsen equivalent. In this 

case Abelian Nielsen equivalence is just measuring the linking number of the periodic 

orbit with the two holes. 

2.2. Dejinitions using arcs and covering spaces 

Our primary focus in this paper will be on the equivalence relations defined for 

periodic orbits. However, there are alternative definitions for these equivalence relations 

that use periodic points. These are often useful and are in fact, the more standard in 

the literature. We begin with a definition for fixed points. It is the classical definition of 

Nielsen equivalence. 

Given x, y E Fix(f), x is Nielsen equivalent to y (written (x, f) z (y. f), or if the 

map is clear from the context, x E y) if there is an arc (Y : [0, l] + M with a(O) = X, 

a( 1) = y, and f( cu) is homotopic to CY with fixed endpoints. Given X, y E P,(f), x is 

periodic Nielsen equivalent to y if (x, f”) 2 (y, f”) (written (x, f) E (y, f)). 

Given two arcs CY and /3 with the endpoint of cy equal to the starting point of p, 

let CY . /3 denote the arc obtained by following (Y by /3. Using this notation, n and y 

are periodic Nielsen equivalent when the loop cy . ( f”(a) ) -’ is contractible in M. The 

definition of Abelian Nielsen equivalence is an weaker version of this condition. Say that 

x and y are Abelian Nielsen equivalent when the loop (Y. (f”( (Y) ) -’ represents the zero 

class in coker( f* - Id) := Ht (M; Z) /Im( f* - Id) where f* : HI (M; Z) -+ H1 (M; Z) 

is the induced map on first homology. We could have also used the class in HI, but the 

given definition is what corresponds to the suspension flow and is also most appropriate 

for the assignment of coordinates to a class. 

The definition of strong Nielsen equivalence for periodic points puts more stringent 

requirements on the arc cy. It takes into account the entire orbit of a, not just the 

nth iterate. For the definition we need to recall a notion that relates two isotopies. An 

isotopy fr : fo rv j-1 is said to be a deformation of a second isotopy hr : fo 5 fl if the 

corresponding arcs in Homeo(M) are homotopic with fixed endpoints. A self-isotopy 

fr : f Y f is called contractible if it is a deformation of the trivial isotopy, i.e. the 

corresponding closed loop in Homeo( M) is null-homotopic. 

Once again assume that X, y E P,(f) The periodic points x and y are connected by 

the self isotopy fr if there exists an arc y : [ 0, 1 ] -,Mwithy(O)=x,y(l)=y,and 

for all t, y(t) E P,,( ft). If x and y are connected by a contractible isotopy, they are 

strong Nielsen equivalent. 

There is yet another equivalent definition of periodic and Abelian Nielsen equivalence 

of periodic points. Let fiu be the universal cover of M. Fix an identification of ~1 := 

~1 (M) with the group of covering translations of M,. If we fix a reference lift f : 

fi, + fi, of f, any lift of f” can be written as gp for some CT E n-1. It is easy to 

check that two periodic points x and y are periodic Nielsen equivalent if and only if 

there exists lifts .Z-, y” and an element CT E ~1 with (TV = .? and a?(y) = 7. 
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The definition of Abelian Nielsen equivalence makes use of the cover with deck group 

coker( f* - Id). Denote this covering space &r (the subscript “F” stands for Fried cf. 

[ 501). The space fin is the largest Abelian cover to which f lifts, and all lifts commute 

with the deck transformations. One can check that two periodic points n and y are 

Abelian Nielsen equivalent if and only if there exists lifts W, J to fin and an element 

u E coker( f+ - Id) with gp( 3) = f and VP(~) = jj. 

In comparing the definitions giving here with those elsewhere in the literature it is 

important to note that we have always defined equivalence relations just on periodic 

points of the same period. This is not always standard. 

2.3. Connecting the de$nitions 

At this point we have described the equivalence relations on periodic orbits using the 

suspension and on periodic points using arcs and covering spaces. The next proposition 

connects these definitions. 

Proposition 2.1. Two periodic orbits are equivalent in a given sense if and only if there 

are points from each of the orbits that are equivalent in the same sense. For example, 

0(x, f) E o(y, f) ifand only if there exists integers k and j with fk(x) E fj(y). 

For periodic Nielsen equivalence this result is proved in [ 8 1 ] (cf. [ 551) . The Abelian 

Nielsen equivalence result is implicit in [50,54,34]. Part of the strong Nielsen equiv- 

alence result is in [4], while the rest is (not completely trivial) exercise in smooth 

approximations and differential topology. 

2.4. Remarks 

It is clear from the definitions that use the suspension flow that o(x) z o(y) implies 

o(x) 2 o(y) implies o(x) 2 o(y). This means that a periodic Nielsen class is com- 

posed of a disjoint collection of strong Nielsen classes and an Abelian Nielsen class 

is composed of a disjoint collection of periodic Nielsen classes. For fixed points there 

is no difference between the notions of strong and periodic Nielsen equivalence ( [ 78, 

Theorem 2.13 ] ) . 

The definition of strong Nielsen equivalence using arcs required a contractible self- 

isotopy. This is necessary to insure that the definition is equivalent to that given in the 

suspension flow. The basic idea is that the self-isotopy induces a self-homeomorphism 

of the suspension manifold. The isotopy is required to be contractible so that this 

homeomorphism is isotopic to the identity and thus does not alter isotopy classes. 

From another point of view, one would certainly like strong Nielsen equivalence to 

imply periodic Nielsen equivalence for periodic points. Using the definition of periodic 

Nielsen equivalence in the universal cover, this follows from the fact that a contractible 

self-isotopy always lifts to self-isotopy in the universal cover. In the case of primary 

interest here (M is a compact orientable surface with negative Euler characteristic) all 
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self-isotopies are contractible (cf. [ 37, p. 221) . However, the definition of strong Nielsen 

equivalence is applicable in other situations so the condition is explicitly mentioned here. 

Strong Nielsen equivalence of periodic orbits requires that the closed orbits be iso- 

topic in the three-dimensional suspension manifold. This indicates the close connection 

of strong Nielsen equivalence with knot theory in dimension 3 (cf. [ 121). It also in- 

dicates that the distinction between strong and periodic Nielsen equivalence vanishes in 

dimensions bigger than two. In this case the suspension manifolds will be dimension 4 

or greater and in these dimensions simple closed curves are homotopic if and only if 

they are isotopic. 

2.5. Examples 

For degree-one maps of the circle (Section 1.3)) the suspension manifold is the torus. 

Since closed curves in T2 are isotopic if and only if they are homotopic if and only if 

they are homologous, all three equivalence relations are the same. Two periodic orbits 

are equivalent precisely when they have the same period and rotation number. For circle 

homeomorphisms the period is determined by the rotation number. 

For the doubling map on the circle, Hd, coker( (Hd) * -Id) = Z/Z, so Abelian Nielsen 

equivalence only measures the period here. To study the periodic Nielsen classes note 

that all lifts to the universal cover of H; have the form x H 2k~ + N. Such a map can 

have at most one fixed point and so all fixed points of iY2 are in different Nielsen classes. 

Thus all periodic orbits of Hd are in different periodic Nielsen equivalence classes. 

For the linear toral automorphisms Hf and HA from Section 1.5 the analysis of 

periodic Nielsen equivalence is similar. All the lifts of all the iterates will have at most 

one fixed point with the exception being Hfk = Id. This means that all the period 2 

points of Hf are periodic Nielsen equivalent. Note that any fixed point of Hf is Nielsen 

equivalent as a fixed point of Hf’ to any of the period 2 points and to any other fixed 

point. However, the fixed points are not periodic Nielsen equivalent to each other or 

Fig. 2.2. The suspension of H6. 
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to any of the period 2 points because the definition of periodic Nielsen equivalence 

includes a requirement on the period of the orbits. 

Fig. 2.2 shows the suspension of the homeomorphism Hfi from Section 1.8. (In this 

figure orbits are moving downward. This convention was adapted to agree with the usual 

composition of braids.) The homology class in this suspension manifold of a closed loop 

coming from a periodic orbit is determined by the period and the linking number of 

the loop around the central “period-3” tube. The homeomorphism Hf, has exactly three 

interior fixed points. The closed loops corresponding to these orbits are shown. They 

have linking numbers 0, 1, and -1 and thus are all in different Abelian Nielsen classes, 

and thus different periodic Nielsen classes. 

3. Coordinates for periodic orbits 

Having defined equivalence relations on periodic orbits, the next step is to assign 

coordinates to each equivalence class. In the cases of periodic and Abelian Nielsen 

equivalence the definitions using the suspension flow make the choose of coordinates 

obvious. We will use the standard tools for keeping track of homotopy classes and 

homology classes of loops, i.e. ~1 and HI. The choice of coordinates for strong Nielsen 

classes is less obvious and seems to work well only when the given homeomorphism 

is isotopic to the identity. In every case the assignment of coordinates will be injective, 

i.e., two classes will be equal if and only if they are assigned the same coordinate. For 

more information on coordinates for classes of periodic orbits see [ 78,72,82,48,50,51]. 

3.1. Dejinitions of the coordinates 

We first need some simple information about the topology of the suspension manifold. 

Recall from Section 2.1 that the suspension manifold is Mf = (M x R) /T and Ma c MJ 

is a specific copy of M that is transverse to the suspension flow. The first return map 

of the flow to MO will also be called f. Choose a base point x0 E MO and a path 

6 c MO connecting f(xc) to xc. Following for one unit of time the orbit of I,$ that 

begins at xc yields an arc from x0 to f( xc). Let T be the loop in n-1 (Mf, xc) obtained 

by concatenating this arc with S. It then follows that ~-1 (Mf, x0) is the free product 

~1 (Mu, x0) * (r) with new relations given by wr = rf, (w) where f* : n-1 (MO, x0) + 
n-1 (MO, x0) is defined in the standard way using the arc 6. Abelianizing one obtains 

that HI (Mf; Z) 2 coker( f* - Id) x Z. The Z coordinate is generated by the homology 

class representing 7. 

From the construction of the suspension manifold there is a natural fibration p : 

Mf + S’ with fibers homeomorphic to M. For (T E H1 (Mf; Z), define its period to 

be period(a) = P,(U). If the element c is represented by a periodic orbit, then the 

period of the class will be just the period of the orbit. The period of a conjugacy 

class in n-1 (Mf) is the period of the homology class it maps to under the Hurewicz 

homomorphism. 
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Given x E P,,(f) its Abelian Nielsen type, denoted ant( x, f) is the homology class 

of yx in the suspension Mf. Writing Hi (Mf; Z) as above, the last coordinate of an 

Abelian Nielsen type keeps track of the period of periodic orbit. The periodic Nielsen 

type of the periodic orbit, denoted pnt(x, f), is the conjugacy class in ~1 (Mf) that 

represents the free homotopy class of yx. 

We are focusing here on assigning coordinates to periodic orbits. One can also, in 

the case of Abelian and periodic Nielsen equivalence, assign coordinates to a periodic 

point. These coordinates keep track of which lifts in the appropriate cover fix a lift of the 

point. For periodic Nielsen equivalence these coordinates are called lifting classes and f- 

twisted conjugacy classes (see [ 781) . Different period n-periodic points from the same 

periodic orbit will have different coordinates if they are not Nielsen equivalent under f”. 

The coordinate assigned to the Abelian Nielsen class of periodic point is the projection 

of its Abelian Nielsen type to coker( f* - Id). This coordinate will be the same for all 

points on the same orbit as they are always Abelian Nielsen equivalent. This coordinate 

may be viewed as the element w E coker( f* - Id) for which f”( 2) = w? in fin. 

There only seem to be reasonable algebraic coordinates for strong Nielsen classes 

when f is isotopic to the identity. The strong Nielsen type of the orbit will be essentially 

the isotopy class of f rel the orbit, but we eventually will compare periodic orbit from 

different maps so we need to transport this data over to a common model. For each 

n E N, let X, E Int( M) be a set consisting of n distinct points. Given a periodic orbit, 

o(x,f), of period n, pick a homeomorphism h : (M,o(x, f)) + (M,X,) isotopic to 

the identity. Now let the strong Nielsen type of the orbit, denoted snt(x, f), be the 

conjugacy class of [ h-‘fh] in MCG( M rel X,), where [ .] represents the isotopy class. 

Now one can show that 0(x, f) E o(y, f) if and only snt(x, f) = snt(y, f). 

3.2. The collection of equivalence classes for a map 

We now have a method of assigning coordinates to the periodic orbits of a home- 

omorphism. It is natural to collect all these coordinates together and associate them 

with the homeomorphism. This collection of coordinates encodes a great deal of in- 

formation about the dynamics of the homeomorphism and its size gives some measure 

of the dynamical complexity. We let snt( f) = {snt(x, f) : 0(x, f) is a periodic orbit}, 

pnt(f) = {pnt(x,f) : o(x,f) is a periodic orbit}, and ant(f) = {ant(x,f) : o(x,f> 

is a periodic orbit}. 

The methods for computing these objects will be discussed in later sections. The 

analog of the set ant(f) that takes into account non-periodic orbits is called the rotation 

set and will be discussed in Section 11. 

3.3. Growth rate of equivalence classes 

The growth rate of the number of distinct equivalence classes of period n-orbits as 

n 4 0~) gives a measure of the size of the set of all classes and so measures the 

complexity of the dynamics. 
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For each n E N, let pnt(f, n) be the number of distinct period n-periodic Nielsen 

classes for f and pnt”( f) = growth(pnt( f, n) ), where growth is the exponential 

growth rate defined in Section 1.2. Note that for each n, pnt(f, n) is always finite. 

This is one reason the growth rate of period Nielsen classes is studied instead of that 

of Fix(fn). The following theorem is proved like Theorem 2.7 from [ 821 (see also 

[ 731). The result here is only slightly different as we are counting only least period II 

classes and are counting non-essential classes (the notion of an essential class will be 

defined in the next section). 

Theorem 3.1. Given a homeomorphism f : M 4 M, then htop(f) 3 pm”(f). 

The theorem says that the topological entropy is larger than the exponential growth 

rate of the number of distinct periodic Nielsen classes of period n. This implies a similar 

theorem for Abelian Nielsen classes. 

3.4. Examples 

As noted in Section 1.5, for circle endomorphisms the suspension manifold is T2 

which has integer homology iZ2. All three equivalence relations in this case measure the 

same thing. The type of a periodic orbit will be a pair (m, n) where n is the period 

and m/n is the rotation number. The set of all the rotation numbers of the map G, from 

Section 1.3 was computed in that section. 

As also noted in Section 1.5, the Abelian Nielsen type of a periodic orbit of the angle 

doubling map, Hd, is just the period. The periodic Nielsen type is more interesting. We 

first consider the task of understanding the fixed points of Hz. Since n-1 (S’ ) is abelian, 

the set of free homotopy classes in the suspension that have period II is in one-to-one 

correspondence with coker( (Hz) * - Id) = Z/( 2” - 1 )Z = &,_i. Each of these free 

homotopy classes is represented by some closed loop corresponding to a fixed point 

of H;. (Many of these loops correspond to periodic orbits with periods that divide n. 

These loops are traversed multiple times.) In fact, the fixed points of Hz are exactly the 

points in the circle with angles 

{ 

1 2 2” - 2 
o,-- - 2” _ 1’ 2” _ 1 ‘. . ’ 2” _ 1 

I 

which is a subgroup of S’ that is isomorphic to &_i. 

Now to understand the periodic Nielsen types of orbits we must consider how the 

period k orbits are accounted for among the fixed points of H; when k divides m. 

This amounts to understanding how Z2’-’ is sent inside Z*“-’ by the natural map. In 

addition, we want a description of the conjugacy class of the orbit not just the individual 

fixed points of iterates. This is an entertaining exercise in elementary number theory 

that we leave to the reader. 

Since n-1 (T*) is Abelian the situation is similar but the number theory is much more 

complicated (cf. [ 1171). The free homotopy classes in the suspension of period II 
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will be in one-to-one correspondence with coker( f: - Id) (here we have once again 

allowed multiples of lower period classes). For a hyperbolic toral automorphism like 

HA from Section 1.5, each of these classes will be represented by an orbit. For example, 

coker( (Hi) * - Id) 2 Zs, where we have used the fact that the action of HA on first 

homology is given by the matrix CA. Now the Lefschetz formula yields that the sum of 

the indices of fixed points of Hi is 1 - trace( (Hi),) + 1 = -5. Each fixed point of 

Hi will have index - 1 (see the derivative formula in Section 4.2)) and thus there must 

be 5 fixed points. They are all in different Nielsen classes and so each of the period-2 

classes in the suspension is represented by a closed loop coming from a fixed point of 

Hi. A similar analysis shows that the number of period-n periodic Nielsen classes will 

grow like the trace of Ci, thus pnP ( HA) = log( At ) - 0.962424. 

For the finite-order map Hf, the cokernel is & @ & whose four elements correspond 

to the four fixed points of Hf. Since there are only finitely many periodic orbits, the 

growth rate pnP is zero. 

Next we show using ideas contained in [50,48,39] how the Markov partition of the 

homeomorphism HL from Section 1.8 can be used to compute its Abelian Nielsen types. 

The procedure is the same as was used in Section 1.2 to encode rotation information 

into the transition matrix of the circle map G,. In this case, however, we are encoding 

information about rotation (or more properly linking) about the orbit of the period-3 

permuted boundary components. 

Fig. 3.1 shows the cover with deck transformations coker( (Hb) * -Id) = Z. This cover 

is the one used in Section 2.2 to define Abelian Nielsen equivalence and is denoted A?i;l~. 

Fig. 3.1. The lift of Hk. 



l? BoylandITopology and its Applications 58 (1994) 223-298 247 

Fig. 3.2. The action of Hb on an arc 

The idea is to lift the Markov partition to fin and then compute the transition matrix 

there when we act by a lift of HL. For simplicity we pick a lift that fixes the back edge 

of fir and call this lift 8. 

The figure shows the action on the rectangle 1?t. This behavior can be computed by 

studying the behavior of the arc labeled LY in Fig. 3.2. We can think of the covering 

space as being constructed by cutting along all the dotted lines shown in Fig. 3.2. The 

fact that HL( cr) crosses a cut line means that in the lift, the image of the rectangle I?’ 

moves upward a deck transformation and intersects another lift of the same rectangle. 

We record this information by putting a e in the (1,1) place in the new transition 

matrix. By computing the action on all boxes we obtain the matrix 

Note that since fi commutes with the deck transformations, it does not matter what lift 

of a given rectangle we consider. 

The matrix K encodes all the information about the behavior of the lifts of orbits 

from the main piece of the recurrent set. This means that it contains all the information 

we need to compute Abelian Nielsen types. For example, since trace( K2) = 1 + !-’ + 
2[-’ + 2e + e2, the second iterate of Hb has fixed points with linking number 0, -2, 

- 1, 1, and 2. Note that just the - 1 and 1 represent period-2 orbits, the others are the 

second iterates of fixed points (see Fig. 2.2). Thus the period-2 Abelian Nielsen types 

are (- 1,2) and ( 1,2). In Section 11 we will remark on how the minimal loops of the 

Markov partition can be used to compute the rotation set of Hb. 
We have adapted here the point of view of the covering space in computing the 

Abelian Nielsen types. This point of view is developed in [ 501. We could also have 

adopted the point of view of the suspension flow as in [39,49,48]. In this case the 

matrix K is the linking matrix of the suspension flow. It records how the boxes in the 

Markov partition link with the period three tube in Fig. 2.2 as they traverse once around 

the suspension manifold under the suspension Bow. 
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4. Isotopy stability of equivalence classes of periodic orbits 

In this section we discuss conditions on the equivalence class of a periodic orbit which 

ensure that it persists under isotopy, i.e. it is present in the appropriate sense in any 

isotopic map. To make this somewhat more precise, recall that the equivalence relations 

on periodic orbits have been defined using the suspension flow. Isotopic maps have 

homeomorphic suspension manifolds, and so it makes sense to compare equivalence 

classes of isotopic maps. A given type of periodic orbit is isotopically stable if its type 

is always present among the types of the isotopic map. 

The persistence of fixed points, or more generally periodic points, is the subject of 

Nielsen fixed point theory. This theory applies in a much broader framework than is 

discussed here (see, for example, [78,99]). 

4.1. Correspondence of equivalence classes in isotopic maps 

Given an isotopy ft : fo N fl, let F : Mfo 4 Mf, be the induced homeomor- 

phism of the suspension manifolds. Say snc(xa, fa) corresponds under the isotopy 

fr : fo N fl to snc(xt , fl) if F(y,,) is isotopic to yx, in Mf,. Similarly, two periodic 

Nielsen classes correspond if these two closed curves are homotopic, and two Abelian 

Nielsen classes correspond if they are homologous. These correspondences have been 

defined using particular elements of the classes, but it is clearly independent of these 

choices. 

It would be natural to say that two classes correspond if they have the same type or 

coordinate. This requires a consistent way of assigning coordinates to periodic orbits for 

all elements in an isotopy class. An isotopy induces a homeomorphism of the suspension 

manifold, and this gives a way of identifying coordinates for isotopic maps. However, if 

the class contains a non-contractible self-isotopy, this will induce a homeomorphism of 

the suspension manifold that is not isotopic to the identity. As such it will identify the 

coordinates for classes that are not equal. This difficulty can be avoided by restricting 

to the case in which there are only contractible isotopies, e.g. when the manifold has 

negative Euler characteristic (see Section 2.4), or MCG(D’ rel A, aD2). 

We leave it to the reader to check that following give the appropriate notions of 

correspondence under isotopy for periodic points using arcs and covering spaces. If 

ff : fo 21 fl and xi E P,, (fi), then pnc( no, fa) corresponds to pnc(xt , fl) under this 

isotopy if there exists u E ~1 and lifts to the universal cover with mfi(Zi) = .Fi where 

fl : fo N ?I with ff an equivariant isotopy. Equivalently, the periodic points correspond 

under the isotopy if there is an arc y : [0, 11 - M with y(0) = x0, y( 1) = xi, and the 

curve fr ( y( t) ) is homotopic to y(t) with fixed endpoints. The correspondence under 

isotopy for Abelian Nielsen equivalence classes is similar, but one uses the cover tin, 

or requires that the loop y-’ . fy(y(t)) vanish in coker(ft, -Id) g coker(f2, -Id). 

The definition of correspondence for strong Nielsen classes is similar to equivalence 

relation in that case. The periodic points x0 and x1 are connected by the isotopy fr if 

there exists an arc y : [0, l] -+ M with y(0) = x0, y(1) = xl, and for all t, y(t) E 
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P,( ft>. If (x0, fa) and (xi, fl ) are connected by an isotopy that is a deformation of 

fr, then their strong Nielsen classes correspond under fr. 

4.2. Uncollapsible and essential classes 

Sufficient conditions for the isotopy stability of an equivalence class of periodic 

orbits have two requirements. The first requirement is a non-zero fixed point index for 

an iterate of the map. This detects the fact that an iterate has a fixed point. The second 

requirement is something called the uncollapsibility of the class, which implies that the 

fixed point is for the correct iterate. In terms of the bifurcation theory of dynamical 

systems, isotopy stability means that in a one parameter family of homeomorphisms the 

class of the periodic orbit cannot disappear. The uncollapsible condition insures that the 

class cannot disappear in a period dividing bifurcation. The index condition insures that 

the class cannot disappear via saddle node. The equivalence relation on the periodic 

orbits enters here because periodic orbits in different equivalence classes cannot interact 

in the suspension in a parameterized family. 

The definition of collapsible is first given for periodic Nielsen equivalence. The 

periodic orbit 0(x, f) of period n is collapsible if there exists a closed loop /3 in Mf 

so that yX is freely homotopic to pk for some 1 < k < n, where pk means the loop 

obtained by going k times around the loop p (see Fig. 4.1) . A period Nielsen class is 

collapsible if any (and thus all) of its elements is collapsible. In terms of coordinates, 

a periodic Nielsen type a is collapsible if there is a element b E n-1 (Mf) so that a is 

conjugate to bk for some 0 < k < n. Of necessity, the period of a is k times that of b. 

For surface homeomorphisms, the next lemma shows that the element b in the last 

paragraph is always represented by an orbit of f. We need the notion of one periodic 

point collapsing to another. If x and y are periodic points with (x, f”) z (y, f”) but 

n = pert x, f) > per(y, f), x is said to collapse to y. One periodic orbit is collapsible 

to another if periodic points from each orbit do. 

f 

Fig. 4.1. A collapsible periodic orbit with an orbit to which it collapses. 
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What is termed “uncollapsible” here is what was called “irreducible” in [ 78, p. 651. 

That terminology is not used to avoid confusion with the terminology “reducible maps” 

used in Thurston-Nielsen theory. The lemma contains the conditions that could be taken 

as the definition of collapsible using a covering space. The lemma is proved in [ 231. 

Lemma 4.1. If f : M ----f M is an orientation-preserving homeomorphism of a compact 

orientable 2-manifold and x E P,,(f), then following are equivalent: 

(a) pnc( x, f) is collapsible; 

(b) pnt( x, f) is collapsible; 

(c) There exist integers k and m with 1 < k < n and n = mk, an element (T E ~1, 

and a lifts 2 and f to the universal cover so that 5 is a periodic point with 

period m under cfk; 

(d) There exists a periodic point y so that x collapses to y. 

A strong Nielsen class is said to be collapsible if its periodic Nielsen class is col- 

lapsible. An Abelian Nielsen class is collapsible if its Abelian Nielsen type is divisible 

in Ht (Mf; Z), i.e. it is the non-trivial multiple of another class. Note that a collapsible 

Abelian Nielsen class may not contain a collapsible periodic Nielsen class. Also note 

that if an uncollapsible periodic Nielsen class for fo corresponds under an isotopy to 

a class for fl, then the class for fl is also uncollapsible. Similar comment holds for 

strong and Abelian Nielsen classes. 

The second ingredient of isotopy stability results is the fixed point index. This index 

assigns an integer, Z( X, f ), to any set X of fixed points of f that is closed in M and 

open in Fix(f) . For a smooth map an isolated fixed point at the origin has index equal to 

sgn( det( Id -D f (0) ) when the determinant is non-zero. The index has very strong local 

homotopy invariance properties. This invariance is globalized to equivalence classes to 

obtain isotopy stability results. An account of the fixed point index is given in [40] and 

[ 781, and an in-depth account in [ 271. 

Lemma 4.2. An uncollapsible period n-periodic, -strong, or -Abelian Nielsen class is 

open in Fix(f”) and closed in M. 

The index of a period-n class of periodic orbits is the index of the class as fixed 

points of f”. A periodic, strong, or Abelian Nielsen class for which the index is defined 

and is non-zero is called essential. 

4.3. Zsotopy stability of equivalence classes 

The strong Nielsen class snc(xa, fo) of a xa E P,, (fo) is isotopy stable if whenever 

ft : fo N fl there is a xt E P,,( fl) with snc(xt, fl) corresponding to snc(xa, fo) under 

the isotopy. We further require (which will always be satisfied) that Z (snc( no, fo) , fo) = 
Z (snc( x1, f 1) , f ;) . Isotopy stability is defined similarly for periodic and Abelian Nielsen 

equivalence. 
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Theorem 4.3. (a) If a strong, periodic or Abelian Nielsen class is uncollapsible and 

essential then it is isotopy stable. 

(b) A strong or periodic Nielsen class is isotopy stable if and only if it is uncollapsi- 

ble and essential. 

The proof of (a) for periodic Nielsen classes is in [ 781 and for strong Nielsen classes 

in [ 611 extending [4]. The result for Abelian Nielsen classes follows from the twisted 

Lefschetz theorem in [ 501 and [ 341. Part (b) is proved in [ 231 using a refinement of 

the Thurston-Nielsen canonical form that will be discussed in Section 7. 

4.4. Remarks 

Some of the results in this section are special to surfaces while others hold in more 

general circumstances. Lemma 4.2, Theorem 4.3(a) and the equivalence of (a), (b) 

and (c) in Lemma 4.1 hold in general. The inclusion of condition (d) in Lemma 4.1 

is special to surfaces as is Theorem 4.3(b). 

Theorem 4.3 (b) allows one to attach a list of isotopy stable data to an isotopy class. 

This list includes the coordinates of all the isotopy stability classes as well as their index. 

This list of data will be exactly the dynamics of the minimal representative discussed in 

the next section. There are a number of algebraic methods for computing this data, see 

[ 78,82,72,35,50]. A very effective geometric technique is given in Section 10. 

Theorem 4.3(b) does not contain necessary and sufficient conditions for the isotopy 

stability of an Abelian Nielsen class. Such conditions do not exist because, for example, 

a Abelian Nielsen class can have zero index and still be isotopy stable if it contains an 

uncollapsible and essential strong Nielsen class. This could happen when the indexes 

of all the strong Nielsen classes in the Abelian class add up to zero. This type of 

cancellation is very common on surfaces. This remark also explains why there is no 

analog for Abelian Nielsen equivalence of Theorem 5.1 from the next section. 

If x E P,,(f) and all the points in 0(x, f) are in different Nielsen classes as fixed 

points of f”, then the period Nielsen class of x is uncollapsible. This is the necessary 

condition given for isotopy stability in [4]. 

4.5. Examples 

A simple example shows why the uncollapsible condition is required to define the 

index. Let H : D2 -+ D2 be rotation of the unit disk by 180 degrees about the origin. The 

set of period 2 points is the disk minus the origin which is not compact. Of course, the set 

Fix( H2) is compact, but we are studying sets of periodic orbits using their least period. 

There is no homotopy stability for periodic orbits of degree-one maps of the circle. 

Every such map is homotopic to a homeomorphism that has no periodic orbits, namely, 

rigid rotation by a irrational angle. Similarly, in the identity class on the torus and 

annulus, there are no isotopy stable periodic orbits. If the Euler characteristic of a 

surface is non-zero, then the isotopy stable classes in the identity isotopy class consist 
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of a single fixed point class whose index is the Euler characteristic (as it must be by 

the Lefschetz formula). 

For the hyperbolic toral automorphism HA, we saw in Section 2.5 that for any IZ, all 

the fixed points of Hi are in different Nielsen classes. By the last remark in Section 4.4, 

this implies that all the periodic orbits of HA are uncollapsible. Using the derivative 

formula for the index from Section 4.2 one has that all the periodic orbits have index 

-1 and are therefore isotopy stable. This implies the same result for all the interior 

periodic orbit of the map HK of Section 1.8. 

For the finite-order toral automorphism Hf, all the fixed points are in different Nielsen 

classes and have index 1 and so are isotopy stable. On the other hand, all the period 2 

points are collapsible, because for example, they lift to period orbits for Cf in the cover 

(Lemma 4.1(c)). 

The situation of periodic orbits on the boundary often requires a little more effort. 

As an example on the torus, let H, = Hf o HA, and H$ is obtained by blowing up the 

fixed point of H,. This fixed point is a so-called flip saddle, and so there will be a pair 

of period-2 orbits for Hk on the boundary. Call one of these orbits o( z ) . Now despite 

the fact that the two elements of O(Z) are Nielsen equivalent under (Hk)*, the orbit is 

still uncollapsible. If it were collapsible, then by Lemma 4.1 (d), there would have to 

be a fixed point of HL that it was Nielsen equivalent to it under (Hk)*. By blowing the 

boundary circle back down this would imply that two fixed points of Hz are Nielsen 

equivalent, which does not happen. The orbit also has non-zero index, so it is isotopy 

stable. 

5. Dynamically minimal representatives 

In this section we discuss the dynamically simplest map in an isotopy class. There 

are, of course, a variety of ways to make precise the notion of simplest. The notion 

used here relies on the various types of equivalence defined for periodic orbits. The next 

section deals with more general orbits. 

5.1. Existence of the minimal representative 

The theorem asserts the existence of a minimal representative with respect to periodic 

and strong Nielsen equivalence in the category of orientation-preserving homeomor- 

phisms of compact orientable surfaces. The corresponding theorem for Nielsen fixed 

point classes is outlined in [ 771 and [ 741 and given in full detail in [ 831. 

Theorem 5.1. Each orientation-preserving homeomorphisms of a compact, orientable 

2-manifold is isotopic to a homeomorphism @ so that each class in snt(@) and pnt(@) 

is uncollapsible, essential and contains exactly one periodic orbit. 

The theorem is proved in [23] and utilizes a refinement of the Thurston-Nielsen 
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canonical representative in the isotopy class (see Section 7.5). The actual construction 

of this refinement is somewhat complicated, but some examples are given below. 

5.2. Remarks 

Theorem 4.3(b) is an easy corollary of Theorem 5.1. The conditions on the strong 

and periodic Nielsen classes for the dynamically minimal representative insure that the 

map has only equivalence classes of periodic orbits that are isotopy stable. Further, 

these classes are represented in the simplest possible way, i.e. by a single periodic orbit 

that carries all the index of the class. In general, there can be many non-conjugate 

dynamically minimal representatives in an isotopy class. 

It is important to note there is no theorem of this type even for fixed point theories for 

certain homotopy classes of maps on surfaces that are not homeomorphisms ( [ 79,801). 

5.3. Examples 

For circle endomorphisms one could consider the stability of periodic orbits rel a 

finite set. In this case, the map G, from Section 1.2 would be the dynamically minimal 

representative rel the finite set o(c, G,). It is somehow more economical to conjugate 

G, to get a map whose slope has a constant absolute value equal to the exponential 

of the topological entropy. The angle doubling map on S’ is another example of the 

one-dimensional analog of a dynamically minimal representative. All its periodic orbits 

are uncollapsible and essential and there is just one in each class. For similar reasons 

the hyperbolic toral automorphism HA is also dynamically minimal in its class. 

On the other hand, the finite-order toral automorphism Hf is not dynamically minimal 

as it has collapsible period-2 orbits. To get a minimal representative, first pass to the 

quotient as a branched cover T2 --) T2/Hf. As noted in Section 1.8, this is a two-fold 

branch cover over the sphere with four branch points. Now pick a flow on the sphere 

that has just these four points as fixed points of non-zero index and no other fixed points. 

Call g the time one map of this flow and lift it to G : T2 ---f T2 that is isotopic to Hf. 
The set of periodic orbits of G consists of exactly four fixed points that have non-zero 

index, and all of these fixed points are in different Nielsen classes. This means that G 

is a dynamically minimal representative. 

This general technique works to find the minimal representative in any finite-order 

class on a surface (cf. [23]). This example also illustrates the difference in a dynami- 

cally minimal representative for fixed points and that for periodic orbits. Since Hf = id, 

the minimal representative in the class of Hf contains no fixed points. This is not the 

iterate of any minimal representative in the class of Hf, and so no single map can be 

dynamically minimal with respect to fixed points in the isotopy classes of all iterates. 

The other main technique needed to get a minimal representative on surfaces involves 

the boundary. Let Ha be derived from the hyperbolic toral automorphism HA by blowing 

up the fixed point. This will result in four fixed points on the boundary that are in the 

same Nielsen class (see Fig. 1.6). Now this class is essential and uncollapsible but it 
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Fig. 5.1. Adjusting Ha on the boundary to get a dynamically minimal representative 

contains more than one point. This is fixed by adjusting the map on the boundary to get 

dynamics that look like those on the right in Fig. 5.1. 

6. Global shadowing and isotopy stability for maps 

In this section we expand the focus from periodic orbits to all the orbits of a home- 

omorphism. This requires an equivalence relation on general orbits called global shad- 

owing. After defining the correspondence of global shadowing classes in isotopic maps, 

we can expand the concept of isotopy stability to the entire orbit structure of a map. 

6.1. Global shadowing 

The definition of global shadowing is due to Katok, and used in [ 671 and [ 681. It 

is convenient to use a Riemannian metric on M, but one could just as well use an arc 

metric. Given a smooth arc p, let e(p) be its length as measured by the metric. If y 

is any arc in M, let L(y) = inf{e(p) : j? is homotopic to y with fixed endpoints}. Two 

points K-globally shadow under f if there exists an arc y connecting x and y and for 

all i, L( f(r) > < K. The two points are said to globally shadow if they do so for some 

K. Informally one can think of connecting the two points by a rubber band. The two 

points globally shadow if you can iterate the rubber band without breaking it. 

For a definition in the universal cover, lift the metric and use it to get an equivariant 

topological metric d on fi, The two points K-globally shadow if and only if there are 

lifts, f”, 5 and 3 so that d( F(X), p( 9) ) < K, for all i. One can also roughly think of 

the two points as tracing out the same infinite word in ~1. 

Remark 6.1. If x and y are periodic points (perhaps of different period), then they 

globally shadow if and only if there is some k with (x, fk) E (y, fk). 

Now given two isotopic maps fr : fo 21 fl and equivariantly isotopic lifts ?a and 

ft, the pairs (xo,fo) and (xt,ft) K-globally shadow if d(fi(Zc),fi(Rt)) < K 

for all i, where the tilde indicates lifts to the universal cover. Two global shadowing 

classes correspond under the isotopy if elements of each do. Note that the constant 
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K may depend on choice of representatives from the two classes. In terms of arcs, 

the pairs correspond if there exists an arc y connecting xa and xt so that for all i, 

Uf;(y(t))) < K. 

6.2. Isotopy stability for homeomorphisms 

We now define a notion of persistence that includes all the dynamics of a map. A 

map 4 : M + M is weak isotopy stable if whenever g = 4 there exists a compact, 

g-invariant set Y and a continuous surjection LY : Y + M that is homotopic to the identity 

so that cr o gly = 4 o LY. If for all such g, one can choose Y = M, then 4 is strong isotopy 

stable. 

As noted in Section 1.1, the dynamics of an extension are always at least as compli- 

cated as those of the factor. This means that all the dynamics of $ persist in a precise 

sense. The name isotopy stability points out an analogy to structural stability. Small 

perturbations of structurally stable maps are conjugate. Isotopy stability allows large 

perturbations, but only gives a semi-conjugacy. 

The next theorem extracts the main elements from a result in [ 671. It shows the close 

connection between global shadowing and the isotopy stability of maps. 

Theorem 6.2. Assume that 4 : M -+ M satisJies: 

(a) Each global shadowing class of 4 contains exactly one element. 

(b) The periodic orbits of C$ are dense in M and all have non-zero index. 

(c) If g y q4, there is a constant K(g) so that (x, 4) globally shadows (y, g) if 

and only if it does so with constant K(g). 

Then Y = {(y, g) : (y, g) globally shadows some (x. $) } is a compact g-invariant set 

and the map LY : Y --) M that sends y to the point x it globally shadows gives a 

semiconjugacy of (I: g) with (M, 4). 

Here is the idea of the proof. The set Y is obviously g-invariant and it is compact by 

(c). Condition (a) shows that the map LY is well defined, while (c) shows that it is 

continuous. By (a) and Remark 6.1, all the periodic orbits of q5 are uncollapsible. They 

are essential by (b) and thus are isotopy stable. The image of a therefore includes a 

dense set in M and since Y is compact, the image is M. Note that nothing in the proof 

is special to surfaces. 

6.3. Remarks 

Theorem 6.2 gives conditions for the persistence of a global shadowing class when 

it occurs in a certain type of map. It seems natural to seek the analogs for global 

shadowing classes of the results of the previous section for classes of periodic orbit. It 

is not clear whether there is an analog of Theorem 4.3 for global shadowing classes, 

i.e. conditions on a class that insure that it persists under isotopy. The assignment of 

coordinates also seems problematic. 
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An outline of the history of dynamical stability under homotopy or isotopy is given in 

[ 121. The Lefschetz formula can be viewed in this light as well some of Nielsen’s work 

on surfaces. Franks showed that Anosov diffeomorphisms on tori of any dimension are 

strong isotopy stable [ 381. There is an analogous property called homotopy stability that 

Shub showed holds for expanding maps [ 1131. Handel [67] and Fathi [ 361 showed 

isotopy stability (in fact homotopy stability) for pseudoAnosov maps on surfaces (see 

Theorem 7.4). 

6.4. Examples 

For annulus homeomorphisms, points that globally shadow will have the same rotation 

number, but the converse is not true. The rotation number measures linear rates; two 

points can drift apart under iteration at a sublinear rate and still have the same rotation 

number, but they will not globally shadow. 

Each pair of points in the torus globally shadow under the finite-order map Hf. This 

is obvious because the map lifts to a rigid rotation by 180” in the plane. This illustrates 

Remark 6.1. Note that there is not a uniform bound for points that shadow in the lift. 

We now show that a hyperbolic toral automorphism satisfies the conditions of Theorem 

6.2. For concreteness we focus on the map HA. The method of argument is taken from 

[ 671 and directly generalizes to show that pseudoAnosov maps are weak isotopy stable 

(Theorem 7.4(b)). We have remarked in Section 4.5 that HA satisfies condition (b) of 

Theorem 6.2. 

Recall from Section 1.5 that a lift of HA to the plane is a linear map given by a 

matrix CA that has unstable eigenvector ut associated to the eigenvalue h > 1, and 

stable eigenvector 02 associated to the eigenvalue l/h. Any z E R2 can be written as 

z = ztut + ~2~2. Now for two points z, w E Iw2, let &(z, w) = Izt - wt 1 and Js( z, w) = 

122 - ~21. These will define equivariant pseudo-metrics on R2 that will satisfy 

d;,(C*(~),C*(j9) = A&(&j% 

&(C,‘(Z),C,-‘(9)) = hJs(a,g). 
(*) 

We can get an equivariant metric that is equivalent to the standard one by defining 

2 = &, + zs. If .? and j are a positive distance apart, then their separation as measured 

by 2 grows exponentially under forward or backward iteration (or both). This shows 

that HA satisfies condition (a) of Theorem 6.2. 

To show that (c) is also satisfied, fix a f N HA and fix a lift f” equivariantly isotopic 

to CA (in a slight abuse of notation we use the notation CA to represent the linear map 

coming from the matrix CA). Now let 

and K = 2( R + 1) /( h - 1). Using the triangle equality and property (*) we have 

Ju(C~(Z),f(y)) 3 ,\di,(R,jj) -R. Thus if &(Z,B) 3 K/2, then &u(C~(R),.f(j;)) 3 

1 +&(Z,g), and so &(C;;(?),p(j)) ---f cc as n --f co. 
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Fig. 7.1. Charts for a foliation with singularities. 

Similarly, if J$(Z.,y”) > K/2, then ~~(C~(Z),~(J)) + 00 as n --+ -co. Thus 

if d( 2, jj) 3 K, then d”( CL(i), J”( 7) ) goes to infinity under forward or backward 

iteration (or both). Thus x and y can globally shadow if and only if they globally 

shadow with constant K, as required. 

With a little more effort one can show that in fact HA is strong isotopy stable, 

i.e. every orbit of f is globally shadowed by some orbit of HA. A virtually identical 

argument to that just given will show that the angle doubling Hd on S’ is strong isotopy 

stable. 

7. The Thurston-Nielsen classification and properties of pseudoAnosov maps 

This section gives a brief introduction to the Thurston-Nielsen classification of iso- 

topy classes of surface homeomorphisms. The classification can be viewed as a prime 

decomposition theorem: it gives the existence in each isotopy class of a homeomorphism 

that is constructed by gluing together homeomorphisms of two types, pseudoAnosov and 

finite-order. The theory has numerous applications and implications for many diverse 

areas of mathematics, but we will just focus on the dynamical aspects of the theory. For 

a more complete account, the reader is referred to [ 116,37,7,29,105,9]. 

7.1. PseudoAnosov homeomorphisms 

Linear hyperbolic toral automorphisms (as in Section 1.5) are examples of what are 

called Anosov diffeomorphisms. They uniformly stretch in one direction and contract in 

another. The pseudoAnosov (PA) homeomorphisms are a generalization of these maps, 

but because a pA map can live on a surface other than the torus, uniform stretching and 

contracting in two “orthogonal” directions may no longer be possible. Instead, one has 

to allow a finite number of singular points at which there are three or more directions 

of contraction and expansion. We will include a definition of pA rel a finite set as this 

is frequently needed for dynamical applications. 

Given a compact surface M and a (perhaps empty) finite set of distinguished points 

A c M, a foliation with singularities is a line field on M with local charts in which 

it looks like those illustrated in Fig. 7.1. The leaves that terminate in a singularity are 

called prongs. Note that the structure at the boundary can be thought of as a kind of blow 
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Fig. 7.2. Charts for transverse foliations. 

up of an interior singularity. A singularity is allowed to have more than three prongs, but 

a one-prong singularity is allowed only at a distinguished point. The boundary analog 

of a one-prong is also allowed. Two foliations with singularities are transverse if in 

charts they look like Fig. 7.2. Note that the sharing of arcs on the boundary is allowed 

in transverse foliations. 

A transverse measure on a foliation with singularities puts a Bore1 measure on each 

arc transverse to the foliation. (An arc that contains a singularity is considered transverse 

to the foliation if it passes though different sectors.) This assignment of a measure must 

be holonomy invariant, i.e. if one arc can be isotoped to the other though a family 

of arcs transverse to the foliation while maintaining the endpoints on the same leaves, 

it is required that the measure on the first push forward to that on the second. It is 

also required that the measure assigned to a subarc be the restriction of the measure 

on the entire arc. A measured foliation is a foliation with singularities equipped with a 

transverse measure. 

A map 4 : M2 + M2 is called pseudoAnosov (PA) rel the finite set A if there 

exist a pair of transverse measured foliations FU and FS and a number A > 1 so that 

$(.?=““) = UK and d(F‘“) = ( l/A)FS. The number A is called the expansion constant. 

If there is no mention of the set A, (as in “#J is PA”) it means that A is empty. 

PseudoAnosov maps share many of the dynamical properties of Anosov maps on the 

torus as will be discussed below. 

7.2. The classification theorem 

The second type of map that is used in the construction of a Thurston-Nielsen 

representative in an isotopy class is dynamically very simple. A map 4 : M2 -+ M2 

is called finite order if there is some least n > 0 (called the period) with @’ = Id. If 

$J : A4 --f M is an isometry of a hyperbolic metric, then it is standard that 4 is finite- 

order. Conversely, when 4 is finite-order on a surface of negative Euler characteristic, 

it is conjugate to an isometry of some hyperbolic metric. In the literature finite-order 

homeomorphisms are often called “periodic”, but that terminology is avoided for obvious 

reasons. 

The Thurston-Nielsen classification theorem for isotopy classes of surface homeo- 

morphisms gives a (fairly) canonical representative in each isotopy class. These repre- 

sentatives are constructed from pA and finite-order pieces glued together along annuli 
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PA 

Fig. 7.3. A TN-reducible homeomorphism. 

in which twisting may occur. A homeomorphism 4 is called TN-reducible rel the$nite 

set A if 

(1) There exists a collection of pairwise disjoint simple closed curves called reducing 

curves, r = (rl, r2,. . . , rk), in Int(M) - A with 4(r) = r and each connected 

component of M - (r U A) has negative Euler characteristic. 

(2) The collection of reducing curves r comes equipped with a &invariant open 

tubular neighborhood ni( r) which does not intersect the set A. The connected compo- 

nents of M - N(r) are called the components of 4. The orbit of a component under 

4 is called a &component. 

(3) On each $-component S, 4 is pA rel (S f? A) or finite-order. 

Fig. 7.3 shows a typical example of a TN-reducible map. The pA on the left compo- 

nent can be thought of as the map HA from Section 1.5. The component on the right is 

flipped with period 2. 

Note that the case when the reducing set r is empty is included in TN-reducible 

maps. In this case the map is either finite-order or pA. Since the type of components of 

a TN-reducible map will depend only on its isotopy class, it is usual to call an isotopy 

class pA, finite-order, reducible or irreducible when the TN-reducible map in the class 

is pA, finite-order, has reducing curves, or has no reducing curves, respectively. 

Theorem 7.1 (Thurston-Nielsen Classification Theorem). Zf M is a compact surface 

and A c M is a finite set so that M - A has negative Euler characteristic, then each 

element of MCG( M2 rel A) contains a TN-reducible map. 

7.3. Dynamics of pA maps 

The next theorem gives a list of various dynamical properties enjoyed by pA maps. 

Most of these properties are shared by hyperbolic linear toral automorphisms. One 

crucial difference in that pA maps do not have pseudo-orbit shadowing property (see 

[ 1091 or [ 1131) . This distinction is intimately connected to the fact that Anosov maps 

are strong isotopy stable while pA maps are only weak isotopy stable. 



260 P Boyland/Topology and its Applications 58 (1994) 223-298 

Recall that the exponential growth rate snt”(f) was defined in Section 3.3. Given 

a finite f-invariant set A, snP( f rel A) is the exponential growth rate of the periodic 

Nielsen classes of f in the punctured manifold M - A. 

Theorem 7.2. If q5 : M + M is pA rel the (perhaps empty) finite set A and has 

expansion constant A then 

(a) 4 has a Markov partition with irreducible transition matrix B, and thus (M, C#J) 

is a factor of (A,, a). 

(b) The collection of &periodic orbits is dense in M and there exist points x with 

0(x, 4) dense in M*. 

(c) The topological entropy of 4 is htop( 4) = log(A) = pnt”( f rel A). 

(d) Every leaf of .P and F’” is dense in M. 

(e) The measure on M obtained from the transverse measures is the unique measure 

of maximal entropy for 4 and is ergodic. After a continuous change of coordinates one 

may assume that this measure is Lebesgue measure. 

Sometimes it is useful to think of a pA map as being constructed from its Markov 

partition. One thinks of gluing rectangles together to get the surface. The pA map will 

act linearly on the rectangles. If the surface is not the torus, there will have to be points 

(the singularities) where three or more rectangles have to come together. Every pA map 

is conjugate to a smooth ( [ 581) or real analytic map ( [ 921). There is also a surprising 

topological characterization of pA maps (when the set A is empty): a map is pA on a 

closed surface if and only if it is expansive ( [ 9 1,7 11) . 

7.4. Isotopy stability and entropy 

It should be clear that there is a very sharp dichotomy between the dynamics of 

pA and finite-order maps. This dichotomy extends to the isotopy stability properties. A 

finite-order map has only finitely many isotopy stable classes of periodic orbits while a 

pA map has infinitely many. In fact, a pA map is essentially (except for some boundary 

periodic orbits) a dynamically minimal map. 

We first discuss the situation with finite-order maps. A periodic orbit of a finite-order 

homeomorphism that has the same period as the homeomorphism is called regular; 

any orbit with lesser period is called a branch periodic orbit. Since only orientation- 

preserving finite-order maps are considered here, the set of branch periodic orbits is 

always finite. The next proposition follows easily after lifting the given finite-order map 

to a finite-order isometry of the hyperbolic disk (cf. Lemma 1.1 of [ 231) . 

Proposition 7.3. Assume 4 : M + M is$nite-order and M has negative Euler charac- 

teristic. 

(a) Each regular periodic orbit is periodic Nielsen equivalent to every other regular 

periodic point, each branch periodic orbit is not periodic Nielsen equivalent to any 

other branch periodic orbit, and each regular periodic orbit is collapsible to any branch 
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periodic orbit. 

(b) If 4 has no branch periodic orbit, then all periodic orbits are in a single periodic 

Nielsen class and this class is isotopy stable. When 4 has branch periodic orbits, each 

of these periodic orbits is alone in an isotopy stable periodic Nielsen class and there 

are no other isotopy stable classes. 

Part (a) of the next theorem follows from Thurston’s original work (cf. [ 111) . Part 

(b) was proved by Handel [ 671 and Fathi [ 361. The main ingredients in Handel’s proof 

were abstracted in Theorem 6.2. The application of that theorem to pA maps is virtually 

identical to that for hyperbolic toral automorphisms given in Section 6.4. In the case of 

pA maps one uses the transverse measures to get the pseudo-metrics used in equation 

(*) from Section 6.4. 

Theorem 7.4. Assume 4 : M -+ M is pA and M is closed. 

(a) Each x E P,,( 4) has non-zero index and is alone in its Y-Nielsen class. Thus 

its strong and periodic Nielsen classes are uncollapsible and essential and therefore 

isotopically stable. 

(b) The homeomorphism q5 is weak isotopy stable. 

The situation is somewhat more technical when the surface has boundary. In that 

case there can be periodic orbits on the same boundary component that are Nielsen 

equivalent as fixed points of an iterate. Nonetheless their periodic Nielsen class will 

still be uncollapsible and essential and thus isotopy stable (as with the map H,,, from 

Section 4.5). The situation for isotopy stability of the pA map when there is boundary 

is discussed at the end of [ 671 and in [ 231. The next result is a corollary of the weak 

isotopy stability of pA maps. 

Corollary 7.5. Assume q5 : M + M is pA rel A and has expansion constant h. 

(a) Zfg E 4 rel A, then h,,,(g) b sntOO(grel A) 2 htop(q5) = log(A) > 0. 

(b) If Q N 4 rel A and ~,4 is also pA rel A, then ti and 4 are conjugate. 

Part (a) of the next theorem follows from a result of Smillie. He showed that when 

a homeomorphism isotopic to a pA map has a fixed point that is not Nielsen equivalent 

to a fixed point of the pA map, then it has strictly larger entropy. Part (b) is proved in 

[ 681. Note that by Remark 6.1, part (a) is a consequence of part (b) . 

Theorem 7.6. Assume that 4 : M + M is pA, M is closed, and g N 4. 
(a) If pnt( g) - pnt ( 4) contains a uncollapsible element, then htop (g) > htop ( 4). 

(b) If there is a orbit o( y, g) that does not globally shadow any 0(x, 4), then 

pnt”(g) > pnt”(4) and hop(g) > htop(4). 

Again, the analogous result with boundary or rel a finite set is more technical but is 

understood. Note that any element in pnt(g) - pnt( 4) must of necessity be inessential. 

This is because the pA map contains all the isotopy stable periodic Nielsen classes 



262 P: Boyland/Topology and its Applications 58 (1994) 223-298 

and by Theorem 4.3(b), these are precisely the classes that uncollapsible and essential. 

Note also by the construction of the map cy in Theorem 6.2, the hypothesis in (b) is 

equivalent to saying that g is not semiconjugate to 4. Thus the contrapositive of (b) is: 

if h,,(g) = htop( 4)) then g is semiconjugate to 4. 

The hypothesis of Theorem 7.6(a) can never be satisfied by a hyperbolic toral au- 

tomorphism. For these maps, every potential periodic Nielsen type contains a periodic 

orbit already (see Section 3.4). Any isotopic map is in fact semi-conjugate, i.e. they are 

strong isotopy stable. 

7.5. Reducible isotopy classes and TN-condensed homeomorphisms 

In a certain sense, most isotopy classes are not pA or finite-order, they are reducible 

and so we need to understand the isotopy stable dynamics in reducible classes. Although 

the TN-reducible map defined in Section 7.2 is sometimes called the Thurston-Nielsen 

canonical representative in its class, the definition does not specify the behavior on the 

tubular neighborhood of the reducing curve. The TN-reducible maps as defined are also 

not dynamically minimal; they may possess collapsible periodic Nielsen classes as well 

as having multiple periodic orbits in certain classes. 

A refinement of a TN-reducible map is used to get the dynamical minimal represen- 

tative of Theorem 5.1. The basic idea is to get a minimal number of periodic orbits in a 

pA component by adjusting the boundary as in Fig. 5.1 and in a finite-order component 

via the technique applied to Hf in Section 5.3. There is also an adjustment that must 

be done to coalesce periodic points in different components that are periodic Nielsen 

equivalent. The result of this refinement is called a TN-condensed map. The analog of 

weak isotopy stability for TN-condensed maps is somewhat technical to state. Basically, 

the dynamics of any pA component persist up to semiconjugacy (as in Theorem 7.4(b) ) 

and the isotopy stability periodic orbits of the finite-order component (specified in The- 

orem 7.3(b)) also persist. The technicalities arise for orbits on the boundaries of pA 

components and in the interaction of orbits from different components (see [23] ). 

We will content ourselves with the following result that summarizes some of the 

properties of TN-condensed homeomorphisms. Note that since a TN-condensed home- 

omorphism is constructed from a TN-reducible one, there will be a TN-condensed 

homeomorphism in each isotopy class. 

Theorem 7.7. Let @ : M --) M be a TN-condensed homeomorphism rel the$nite set A 

and g N @ rel A. 

(a) htOp(g) 3 snP(g rel A) 2 htop(@) = log(&), where A, is the largest expansion 

constant of any pA component of CD. If @ has no pA components, it has zero topological 

entropy. 

(b) All the strong Nielsen classes of periodic orbits of CD are isotopy stable rel A. 

(c) Zf 0(x, @) is contained in the interior of a pA component of @, then there is a 

o( y, g) that globally shadows it. 



F! Boyland/Topology and its Applications 58 (1994) 223-298 263 

7.6. Examples 

The map Hf from Section 1.5 is an example of a finite-order order map. Although it 

is not defined on a surface of negative Euler characteristic, Proposition 7.4 still describes 

its isotopy stable dynamics. As we saw in Section 5.3, the four branch points are fixed 

points and all the period 2 points are collapsible to these fixed points. Indeed, there is 

a map isotopic to Hf that has these four fixed points as its only periodic orbits. 

The simplest pA maps are the Anosov maps on the torus. In this case the pair of 

invariant foliations are the projection of foliations of the plane by lines parallel to the 

eigenvectors. The expansion constant is just the largest eigenvalue of the matrix and the 

transverse measures come from using the eigenvectors as coordinates for the plane as in 

Section 6.4. 

Other examples of pA maps can be obtained by blowing up periodic orbits (as in 

Section 1.6) or else projecting to the disk (as in Section 1.8). The map HK is pA rel the 

period three orbit that comes from the branch points. The map Hf, is pA on the genus 

zero surface with four boundary components. It is an entertaining exercise to draw the 

invariant foliations of these maps by projecting the irrational wrappings on the torus. 

8. Hidden pA maps 

In this section we give dynamical applications of the theory described thus far. The 

main strategy in these applications is to use the Thurston-Nielsen theory to determine 

the isotopy stable dynamics rel a periodic orbit for a given homeomorphism f ( [ 161). 

These dynamics will be present in any element in this relative isotopy class, in partic- 

ular, they must be present in the homeomorphism f. If the TN-reducible map in this 

class contains a pA component, then the isotopy stable dynamics in the class are very 

complicated, and this provides a lower bound for the dynamical complexity of f. Some- 

what surprisingly, one can often determine the structure of the TN-reducible map from 

very limited combinatorial data about the periodic orbit. The first results that used this 

strategy concerned orientation-reversing homeomorphisms and were due to Blanchard 

and Franks [ 131 and Handel [ 651. 

8.1. Hidden pA components 

Given a homeomorphism f : M + M and a finite f-invariant set A, f is said to 

have a hidden pA component rel A if the TN-reducible map in the isotopy class of f 

rel A has a pA component. When there exists at least one such set A, f is said to 

have a hidden pA component. If the TN-reducible map is pA, then f is hidden pA rel 

A. The next proposition is a consequence of Theorem 7,7(a). It is one way of giving 

precise expression to the fact that homeomorphisms with hidden pA components must 

have complicated dynamics. 
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Proposition 8.1. If a homeomorphism f : M --+ M has a hidden pA component rel A, 

then htop ( f) > pnt”( f rel A) > 0. 

Theorem 7.7(c) provides another way of looking at maps f which have hidden pA 

components. The presence of a hidden pA component implies the existence of a f- 

invariant set Y that is semiconjugate to a pA map. This means that f restricted to this 

set is dynamically very complicated. 

8.2. Homeomorphisms of the disk and annulus 

For genus zero surfaces, the Jordan curve theorem coupled with Theorem 8.3 often 

make it fairly simple to determine whether a given periodic orbit implies a hidden pA 

component. The next theorem is basically folklore and was contained in [ 171. 

Theorem 8.2. Let f : D2 + D2 be an orientation preserving homeomorphism of the 

disk with a periodic orbit o( x, f) whose period is the prime number q. If there is an 

arc a connecting x and fk(x), and the arc f‘J(a) is not homotopic to a rel 0(x, f), 
then f is hidden pA rel o( x, f). 

The main observation needed in the proof is that the isotopy class rel the orbit must 

be irreducible. Any reducing curve for the isotopy class rel 0(x, f) would have to 

enclose at least 2 points from the orbit, but not all q points. The reducing curves must 

be permuted which would show that q has non-trivial factors. The conditions on the arc 

cy insure that the class rel the orbit is not finite-order, and so it must be pA. 

The next theorem of Brouwer [ 261, Kerekjarto [ 871, and Eilenberg [ 331, allows for 

a characterization of finite-order maps on genus zero surfaces. Define R,,l, : D2 + D2 

in polar coordinates as R,l,( r, 8) = (r, 8 +p/q) . The analogous homeomorphism of the 

annulus will also be called R,l,. 

Theorem 8.3. If 4 is an orientation-preserving homeomorphism of the disk or annulus 

that satis$es @ = id, then C/J is topologically conjugate to RPiq for some 0 < p < q. 

The next result concerns homeomorphisms of the annulus and is somewhat analogous 

to Theorem 8.2. In this case a condition on the rotation number of the orbit (or its 

Abelian Nielsen type) implies that the isotopy class rel the orbit is irreducible ( [ 211) . 

The hypothesis that eliminates the finite-order possibility is nicest in the case of mono- 

tone twist maps of the annulus. An homeomorphism f of the annulus A that is isotopic 

to the identity is called monotone twist if for the lift to the universal cover fl : A + A, 

the image of each vertical arc is a graph (see Fig. 8.1). If f is differentiable, then it 

is (right) monotone twist if aJ’t /ay > 0. A periodic orbit 0(x, f) is called monotone 

if f is order preserving on p-’ (o( x, f) ), where p : d 4 IR is the projection. This 

means that for z,w E p-‘(0(x, f)), (Z)I 6 (W)I must imply (f(z>)l < (f(w))l, 
where (Z ) 1 means the first coordinate of z in the strip A. For more information on the 
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Fig. 8.1. The lift of a monotone twist homeomorphism. 

topological theory of monotone twist maps, see [ 19,18,100,60,90]. 

The main observation needed for the next theorem is that when 0(x, f) is not mono- 

tone, the twist hypothesis coupled with Theorem 8.3 imply that the isotopy class of 

f rel 0(x, f) cannot be finite-order. 

Theorem 8.4. If f : A ---f A is an orientation preserving homeomorphism with a 

periodic orbit o(n, f) that has period q and rotation number p/q with p # 0 and q 

relatively prime, then the isotopy class off rel 0(x, f) is irreducible. If f is monotone 

twist and 0(x, f) is not monotone, then f is hidden pA rel 0(x, f). 

The hypothesis of the first sentence of the theorem is equivalent to saying that 

ant( x, f) is uncollapsible and has its first coordinate not equal to zero. The next result 

deals with the case when the first coordinate is zero by putting a restriction on its strong 

Nielsen type. A periodic orbit o( x, f) for an annulus homeomorphism is called trivially 

embedded if there is a simple closed curve r C A - 0(x, f) that is contractible in 

A, 0(x, f) is enclosed by r, and f(T) z r rel 0(x, f). Such a r will always be a 

reducing curve for the isotopy class of f rel 0(x, f). Note that a trivially embedded 

periodic orbit will always have rotation number zero, but the converse is not true. 

However, the next theorem says that non-trivially embedded periodic orbits with zero 

rotation number always imply complicated dynamics ( [ 251) . 

Theorem 8.5. If f : A 4 A has a periodic orbit 0(x, f) that has rotation number zero 

and is not trivially embedded, then f has a hidden pA component rel o( x, f). 

8.3. Entropy and hidden pA components 

Corollary 7.5 gives a connection between the growth rate of periodic orbits and the 

topological entropy. There is a very useful theorem of Katok which allows one to go 

from information about the entropy to information about periodic orbits ( [ 85,861). 

Theorem 8.6 (Katok). Zf f : M + M is a C ‘+’ diffeomorphism of a compact sur- 

face and htop( f) > 0, then f has a hyperbolic periodic point with a transverse 

homoclinic intersection and thus, for some k, fk contains a Smale horseshoe. Fur- 

ther given 6 > 0 there exists a compact, invariant, uniformly hyperbolic set X8 with 

htop(flxJ) > htop(f) - 6. 
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It is important to note that this type of theorem is not true without some differentia- 

bility assumption. There is an example due to Rees [ 1081 of a homeomorphism of the 

torus that has positive topological entropy and no periodic orbits, in fact, every orbit is 

dense in the torus. 

When a smooth map has positive topological entropy, Theorem 8.6 gives the existence 

of a horseshoe in an iterate. Using a result like Theorem 8.2, one can get a periodic 

orbit that implies a hidden pA component. One may also proceed directly as in [ 451. 

Corollary 8.7. Zf f : M -+ M is a C ‘+& diffeomorphism of a compact x&ace and 

htop( f) > 0, then there is a periodic orbit 0(x, f) so that f has a hidden pA component 

rel 0(x, f). 

An analog of the second statement of Katok’s theorem is given in Theorem 9.3. It 

concerns the approximation of the entropy of f from below by the entropies associated 

with the TN-reducible maps of isotopy classes in f rel finite sets. 

8.4. Examples 

Theorem 8.2 can be applied to the attracting period three orbit in the homeomorphism 

HP from Section 1.8. Any arc connecting two elements of the orbit will not be homotopic 

to its third iterate rel the orbit, hence the map is hidden pA rel the orbit. 

It is not difficult to see that the homeomorphism of the annulus Hs of Section 1.9 

can be isotoped to a monotone twist map rel the period five attracting orbit. This orbit 

has rotation number 2/5 and is not monotone, and so Hg is hidden pA rel the orbit by 

Theorem 8.4. 

9. Dynamical order relations 

The last section illustrated how combinatorial information on a periodic orbit can be 

used to understand the Thurston-Nielsen type rel the orbit, and thus give a lower bound 

on the dynamical complexity of the map. These applications do not use the full strength 

of the isotopy stability results for the Thurston-Nielsen canonical form. To get more 

information out of the theory, one must feed more data in. This section gives one way 

of doing this via dynamical order relations. 

9.1. Abstract dynamical order relations 

The model for dynamical order relations is the theorem of Sharkovski on the periods 

of periodic orbits of continuous maps of the interval ([ 112,115]). That theorem is 

generalized by essentially using the structure of its conclusion as a definition, and then 

exploring the consequences (cf. [ 101,20]. 
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First fix a space X on which the dynamics takes place, then choose a set of maps to 

study from Co (X, X) , and call this set Maps. The next step is a method of specifying or 

giving coordinates to a periodic orbit. The space of all such specifications is called Spec, 

and the assignment of a specification to a periodic orbit defines a map spec : {0(.x, f) : 

x is a periodic point of f} + Spec. The set of all specifications of the periodic orbits 

of the map f is spec( f) = {spec(o(x, f)) : x is a periodic point of f}. 

Now to define the dynamical pre-order relation, given two specifications si , s:! E Spec, 

say that st k s2 if and only if for all f E Maps, st E spec(f) implies s2 E spec(f). 

It is immediate from the definition that the order relation k is transitive ($1 k s2 and 

s2 ? ss implies st 5 ~3) and reflexive (s ? s). The relation will thus be a partial order 

if it is antisymmetric (st h s2 and s2 k st implies st = ~2). This last property will hold 

in some cases and not others, depending on the choices of maps, spaces, etc. 

In the theorem of Sharkovski the set of maps consists of continuous maps on the real 

line and the specification of a periodic orbit is its period. In this case the dynamical 

order on N is not only a partial order, it is linear (every pair of elements is comparable). 

Further it is given explicitly by 

3 > 5 7 > > . . . 

3 2 > 5 .2 >> 7 .2 >> . . . 

3 2= 5= 22 >> >> 7 . 22 > . . . 

As we remarked above, the usual statement of Sharkovski theorem gives the order 

relation on B?, and the conclusion is that this order relation comes from a dynamical 

order. Another natural dynamical order relation for continuous maps of the line specifies 

a periodic orbit by the permutation on its element induced by the action of the map. 

This has been studied in fair detail and much of the work is described in [ 1 ] and [ 141. 

A common strategy in dynamics is to attempt to understand complicated dynamics by 

understanding how it develops in parameterized families via bifurcation theory. Dynam- 

ical order relations arise naturally in this context. If st 5 s2 and fP is a parameterized 

family of maps so that fu has only trivial dynamics (say a single fixed point), then 

the parameter values at which a periodic orbit of type st first appears must be after or 

simultaneous to the value at which s2 first appears. In this way dynamical order relations 

give a qualitative universality for the birth of periodic orbits in parameterized families. 

9.2. Dynamical orders for surface homeomolphisms 

In the case of interest here, our collection of maps will always be an isotopy class 

of surface homeomorphisms on a chosen surface. The various coordinates developed in 

Section 3 give us various choices for specifications of the periodic orbit. 
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Some of the resulting theories are quite interesting, and a few have been studied 

in detail. Some of the theories are trivial. For example, let us restrict to orientation 

preserving homeomorphisms of the disk. Since the disk is simply connected, the periodic 

and Abelian Nielsen type of an orbit only keep track of the period. Since for each n 

there is a homeomorphism of the disk whose periodic orbits have only period n and 1, 

in the resulting order relation every number dominates 1 and is unrelated to any other 

number. On the other hand, specifying periodic orbits in the disk by their strong Nielsen 

type yields a very interesting theory that is the most studied dynamical order relation in 

dimension two. 

There are also cases in which the pre-order is not antisymmetric. For example, on 

the torus let us restrict to homeomorphisms that are isotopic to the linear hyperbolic 

automorphism HA from Section 1.5. In Section 4.5 we noted that all the periodic orbits 

for this map are isotopically stable and thus are present for every map in the isotopy 

class and so the resulting dynamical pre-order will not be antisymmetric. Other theories 

seem interesting and tractable, but as yet unstudied, e.g. the order induced on Abelian 

Nielsen types for homeomorphisms isotopic to the identity on genus zero surfaces with 

more than two boundary components. 

The idea of a partial order on periodic orbits is a natural outgrowth of Thurston’s work 

on surfaces. Indeed, the idea was in the folklore for some time and was independently 

discovered by many people. The idea was inspired in the author ( [ 171) by a paper of 

Birman and Williams [ 121. 

Let us restrict attention now to homeomorphisms that are isotopic to the identity, but 

not fix a surface yet. We study the specification of periodic orbits by their strong Nielsen 

type. As noted in Section 3, in the identity isotopy class there is an identification of the 

strong Nielsen type with a conjugacy class in a mapping class group. If f : M --t M 

is isotopic to the identity and has a periodic orbit 0(x, f) with period n, the strong 

Nielsen type of the orbit is essentially the isotopy class of f rel o( x, f > . However, since 

we want to compare periodic orbits of different maps, we have to put this data in a 

common model of M with a subset X,, where X,, is a set of II points. This involves the 

choice of a homeomorphism h : (M, o(x, f) > -+ (M, X,) isotopic to the identity, and 

so the strong Nielsen class of the periodic orbits is actually the conjugacy class of the 

isotopy class of h f h-' in MCG( M rel X,) . Let us denote the set of all possible strong 

Nielsen types of all possible periodic orbits of all homeomorphisms on M isotopic to the 

identity as SNT( M, id). The dynamical pre-order relation is denoted (SNT( M, id), 5). 

Theorem 9.1. The relation (SNT( M, id), k) is a partial order. 

The main ingredient in the proof is a theorem of Brunovsky ( [28] ) which allows 

one to find families of diffeomorphisms for which bifurcations of periodic orbits of less 

than some fixed period take place at distinct parameter values. This is applied to find 

such a nice isotopy from maps with periodic orbits of many different strong Nielsen 

types to a simple map, say with its set of periodic orbits consisting of a finite set of 

fixed points. Since the periodic orbits of less than a fixed period disappear at distinct 
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parameter values, the strong Nielsen types that are present are also diminishing one by 

one. In particular, for any pair of distinct strong Nielsen types, one can find a map that 

has one and not the other ( [ 211) . 

The partial orders (SNT( M, id), 5) have a very complicated structure and very little 

is known about them in general. However, the tools described thus far in the paper give 

a clear strategy for their study. Start with a periodic orbit o( x, f) with strong Nielsen 

type /3. From the definition of the order relation it follows that the set of elements 

dominated by p in (SNT(M, id), k) consists of precisely the isotopy stable strong 

Nielsen types in the isotopy class of f rel u(x, f). Further, Theorem 7.7(b) says that 

this set is exactly the set of strong Nielsen types of the TN-condensed map in the 

isotopy class. So computing in the partial order reduces to computing the dynamics of 

the TN-condensed map in an isotopy class. A very effective algorithm for doing this 

computation is described in Section 10. 

Since a strong Nielsen type is actually a conjugacy class we need to be a little 

more precise in specifying what we mean by the TN-condensed map that represents the 

strong Nielsen type /?. Given /3 E SNT( M, id), say that @p is a TN-condensed map 

that represents /3 if @p has a periodic orbit o(x,@p) with snt(x,@p) = p and @p is a 

TN-condensed map in its isotopy class rel 0(x, @p). We talk about a strong Nielsen type 

being reducible, irreducible, pA or finite-order when a TN-reducible map that represents 

it is of that class. The next theorem formalizes the comments of the previous paragraph. 

Theorem 9.2. If j3 E SNT( M, id) and @p is a TN-condensed map that represents /3, 

then {y E SNT(M,id) : fi ? y} = snt(@p) = n{snt(f) : f E Homeo(M), f N 
id, and /3 E snt( f)}. 

Most of the progress in understanding the structure of these partial orders has been 

made by restricting to suborders or else studying invariants attached to the elements. The 

simplest such invariant is the period. A deeper invariant is given by the entropy. Given 

p E SNT(M,id), define its topological entropy as h(P) = inf{htop(f) : p E snt(f)}. 

By Theorem 7.7(a), h(p) = htop( @pp), where @p is a TN-condensed map that represents 

P. 
Part (a) of the next theorem says that the topological entropy acts as a kind of height 

function for the partial order. It is a consequence of Theorem 7.6. Note that pi t p2 

trivially implies h(P1) 3 h(&). The content of the theorem is the strict inequality. 

Part (b) is a refinement of Corollary 8.7. It can be proved using Theorem 8.6, and then 

results of Hall [ 641 on the horseshoe, or else directly as in [ 691. 

Theorem 9.3. (a) If p1 and & are distinct pA elements of SNT(M, id) with PI 2 /32, 

then h(b) > h(P2). 
(b) If f : M + M is a C Ifa diffeomorphism that is isotopic to the identity and 

htop( f) > 0, then there is a sequence of strong Nielsen types Pn E snt( f) with 

h(b) + htop(f 1. 
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9.3. Homeomorphisms of the disk 

For homeomorphisms of the disk and annulus the objects in the dynamical order 

relation are commonly called braidtypes because of the identification of MCG(D2 rel 

n points, JD2) with the braid group on n strings (see Section 1.7). We adhere to this 

usage to be consistent with the literature; let snt(x, f) = bt(x, f), bt(f) = snt(f), 

and set of all braidtypes of period y1 orbits is BT,, while the set of all braidtypes is 

BT = SNT( D2, id). The partial order on braidtypes has been studied in a number of 

papers including [ 9.5,47,62,64]. 

The next result refines Theorem 8.2 by incorporating the characterization of finite- 

order maps on genus zero surfaces from Theorem 8.3. It gives another way of checking 

whether a periodic orbit implies that the map is hidden pA. It uses the notion of the 

exponent sum of a braidtype. If b is an element of the braid group on II strings, its 

exponent sum is the sum of the exponents of the generators in a word that represents 

the element. For example, the exponent sum of C$CT;’ (~3 is 2. Since the relations in the 

group preserve this quantity, it is well-defined. It is also conjugacy invariant, so we can 

define the exponent sum of a conjugacy class in the braid group, and thus of a braidtype. 

For a braidtype /3, denote its exponent sum as es(P). Let cypj4 be the braidtype of a 

periodic orbit of R,lu : D2 + D2. By Theorem 8.3, the only finite-order braidtypes are 

the CX,,/~ for various p and q’s. Note that es(a,is) = p(q - 1). 

Proposition 9.4. If p E BT has period a prime number q and /3 # cup14 for any p, 

then p is PA. In particulal; if es( /I) # p( q - 1) for any p $0 mod q, then p is PA. 

If the braidtype does not have prime period one needs much more complete data to 

determine its Thurston-Nielsen type (see [98] and [ 61). 

As noted above, dynamical order relations are defined using an abstraction of the 

conclusion of Sharkovski’s theorem. Ideally, one would like to have the analog of the 

other part of that theorem, i.e. a description of the structure of the dynamical order in 

terms of the algebraic structure of the set of all specifications. This seems very difficult 

in general, but there is one rather special theorem for period three braidtypes that lives 

up to this ideal. Recall that the generators of B3 are denoted c$’ and &‘. Part (a) of 

the next theorem is from [ 971 and part (b) is due to Handel (personal communication). 

Theorem 9.5. (a) Each p E BT3 contains a cyclic word consisting solely of the 

generators (~1 and a:’ (and not their inverses). Furthel; p has pA type if and only if 

this word has at least one of each of these generators. 

(a) (Handel) For PI, & pA braidtypes from BTs, pi h & if and only if the cyclic 

word in (~1 and a;’ contained in p2 is obtained from that of PI by deleting generators. 

For example, the braidtype represented by the word (ala;‘)* dominates that repre- 

sented by the word aiu;’ (see Fig. 9.1). The theorem means that any time you see an 

orbit that in the suspension looks like the left of Fig. 9.1, somewhere in the suspension 
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Fig. 9.1. The braids (otu;‘)’ and WC;’ 

there is also an orbit that looks like the right of Fig. 9.1. A little caution must be used 

here with the phrase “looks like”. Another way of seeing that one needs a conjugacy in 

the definition of the braidtype is that you have to choose a point of view when looking at 

the orbit in the suspension. All the different points of view you can take will correspond 

to various conjugacies in the braid group. 

We should also note that Theorem 9.5 holds if the element of the three braid group 

represents the union of a period-two point and fixed point, or the union of three fixed 

points. To get this kind of result one needs to extend the notion of a dynamical order 

relation from periodic orbits to finite invariant sets. 

By Theorem 8.3, the CX~/~‘s are the only irreducible braidtypes with zero entropy. One 

can produce reducible braidtypes with zero entropy by using a copy of some aply as each 

component. The set of all zero entropy braidtypes is then easily seen to be described by 

the collection of lists (pl/ql,p2/q2,. . . , Pk/qk), where pi and qi are relatively prime. 

The domination in (BT, ?_) on these elements is generated by dropping the last element 

of the list, e.g. (PI /St, m/a,. . . 9Pk+l/qk+l) ? (Pl/41,P2/92,...,Pk/9k) (1114,571). 
Fig. 9.2 shows a schematic drawing of the tree coming from the partial order on zero 

entropy braidtypes. 

In the partial order in Sharkovski’s theorem the zero entropy periods are the powers 

of two. One would like to understand the approach to the boundary of positive entropy. 

POSITIVE ENTROPY 

Fig. 9.2. A schematic drawing of the zero entropy braidtype tree. 
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(Note that the structure of Sharkovski’s order changes as we cross this line.) In contrast 

to the situation in one-dimensional dynamics where the approach to positive entropy 

is accomplished just by period doubling, there are infinitely many ways to move up 

the “braidtype tree” towards the boundary of positive entropy. In one dimension, the 

boundary to positive entropy is, in a precise sense, occupied by the Feigenbaum minimal 

set. The situation in two dimensions is much more complicated, but some progress has 

been made (see [56] and [15]). 

Another area in which progress has been made is in the structure of the partial 

order restricted to the braidtypes that arise in Smale’s horseshoe ( [64] and [ 621). 

This theory has applications to the important question of how horseshoes are built in 

parameterized families, e.g. in the Henon map. The main strategy in this work is to 

use the well understood one-dimensional kneading theory to understand certain orbits 

whose two-dimensional dominance can be closely connected to their one-dimensional 

dominance. 

9.4. Homeomorphisms of the annulus 

The annulus has a simple topological feature that is lacking in the disk; it has 

non-trivial ~1. This allows us to attach an additional non-trivial topological invariant, 

namely the Abelian Nielsen type, to a braidtype. This assignment is well defined because 

strong Nielsen equivalence implies Abelian Nielsen equivalence. We shall work with 

homeomorphisms that are isotopic to the identity in which case the Abelian Nielsen type 

is just a pair of integers (m, n) that represent the homology class in the suspension. 

This pair of integers indicates that the orbit goes m times around the annulus before it 

comes back to itself at the nth iterate. The rational number m/n will be the rotation 

number of the periodic orbit (see Section 1.9)) but we are not requiring that m and n 

are relatively prime. 

The set of all braidtypes for the identity class on the annulus is denoted BT(A). 

As with the disk, let aplq be the braidtype of a periodic orbit of RPis : A 4 A. Part 

(a) from the next theorem is a restatement of Theorems 8.3 and 8.4 in the language 

of this section. Part (b) is proved in [ 211. A fact needed in its proof is a lemma of 

Brouwer that says that a orientation-preserving homeomorphism of the plane that has a 

periodic orbit also has a fixed point. By lifting to the universal cover, this implies that a 

homeomorphism of the annulus that has a periodic orbit of a given Abelian Nielsen type 

also has an uncollapsible one of the same type. Theorem 9.6(b) says that in addition, it 

also has the simplest periodic orbit of the same Abelian Nielsen type, i.e. a finite-order 

braidtype. 

Theorem 9.6. Assume that p and q are relatively prime integers with 0 < p < q. 

(a) If p E BT( A) has ant(p) = (p, q), then j3 is irreducible. If fi # cxPia then p 

is PA. 

(b) rf p E BT( A) has ant(P) = (np, nq) for some rz # 0, then /3 k aply. 
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Fig. 9.3. The braidtype &5. 

It is worth remarking that the annulus theory also has applications to homeomor- 

phisms of the disk or plane. By the lemma of Brouwer quoted above the theorem, a 

homeomorphism of the plane that has a periodic orbit has a fixed point. This fixed point 

can be removed and then the annulus theory applied to the resulting (open) annulus. 

Theorem 9.6(b) raises the question of the second largest irreducible braidtype with 

Abelian Nielsen type (p, q). This braidtype must of necessity be of pA type. A rea- 

sonable candidate would be the braidtype obtained by doing a rigid rotation by p/q 

followed by a Dehn twist around a pair of adjacent points on the orbit (see Fig. 9.3). 

Call this braidtype /S,)j4. T. Hall has an example of a pA braidtype with Abelian Nielsen 

type (3,7) that does not dominate p3/7. However, its entropy is larger than that of p3/7, 

so it is possible that the entropies of the &is are the smallest positive values among the 

irreducible braidtypes of Abelian Nielsen type (p, q). 

The braidtypes flPi4 were studied in [ 181. These pA braidtypes are represented 

by a pA map with a Markov partition that is essentially that of a circle map. This 

allows one to compute the partial order restricted to these braidtypes. This dominance 

is expresses in terms of an interval that depends on the continued fraction of p/q. 

Given a rational number p/q with p and q relatively prime, the Furey Interval of 

p/q is FI(p/q) = [a/b,c/d] where a/b = sup{m/n : m/n < p/q and n < q} and 

c/d = inf{m/n : m/n > p/q and n < q}. If you write the continued fraction of p/q so 

that it ends in a one, the endpoints of the Farey interval are the last two convergents of 

p/q. As examples, FI(2/5) = [l/3,1/2] and FI[5/12] = [2/5,3/7]. 

Theorem 9.7. For pi and qi > 0 relatively prime integers with 0 < pi < qi, let 

pPilq, E BT(A) be defined as above. 

(a) PP,/4, ?I PP2~y2 ifand only ifWp2/q2) c Wpl/ql). 
(b) If k and 1 are relatively prime and k/l E FI(pi/qi), then &,,y, t ffkJ[. 
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If fl(p/q) = [a/b, c/d], one can also compute that the entropy of p,)lq is the log of 

the largest root of (xb - 2) (xd - 2) = 3. 

9.5. Examples 

The attracting period 5 orbit of the map HB from Section 1.9 has Abelian Nielsen 

type (2,5) and so by Theorem 9.6, the map has a periodic orbit with braidtype 1~215. We 

can get much more information about its dynamics by noticing that after an appropriate 

choice of conjugation we see that the braidtype of the attracting periodic orbit is actually 

,l32/5. Theorem 9.7(b) then shows that He also has periodic orbit with braidtypes (YkJl 

for all k/Z E [l/3,1/2] = FI[2/5]. Since, for example, FI[5/12] c FI[2/5], we have 

also that Hg has a periodic orbit with braidtype &J,T. 

Recall from Section 2.5 that the 3 fixed points of the map Hf, as illustrated in Fig. 2.2 

are in different Nielsen classes. If we isotope the map to eliminate all fixed points on 

the outer boundary, then each fixed point is alone in its Nielsen class. Since the fixed 

points each have non-zero index, they are isotopy stable. Now the attracting period-3 

orbit of Hp is obtained by blowing down the permuted boundary components. If we call 

this orbit O( b, HP), it follows that any homeomorphism that has a periodic orbit with 

the same braidtype as a(b, HP) also has these three fixed points, and further, the fixed 

points must have the same linking number with the orbit as those shown in Fig. 2.2. 

This illustrates the information we have eliminated in passing to braidtypes. All that is 

encoded in the partial order on braidtypes is that there is a fixed point. It ignores the 

additional information that there are always three fixed points with a specific linking 

configuration (cf. [ 121) . 

10. The train track algorithm of Bestvina and Handel, by T.D. Hall 

The results of the previous sections (e.g. Theorems 7.7 and 9.2) clearly indicate 

the importance of understanding the structure and dynamics of the Thurston-Nielsen 

representative in an isotopy class. There is an algorithm due to Bestvina and Handel 

[ 91 (see also [ 81) which allows one to compute this information given a specification 

of the class in terms of, say, its action on ~1. The algorithm determines whether the 

class is of reducible, pseudoAnosov, or finite order type; and in the pseudoAnosov case, 

it finds a Markov partition for the pseudoAnosov representative of the class. Similar 

algorithms for the restricted case of homeomorphisms of a punctured disc are given by 

Franks and Misiurewicz [ 471, and by Los [ 941. 

This section is an introduction to the paper of Bestvina and Handel. Instead of giving 

a formal description of the algorithm, we shall simply present three examples of its 

application in the restricted context of homeomorphisms of the disc punctured by a 

periodic orbit: these examples illustrate the basic moves involved in the algorithm. Even 

in this restricted setting, there are subtleties of the algorithm which we shall not touch 

upon: the careful reader should turn to [9] for full details. 



I? Boyland/Topology and ifs Applications 58 (1994) 223-298 275 

Let f : D* + D2 be an orientation preserving homeomorphism, which has an interior 

period n orbit A. Suppose (without loss of generality) that the points of A lie on the 

horizontal diameter of the disc, labeled al,. . . , a, from left to right, so that the isotopy 

class of f in S = D2 \ A can be represented by a braid /3 E B, as in Section 1.7. Let Pi 

be a small circle centered on ai for each i, and write P for the union of the (disjoint) 

circles Pj. 
Let G C S be a graph containing P which has a single vertex Ui on P, for each i, such 

that the inclusion G + S is a homotopy equivalence (see Fig. 10.2, top). Given the 

isotopy class of f, one can pick an induced graph map g : G + G which sends vertices 

to vertices, and edges to edge-paths without backtracking, permuting the components 

of P cyclically. This map defines a transition matrix M(G, g), whose ij entry is the 

number of times that the g-image of the jth edge of G crosses the ith edge in either 

direction: the topological entropy h(g) of g is the logarithm of the spectral radius of 

M( G, g) : this is an upper bound for the minimal entropy in the isotopy class of f. 
The graph map g : G + G is said to be ejficient if for each edge E of G and each 

integer k > 1, the edge path gk (E) does not backtrack. The idea of the algorithm is as 

follows: if g : G + G is not efficient, then either there is a g-invariant proper subgraph 

of G which strictly contains P and is not homotopy equivalent to P (in which case a 

corresponding reduction of the isotopy class can be found), or it is possible to replace 

G with a (topologically distinct) graph G’ such that the induced map g’ : G’ + G’ has 

strictly smaller entropy than g. In making such changes, the following conditions are 

preserved: 

(1) G has no vertices of valence 1 or 2, and 

(2) g(P) = P, and each Pi is a connected component of Pm = Up0 gvk( P) for 

each i. 

Condition ( 1) means that there is a bound (depending on n) on the size of the transition 

matrix M(G,g), and hence that the set of possible entropies h(g) is locally finite in 

[0, co). Thus there is a number N, depending on n and the entropy of the initial graph 

map, such that either a reduction or an efficient map g : G + G must be found after 

at most N steps. If an efficient map is found, it is straightforward to determine the 

Thurston type of the isotopy class of f; and in the pseudoAnosov case, the action of g 

on the edges of G \ P corresponds to the action of a pseudoAnosov representative on a 

Markov partition. 

We shall begin with a very simple example of a reducible isotopy class: this introduces 

the most important move of the algorithm, namely folding. The second example is 

pseudoAnosov: we shall explain how the dynamical structure of the pseudoAnosov 

representative can be deduced from the efficient graph map. Finally, we shall give an 

example of the finite order case. 

The initial choice of graph G is arbitrary. In all of our examples, we shall follow 

a convention which has the advantage that the action of the initial graph map g is 

relatively easy to determine, and satisfies the technical condition (2) above. We shall 

always place the vertex ~1 on the right of the circle PI, and the vertex un on the left of 

the circle P,,; the other vertices ui are placed either on the top or on the bottom of the 
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corresponding circle Pi, in such a way that when we complete the graph by putting in 

a straight edge from ui to ui+t for i = 1,. . . , n - 1, condition (2) is satisfied. 

Before embarking on the examples, we give a list of the various moves used in the 

algorithm, and indicate the first point in the examples where they appear. The moves 

are described in terms of the map g : G + G, but the important point to note is that 

they all preserve the isotopy class of the underlying map f : S + S. 

1. Folding: Example 1 Step 1. 

2. Subdividing: Example 2 Step 1. 

3. Valence 1 isotopy: Example 2 Step 3. 

4. Valence 2 isotopy: Example 2 Step 4. 

5. Collapsing an invariant forest: Example 2 Step 5. 

Example 10.1 (The reducible case). Consider the period 6 orbit corresponding to the 

braid /3 = (~3~~201(+5(+3@4~3~2~1. The action of the isotopy class on the horizontal arcs 

joining the punctures is depicted in Fig. 10.1. 

,:;:::::c:, ___* e 
Fig. 10.1. 

Choose the initial graph G in the way described earlier: to do this, begin with the 

points of A which are preimages of “folds” in the above diagram, namely ~2, ~24, and 

us. Pick the corresponding vertices ~2, ~4, and us to be on the top, bottom, and top of 

their circles respectively, in order to satisfy condition (2). Then consider the preimage 

~23 of ~4, and choose us on the top of P3 to satisfy condition (2). The graph G thus 

constructed, and its image under the isotopy class of f, are shown in Fig. 10.2. 

a b e 

1 2 3 

! 

4 5 6 

e 

a 

Fig. 10.2. 

The circles Pi are oriented in the positive sense and labeled with the numbers 1 to 6; 

the other edges are oriented from left to right, and labeled with the letters a to e. Given 

any oriented edge E, denote by z the same edge oriented in the opposite direction. With 
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this convention, the action of g : G + G can be described by a -+ cd, b ---f d, c + i&‘, 
-- 

d + bcTde, e + ed4cba (the action on the circles Pi is omitted in this description, 

since they are permuted by g). 

Let us now introduce some formalism which will enable us to determine whether or 

not g is efficient. Let C denote the set of oriented edges {a,. . . , e,Zi, . . . ,Z}, and define 

a map Dg : L + C which sends an edge E to the first edge traversed by g(E). Thus 

the action of Dg can be represented by the diagram in Fig. 10.3. 

b-d a e 

i I I 
a- c-c- b-d ---; 

Fig. 10.3. 

Now the only way that there can be backtracking in gk(E) is for the edge path 

gk-’ (E) to contain a word El E2, where Dg( El) = Dg( Ez). This arises when there 

are two edges El and E2 which are identified by some power of Dg, and one of the 

edge paths g(E) contains the juxtaposition FEZ. However the pairs of edges which are 

identified by a power of Dg can be read off the above diagram: they are {d, e}, {b, a}, 

{Z,d} (all these are identified by Dg), and {c,b} (which are identified by Dg2). It 

follows that there is backtracking in g*(a) (since g(a) contains the word cd), in g3 (c) , 

in g*(d) and g3(d), and in g2(e) and g3(e>. 

The fundamental move of the algorithm is folding, which eliminates backtracking. 

Step 1: Fold d and e. Concentrate on the backtracking which arises from the identi- 

fication of Dg2(b) and Dg2(c). We have g(e) = g(z)Z Thus e is replaced by a new 

edge e’ with e = de’. This gives rise to the graph G’ depicted in Fig. 10.4. 

Fig. 10.4. 

The new graph map g’ : G’ + G’ and the corresponding map Dg’ are given by 

a + cd, b + d, c ---f cb, d + bczde = bcqe’, e’ + g(d)g( e) = Z (see Fig. 10.5). 

We drop the primes on g, G, and e (this will be done automatically after each step 

from now on). The cancellation in g(d) has eliminated the corresponding backtracking, 

and has reduced the entropy of g. (This folding implicitly involves the step called pulling 

tight in [ 91.) 

There are still backtrackings arising from the identification of Dg( 5) and Dg( c) , and 

from that of Dg( d) and Dg( C) . We fold again to eliminate the latter of these: 
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b-d a e e’ 

i I 
a’“_“_;’ 

Fig. 10.5. 

Step 2: Fold d and 3. We have g(d) = g(@e. Therefore d is replaced by a new 
edge d’ with d = zd’. This gives rise to the graph G depicted in Fig. 10.6 and to an 
induced map g : G --+ G defined by a 4 csd = ?5d, b 4 d3c, c --+ cb, d ---f e, e +Zi. 
The cancellation in g(u) reduces the entropy of g. 

b 
e 

a 

Fig. 10.6. 

- ‘-: 
Fig. 10.7. 

Notice that P U a U d U e is a g-invariant subgraph. It follows that the corresponding 

essential simple closed curves in D* \ A, depicted in Fig. 10.7, are permuted by f up 

to isotopy, and therefore constitute a collection of reducing curves. 

Example 10.2 (The pseudoAnosov case). Now consider the period 7 orbit correspond- 

ing to the braid j? = ~4~5~4~3~6ff5~4U3~2U~. The initial graph G and its image under 

the isotopy class are shown in Fig. 10.8. 

b 

Fig. 10.8. 
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The actions of g and Dg are therefore a + b, b + c4d, c 4 e f, d + 7, e + ed, 

f + cba (see Fig. 10.9). 

_ _ 
a- b-d-f- c 

Fig. 10.9. 

Notice that there is no backtracking for g2, but that there is in g3(c). Let p be the 

point of c indicated in Fig. 10.8, with images g(p) = ug, g2(p) = ~4, and g3(p) = ~7. 

To eliminate the backtracking, we fold first at g’(p), then at g(p), and finally at p. 

Step 1: Fold at g2 (p). First subdivide c at p: that is, replace c by new edges c’ 

and g’ so that c = c’g’, with c’ + e and g’ + f. It is necessary to be careful when 

folding g’ and d. To do this as it stands would increase the valence of p, and prevent 

our eventual folding at p which is to reduce the entropy of g. To avoid this, subdivide - 
f: write f = f’h’, where we now have a + b, b ---f cg4d, c -+ e, d -+ h f, e -+ ed, 

f - gC, g ---) fh, h + ba (after dropping primes). Then fold the parts of S and d 

which map to h: that is, replace g and d with new edges g’ and d’, and introduce an 

edge i such that g = g’i and d = id’. We now have a + b, b A cgi4?d, c -+ e, d + 7, - 
e + edi, f + igc, g 4 f, h + ba, i + h (see Fig. 10.10). 

a 0 b 

Fig. 10.10. 

Step 2: Fold at g(p). Fold 2 and f, introducing edges e’, f’, and j with e = e’j and 

f = Jf’. This gives a 
7- 

+ b, b --f cgi4d, c + ej, d -+ Tj, e 4 Jed, f --f si;, g + yf, 

h -+ &, i + h, j + i (see Fig. 10.11). 

a 0 b 0 

h 
f 

Fig. 10.11. 

Step 3: Fold at p and perform valence 1 isotopy. To obtain the reduction in entropy 

set up by the preceding two steps, fold C and g, introducing a new edge k with c = c’k 
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and g = kg’. However one end-point of k is a valence 1 vertex, and a valence I isotopy 

can therefore be performed which pushes the edge k back into p. Therefore the only 

effect of this step is that instead of c + ej and g ----f Jf, we now have c 4 e and 

g + f. This operation has reduced the entropy. 

Step 4: Perform Valence 2 isotopies. Finish off the procedure of steps 1 to 3 by 

performing valence 2 isotopies to eliminate the two valence 2 vertices in G. Replace c 

and g by a single edge c’ with c’ -+ e f; and postcompose by an isotopy which squeezes 

the edge f down to the valence 3 vertex at its initial point, relabeling the edge h as f’. 

We now have the graph shown in Fig. 10.12. 

Fig. 10.12. 

The actions of g and Dg are therefore a + b, b -+ ci4?d, c ---f e, d --f j, e + jed, - 
f -+ cba, i --+ f, j + i (see Fig. 10.13). 

t 
a-b-c-e 7 -T-,- f 

Fig. 10.13. 

Step 5: Fold e and 2, and collapse invariant tree. There is now backtracking in g2 (e) 

arising from the identification of e and d by Dg. Therefore e is replaced by a new 

edge e’ with e = de’. Having done this, we have e’ --f 7: the edge e’ is therefore an 

invariant tree, and it can be collapsed to a point by an isotopy. This yields the situation 

of Fig. 10.14. 

The actions of g and Dg are therefore a -+ b, b -+ ci4id, c ---f d, d --) j, f --f cba, 

i 4 f, j --f i (see Fig. 10.15). 

Step 6: Fold b and c, then 2i and b. Replace b with an edge b’ satisfying b = b’c, 

and then fold again, replacing a and b’ with edges a’, b”, and e satisfying a = a? and 

b’ = eb”. This gives Fig. 10.16. 
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f 

Fig. 10.14. 

Fig. 10.15. 

f 

Fig. 10.16. 

The actions of g and Dg are therefore a -+ eb, b -+ i4E, c + 2, d + j, e -_) c, 

f -+ ba, i + f, j + i (see Fig. 10.17). 

c j-d-c-e-- 

-i-b 

Fig. 10.17. 

Step 7: Fold to eliminate backtracking in $(a). Notice that Dg4(Z> = Dg4( b). TO 

eliminate the corresponding backtracking in $(a), perform the following sequence of 

folds: (1) b = b’6j, (2) f = dsf’, (3) i = zi’, and (4) b = xb’. 

These yield a + ?b67, b ---f i, c + 2, d -+ j, e -+ c, f ---f &2eZ, i + f, j -+ ai 
(see Fig. 10.18). 
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b 

i f 

Fig. 10.18 

Step 8: Peeorm valence 2 isotopy and twist around PI. Now remove the valence 2 

vertex together with the edge e, and precompose by a twist around the circle P1 to 

eliminate the edge 2 at the beginning of g(u). This gives Fig. 10.19. 

i f 

Fig. 10.19. 

The actions of g and Dg are therefore a -+ b6jc, b -+ i, c -+ d, d --+ j, f -+ %!a, 

i + f, j 4 zi (see Fig. 10.20). 

i-c-d-j 

Fig. 10.20. 

The graph map g : G -+ G is now efficient, and the transition matrix 

M= 

lo 0 0 0 1 0 0 

1000100 
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first that since M is a Perron-Frobenius matrix, it has an eigenvalue A rv 1.46557 

equal to its spectral radius, with strictly positive row and column eigenvectors r 4 

(1.466,0.682,0.466,0.682, 1.466, 1, l), c A (0.682, 1.148, 1.148,0.783,1, 1.466, l),re- 

spectively. To each edge E; of G\ P there correspond entries ci of c and rl of r. Replace 

Ei with a rectangle Ri of height c, and length r-i, foliated with vertical stable leaves and 

horizontal unstable leaves. After making suitable identifications between the edges of 

the rectangles Ri, the identification space is a sphere, and the foliations on the rectangles 

descend to a pair of transverse foliations of the sphere, with one-pronged singularities 

arising from the folding points of self-identifications along the sides of rectangles corre- 

sponding to edges of G adjacent to P; and with a three pronged singularity corresponding 

to the valence 3 vertex of G, and a four pronged singularity at infinity. Moreover, the 

graph map g induces a homeomorphism F of the identification space which stretches 

the unstable leaves and contracts the stable leaves, each by a uniform factor A: that 

is, F is a pseudoAnosov homeomorphism which belongs to the original isotopy class, 

and the collection of rectangles R, constitutes a Markov partition for F. In [9], this 

idea is used to give a constructive proof of Thurston’s classification theorem. It is also 

explained there how it is possible to deduce the singularity structure of the foliations 

directly from the action of the efficient graph map g : G + G, without the need to 

calculate eigenvectors. It should be remarked that it is not always the case that a valence 

n vertex of G gives rise to an n-pronged singularity of the foliations. 

Example 10.3 (The jinite order case). Consider the period 5 orbit corresponding to 

the braid p = V2~3(~2uiff4(~3(~2(T1. The initial graph G and its image are depicted in 

Fig. 10.21. 

p STP) 
93(P) 

0 

c 
d 

0 

a 

Fig. 10.21. 

The actions of g and Dg are therefore a -+ cd, b + d, c ---) cb, d -t Zi (see 

Fig. 10.22). 

Let p be the point of a indicated above, with images g(p) = ~4, g2(p) = ~2, and 

g3 (p) = vg. Notice that g3( a) backtracks at g3 (p). 

Step 1: Fold to eliminate backtracking in g3( a). Following the pattern of steps 1 to 

4 in example 2, subdivide a at p, subdivide e, fold at g2(p), fold at g(p), fold at 

p, perform a valence 1 isotopy to reduce entropy, and then remove the two valence 2 
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a+6 
Fig. 10.22. 

vertices with valence 2 isotopies. This gives rise to the graph and transitions depicted 

in Fig. 10.23. 

Fig. 10.23. 

- 
The actions of g and Dg are therefore a -+ c, b --f f, c -+ fcb, d -+ a, e t d, 

f -+ e (see Fig. 10.24) 

aii 
Fig. 10.24. 

Step 2: Fold b and c and collapse invariant tree. Replace c with an edge c’ satisfying 

c = k’: having done this, we have c’ + c’, and the invariant edge c’ can be collapsed to 

a point. This yields the irreducible graph map g : G --f G depicted in Fig. 10.25, which 

yields a + b, b -+ f, d -+ 3, e --f d, f -+ e. It can now be seen that f5 preserves the 

isotopy class of any simple closed curve in S, so that f is isotopic to the identity: the 

period 5 orbit has braid type 1x215. 

11. Rotation sets 

A rotation vector measures the average rate of motion of an orbit around the surface 

with the direction of the motion given by a homology class. The rotation number for 

orbits of circle homeomorphisms was defined by Poincare. The generalization of this 
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d 
Fig. 10.25 

notion to flows on manifolds is due to Schwartzman ( [ 1111). Fried ( [48] ) gave a 

topological generalization and applied it to maps and flows. 

The Abelian Nielsen type of a periodic orbit measures the direction of motion of a 

periodic orbit in the surface by using the homology class of the corresponding loop in 

the suspension manifold. An arbitrary orbit will not give a closed loop, so one needs 

the include irrational directions. In addition, we want the length of the rotation vector 

to measure the speed of motion. The computation of this speed requires some kind of 

averaging. These requirements lead us to work in Ht (Mf; R). Now the homology with 

integer coefficients, Hi (Mf; Z) 2 coker( f* -Id) x Z, may have torsion, so we can lose 

information by passing to real coefficients. This will not be the case for maps isotopic 

to the identity because in that case the suspension manifold is a product. The restriction 

to the identity isotopy class is rather natural for dynamics as, for example, the time one 

map of the solution to a periodically forced differential equation will lie in that class. 

The collection of all the rotation vectors for the orbits of a homeomorphism are called 

its rotation set. Although many orbits may be assigned the same rotation vector, and 

with the definition we adopt, some orbits will not be assigned a rotation vector, the 

size and shape of the rotation set gives a valuable measure of the complexity of the 

dynamics. 

11.1. Definitions of the rotation vector 

As with the equivalence relations on periodic orbits given Section 2, the rotation 

vector may be defined using a covering space, the suspension flow, or arcs in the base. 

In this case the definition in a covering space is most immediately accessible. 

Let /3( f, M) = dim( Hi (Mf, IR) ) - 1, or equivalently, p is the rank of the torsion free 

part of coker( f* -Id) where f* : HI (M, Z) -+ HI (M, Z) is the induced map. When the 

map and the surface are clear from the context we will suppress the dependence of p on 

f and M. The notation a, denotes the cover of A4 with deck group Zfl that corresponds 

to the kernel of the composition of the Hurewicz homomorphism ~1 (M) + HI (M, Z) 

with the projection HI (M, Z) + coker( f* - Id) /torsion. 

We are going to track orbits in the cover using the deck group. For this we need a 

reference region in the cover that maps injectively down to the surface. It is convenient 

to first get such an object in the universal cover. Assume first that M has negative Euler 

characteristic and so the universal cover is the hyperbolic disk. Pick a fundamental 

domain in the universal cover whose frontier consists of geodesic arcs. We can obtain 
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M by pairwise identifying edges of this fundamental domain. Now let ij be obtained 

from this fundamental domain by removing one of each of the identified edges and 

replacing or removing corners when necessary so that D projects injectively down into 

the surface. If M is the torus or the annulus, the construction is similar. 

Now let D be the projection of d to fip. Note that D has compact closure and if 

r : fip + M is the projection, rr restricted to D is injective. Thus tip = Ua( D), 
where the disjoint union is over all CT E Zk. Define a (discontinuous) map r : I$?, ---f izp 

via r( 2) = CT if R E (T(D). Now fix a lift _? : &lp + h?lp and a lift Z of n E M, and 

define the rotation vector of x as 

p(x, f) = lim 
r(f”‘(_f>) - r(R) 

i-boo i 

if the limit exists. Since r commutes with all deck transformations, the rotation vector 

does not depend on the choice of lift of the point x. However, it does depend on choice 

of J, and so it is only defined up to translation by an element from Zp. The rotation 

set of f is p(f) = {p(x, f) : x E M}. 

If we let A : M + Zp be the projection to M of the equivariant map r ( f( 2) ) - r (2) : 

b?p --+ Zp, then A gives the approximate displacement of any lift of the point X. Given 

a f-invariant probability measure ,LL, we can define its rotation vector as p( ,u) = J A dp. 

This rotation vector measures the average displacement of points with respect to the 

measure ,u. By the Birkhoff ergodic theorem (see Section 1.2), if ,u is ergodic, then for 

p-almost every point x, p(x, f) = p(p). 

The definition of the rotation vector using arcs is somewhat unnatural in the general 

situation, so it will be deferred until we restrict to the identity isotopy class. The 

definition using the suspension flow uses a family of arcs to non-dynamically close 

orbits so they can be treated as homology classes. The specifics of the family of arcs 

are eliminated by passing to a limit. This definition is essentially that of the homology 

direction of an orbit given in [48]. 

In the “half-open” fundamental domain b in the universal cover pick a base point .Q 

and for each I E D, an arc CX c l? with gX(0) =X0 and (?lx( 1) = R. The arc (Y, is the 

projection of CX to M. 

Recall from Section 2.1 that the suspension flow was denoted $t and that MO c Mf 

is MO = p( M x (0)) where p : M x R + Mf is the projection. We may identify MO 

with M and think of the arcs (Y, as subsets of MO. For each x E MO and n E Pi let 

Thus y( x, n) is the loop constructed by starting at the basepoint x0, going to x via 

the closing loop (Y, and then flowing forward by the suspension flow for n units of 

time. This puts us at the point fn(x) in MO, and we go back to the basepoint xo via 

the inverse of the closing loop ‘YF~(,). Recall that Ht (Mf; R) S E-Xp x JR. For a class 

b E HI (Mf; IR), let pt (b) be the projection of b on the first factor and then 
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p(x, f) = ,,im PI ( [74x, 4 I) 
1-03 i 

when the limit exists, where [ y(x, i)] is the homology class representing the closed 

loop y(x, i) in HI (Mf, R). Now there is ambiguity since we have chosen generators 

for Hl(Mf,lFC). 

If 0(x, f) is a periodic orbit recall that its Abelian Nielsen type is the element 

in HI (Mf, Z) g coker(f, - Id) x Z that is represented by its orbit in the suspen- 

sion. If (v, n) is the image of ant(x, f) under the projection coker(f, - Id) x Z ---f 

coker( f* - Id) /torsion x Z = Zp x Z, then p( x, f) will be the vector v/n E lRfl. 

11.2. Rotation sets of pA maps 

It should be clear by now that pA maps have complicated dynamics. The next theorem 

gives another expression of this fact using rotation sets. The rotation set of a pA map is 

always convex and top-dimewional. This implies, among other things, that their periodic 

orbits span homology in the suspension. 

Let C$ be a pA map. In [ 481 and [ 491, Fried showed that the closure of the collection 

of rotation vectors of periodic orbits of 4 is a P-dimensional convex set. In addition, 

this convex set is the convex hull of the rotation vectors of periodic orbits that come 

from minimal loops (see Section 1.3) in the Markov model for c,z~. The question of 

whether every vector in this convex set comes from some orbit was answered in the 

case of pA maps rel finite sets on the torus in [ 1031 (see Theorem 11.8). The proof 

the author knows of the general result below is due to Kwapisz. 

Theorem 11.1. If q5 : M ---f M is a pA map and p = /3( f, M), then p(4) c Iwp is a 

closed, @dimensional set that is the convex hull of the rotation vectors of the periodic 

orbit coming from minimal loops in the Markov model of 4. Furthel; if u E Int(p(Q)), 

then there is a compact, &invariant set X,, with p( x, @) = u for all x t X,. Thus there 

is an ergodic, invariant probability measure ,uu,, with p(p(.) = u. If u E Qp nInt(p(+)), 

then we can choose X,, to be a periodic orbit. 

The basic idea of the proof is illustrated by the examples in Sections 1.3 and 11.7. The 

existence of the ergodic invariant measure supported in X,. follows from the standard 

fact that any compact invariant set contains the support of an ergodic measure. Note 

that the last sentence of the theorem says nothing about the period of the periodic orbit 

that has a given rotation vector. In particular, it may not have an uncollapsible Abelian 

Nielsen type. 

The next result follows from Theorem 7.4(b) and the previous theorem. The main 

observation needed is that orbits that globally shadow will have the same rotation vectors. 

Corollary 11.2. If q!~ is a pA homeomorphism and g Y 4, then p( 4) c p(g) and so, 

in particulal; p(g) has interior. 
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Theorem 7.4(b) also implies that any u E p( q5) n p(g) will be represented by some 

g-invariant set Y,. This set will be the preimage of the &invariant set X, under the 

semi-conjugacy. 

11.3. Homeomorphisms isotopic to the identity 

Now we restrict attention to just those f that are isotopic to the identity. In this 

case 16’j~ is the universal abelian cover of M, i.e. it has deck group isomorphic to 

HI (M, Z) = Zp where p, the first Betti number, is twice the genus if M is closed, and 

2g + (b - 1) when there is boundary. The suspension manifold is a product M x S’ and 

H1(Mf,Z) = H,(M,Z) x Z. 

The definition of the rotation vector using arcs appears in [43] and [44]. Let fi : 

id N f be an isotopy to f from the identity, and let ux be the trace of the isotopy that 

connects x and f(x), i.e. gx( t) = f,(x). Now given x and II E N, let w(x, n) be the 

class represented by a, . cx gfcx) . . . . . CT~-I(~) . (CUE)-’ where the (Y’S are the 

closing arcs used in the definition with the suspension flow. One can check that 

p(x, f) = &z 4x, Q/i 

when the limit exists. 

The information given in Theorem 11.1 is only valid for pA maps. For general maps 

isotopic to the identity we study the rotation set using a now familiar strategy; find 

finite invariant sets A so that the map is hidden pA rel A, and then use isotopy stability 

results to apply Theorem 11.1 to these maps. 

The next result is the analog of Theorem 11.1 for relative pA maps $. Note that we 

are just measuring the rotation set of 4 in the ambient manifold, not in the manifold 

punctured by the finite invariant set. 

Theorem 11.3. If c$ : M + M is isotopic to the identity and there is ajnite $-invariant 

set A so that q!~ is pA rel A, then ~(4) c Iwo is a closed, P-dimensional convex set 

where p is the first Betti-number of M. Further; if u E Int(p(+)), then there is a 

compact, &invariant set X, with p(x, 4) = u or all x E X,,. Thus there is an ergodic, f 
invariant probability measure ,q, with p(,~~,) = v. If u E QP n Int(p( 4)), then we can 

choose XL, to be a periodic orbit. 

We will formulate the analog of Corollary 11.2 in terms of strong Nielsen types. As 

with the rotation number and entropy, we can also associate a rotation set to a strong 

Nielsen type. If p E SNT( M, id), let pset(/3) = p(@p), where @p is a TN-condensed 

map that represents 0. In this case we do not assume that @p is pA, so we need to use 

Theorem 7.7. 

Corollary 11.4. If f is isotopic to the identity and p E snt( f), then p,,t(p) C ,o( f). 
In particulal; if p is of pA type, then p(f) has interior. 
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11.4. Homeomorphisms of the annulus 

The structure of the rotation set for homeomorphisms isotopic to the identity depends 

quite strongly on the ambient manifold. We first examine the case of the annulus. The 

first theorem combines results from Handel ( [ 70,661) and Franks ( [41] ). Note that 

there is no pA assumption, and so one does not have a Markov partition to work with. 

Theorem 11.5. Zf f : A + A is a homeomorphism that is isotopic to the identity, then 

p(f) is a closed set. If p/q E p( f ), then f has a period-q periodic orbit with rotation 

number p/q and for all but (perhaps) finitely many w E p(f) - Q, there is a compact 

invariant set X, with p(x) = o for all x E X,. 

It is generally believed that there is a compact invariant set for all elements of the 

rotation set, but there is currently no proof or a counterexample. For a survey of facts 

about the rotation set of annulus homeomorphisms see [22]. 

The next theorem incorporates information using the dynamical order of Section 9. 

Part (a) can be viewed as a generalization of the Aubry-Mather Theorem from the 

theory of monotone twist maps. It says that whenever f has an orbit with rotation rate 

p/q, there is a periodic orbit with that rotation number that is the simplest possible. For 

monotone twist maps this periodic orbit will be monotone (see Section 8.2) as given in 

the Aubry-Mather theorem. 

Theorem 11.3 implies that the rotation set of a pA braidtype in the annulus is always 

a non-trivial closed interval. Part (b) of the next theorem gives a lower bound for the 

size of the rotation set of certain braidtypes in terms of their Abelian Nielsen types (or 

rotation number) [ 211. Recall that the Farey interval and trivially embedded orbits were 

defined in Sections 9.4 and 8.2, respectively. 

Theorem 11.6. Let f : A -+ A be a homeomorphism that is isotopic to the identity and 

p # 0 and q be relatively prime integers. 

(a) VP/q E p(f), then aplq E Wf). 
(b) IfP E BT(A) has ant(P) = (p,q) and P + ap/q, then n(p/q) c pSet(P). 

Thus ifP~ bt(f)> Wplq) c p(f) 
(c) Zf p E BT(A) has ant(p) = (0, q) and is not trivially embedded, then 0 E 

WpS&P) ). 

The proof of (c) in [25] uses the following result that is of interest in its own right. 

Recall that the map T : & + I% is the deck transformation of the universal cover of the 

annulus and is given by T(x,y) = (x + 1,~). 

Theorem 11.7. Assume that C$ : A + A is pA rel 0(x, f), m/n E Int(p(ti)), and a 

lift 4 : I% + I% has been chosen so that G = $“T-“’ has a jixed point. Then there is a 

dense Ga-set X,1,, c A so that for every x E X,,,,,, any lift i E d has a dense orbit 



290 P Boyland/Topology and its Applications 58 (1994) 223-298 

under G : B + A. Thus if X = n X,,,,, where the intersection is over m/n E Int( p( 4) ), 

then the rotation number does not exist for any point in the dense, Gs-set X. 

The last sentence in the theorem says that for the topologically generic point in the 

annulus the rotation number does not exist. In contrast, Theorem 7.2(e) says we may 

assume after conjugation that 4 is ergodic with respect to Lebesgue measure. Then as 

remarked in Section 11.1, the rotation number will exist and be the same for almost 

every point with respect to Lebesgue measure. To further complicate matters, for any 

m/n E p( 4)) one can show that there is a dense set of points in A with that rotation 

number. The analogs of these facts on other surfaces are also true for maps isotopic to 

the identity that are pA rel a finite set. In this more general case, one uses the universal 

Abelian cover not the universal cover. 

11.5. Homeomorphisms of the torus 

The rotation sets of toral homeomorphisms are perhaps the most studied. In this case 

there are a number of alternative definitions (see [ 1031). The definition we have used 

is often called the “pointwise rotation set”. The next theorem combines results of Llibre 

and MacKay [93], Franks [42], and Misiurewicz and Ziemian [ 102,103]. 

Theorem 11.8. Let f : T2 + T2 be a homeomorphism that is isotopic to the identity. 

(a) If {xl, x2, x3) are three periodic points whose rotation vectors are not collinear 

and furthen each periodic point is of the least period among periodic points of f with 

the same rotation vector; then f is hidden pA rel the set U o(xi, f). 

(b) Int( p( f) ) is a convex subset of IR2. 

(c) For each u E Int( p( f)) there is a compact invariant set X, with p(x) = o for 

~11 x E X,,. If u = (~1 /ql , p2/q2) with pi and qi relatively prime, then X, may be chosen 

to be a periodic orbit with period equal to the least common multiple of q1 and q2. 

For any compact set in the line it is easy to construct a homeomorphism of the annulus 

with that set as its rotation set. The analogous question in the torus is not so well 

understood. It is known that any rational polygon can occur ([ 881) and there are non- 

polygonal examples ( [ 891) . Certain lines can occur (and so Int( p( f) ) may be empty) 

and others perhaps cannot ( [ 901). Examples of Grayson and independently [ 1031 show 

that a point on the boundary of the rotation set which has rational coordinates need not 

be represented by a periodic orbit of the map with that rotation vector. 

11.6. Homeomorphisms of higher genus surfaces 

Very little is known about the rotation sets of homeomorphisms isotopic to the identity 

on higher genus surfaces. It is not known whether the existence in the interior of the 

rotation set of a point with rational coordinates implies the existence of a periodic orbit 

with that rotation vector. The situation for representing irrational rotation vectors is even 
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less clear. The main difficulty in higher genus is that the rotation set is defined using 

the universal Abelian cover which is now no longer the plane. In particular, Brouwer’s 

Lemma (see Section 9.4) and its extensions (e.g. [ 41,421) no longer hold. The universal 

cover is the plane, but the deck group there is non-Abelian, and it is not clear how to 

translate the homology information of rotation vectors into homotopy information for 

use in the universal cover. Franks ( [ 43,441) and Handel (personal communication) 

have made some progress with “homotopy” rotation vectors. For the case of flows on 

surfaces see [ 1181 and [2]. 

There is an analog of Theorem 11.8(a) that works on higher genus surfaces. On the 

torus, Theorem 11.8(a) can be used to get the invariant sets representing non-rational 

rotation vectors because given three non-collinear points with rational coordinates in the 

interior of the rotation set, Theorem 11.8(c) allows one to represent these points with 

periodic orbits. One then uses Theorem 11.8(a) to get a hidden pA rel these orbits, and 

then Theorem 11.3 and isotopy stability to get invariant sets for other points inside the 

triangle spanned by the points. This strategy does not work in higher genus because of 

the remarks of the previous paragraph. 

We restrict now to the case of closed surfaces. For cq , (~2 E HI (M; Z) , let I (q , ~2) 

be their algebraic intersection number. Since we are assuming that f P id, Ht (Mf; Z) = 

Ht (M; Z) x Z. The Abelian Nielsen type of an orbit can thus be written as ant( x, f) = 

(p(x), n) where p(x) is a homology class in M and n is the period of the orbit. This 

means that p(x) just keeps track of the direction of the orbit in M and neglects the 

speed, so it is called the homology direction of the orbit (this is a slightly different 

use of this term from Fried [49] ). The following theorem arose in a conversation with 

J. Franks. 

Theorem 11.9. If M is a closed sueace of genus g > 1 and f : M ---f M is a 

homeomorphism isotopic to the identity that has a collection of periodic orbits X = 

(x1 3 x2,. . .1 xk} with k > 1 whose homology directions are linearly independent in E%‘g 

and further satisfy I (p( xi), p( xi+, ) ) + 0 for i = 1,. . . , k - 1, then f has a hidden pA 

component rel X and convexhull((0) U {p(xl), . . . ,p(xk))} c p(f). 

The proof is fairly standard. One examines the various possibilities for reducing 

curves of the isotopy class rel X and then sees what the Thurston-Nielsen types of the 

components can be. It turns out that there must be a pA component that contains all of 

X and then one uses Theorem 11.3. The presence of the zero in the convex hull comes 

from the fact that any homeomorphism of a surface with negative Euler characteristic 

has a fixed point. 

11.7. Examples 

We continue the analysis of the homeomorphism Hk of Section 1.9. This homeo- 

morphism is defined on the annulus minus five open disks: let us call this space As. 

Now HI (AS; Z) g IT?, and we can identify the generators geometrically as one of the 
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Fig. 11.1. The covering space fip for the map Ha 

boundary components of the annulus and the boundaries of the 5 removed disks. Now 

HL induces a cyclic permutation of these last 5 generators and is the identity on the 

first. Thus coker( (HL), - Id) = Z2, and so the integer homology of the suspension 

manifold is Z3. Each of the three components has a geometric interpretation. The first 

keeps track of how many times around the annulus a loop goes. The second coordinate 

measures the linking number of a loop with the suspension of the permuted boundary 

components, and the third is the period. The rotation set of Hk will then be a subset of 

R*, and we can interpret the first component of a rotation vector as the usual rotation 

number in the annulus and the second as a “linking rate” about the permuted boundary 

components. The 2’ cover that detects these motions is shown in Fig. 11.1. 

To compute the rotation set we examine the motion of the Markov partition in the 

Z2 cover in a manner similar to the one used in examples in Sections 1.3 and 3.4. First 

choose a lift of HL that fixes the back edge of the cover and call this lift Z?. Next pick 

a fundamental domain in the cover and lift the Markov partition in the base to five 

rectangles in the fundamental domain denoted Ri. We keep track of the motion of a 

rectangle in the cover by using the symbols r and e in the transition matrix. The symbol Y 

represents the horizontal deck transformation as in Fig. 11.1. It records motions around 

the annulus. The symbol ! represents the vertical deck transformation and it records 

linking information. In the augmented transition matrix we write PP’ in the (i, j) th 

place if 8( I?i) n fi( r’V’( l?j) # 8, and 0 otherwise. It is fairly straightforward to 

compute that 

0 0 c e2 0 
00100 

B"= 0 0 0 1 1 . 

i 1 

roe 00 

0 r r! i-e2 0 

In Section 1.3 we computed the minimal loops of this process and as in that section 
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113 112 rotation 

Fig. 11.2. The rotation set of the map Hk 

we can get the rotation set as the convex hull of the rotation vectors of periodic orbits 

coming from these loops. For example, the minimal loop with repeating block 134 has a 

homology class in the suspension of ( 1 , 1,3) and thus a rotation vector of ( l/3, l/3). 

In Fig. 11.2 we show the entire rotation set with the rotation vectors of minimal loops 

given by the larger dots. By judicious concatenation of minimal loops one can create 

orbits with all rotation vectors whose closures contain only orbits with that same rotation 

vector. This gives the sets X,, from Theorem 11.1. 

Now we know from Section 9.5 that the isotopy class of Hh is of pA type. By 

computing the traintrack of this class as in Section 10, one can find that the entropy of 

Hk is the same as that of the pA representative in the class and thus by an appropriate 

version of Theorem 7.6(b), Hk is semiconjugate to this pseudoAnosov representative 

and thus has the same rotation set. (The traintrack of Hk is essentially the circular 

spine, cf. [63,18].) Therefore by Corollary 11.4, the rotation set of any g pv H(B will 

contain the convex region of Fig. 11.2. 

Now a periodic orbit with braidtype &S is obtained by blowing down the permuted 

boundary components, and this means that we can get p,,,( &s) by projecting p( HL) 
onto the r-axis. The result is the interval [l/3,1/2] which realizes the lower bound 

given by Theorem 11.6(b) 

Although there is no space for a detailed description, it is interesting to note that the 

transition matrix B” can be further augmented to keep track of the orientation of Markov 

boxes when they intersect other boxes. One then gets the signed, linking matrices of 

[ 391. The information in these matrices is actually isotopy stable information for Abelian 

Nielsen types. This is because the orientation of the box as it returns gives essentially 

the index of any resulting periodic orbit. 

From another point of view, in the simple case considered here, the matrix B” is 

recording the action on homology in the cover, where this homology is treated as a 

module over Z[ Y*‘, !*’ I. Now we are in the situation described in [ 501 (cf. [ 82,721). 

The trace of the iterates gives data on the indices of isotopy stable Abelian Nielsen 

classes and all this data can be encapsulated into the twisted Lefschetz zeta function. 

One curious feature of the theory is that while we have incorporated more information 
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in the matrix by including the signs, now there can be cancellation upon iteration, so 

we can lose information. At first this seems counterintuitive, but on second thought it 

is seen as a consequence of the fact that the signed matrix records isotopy stable data, 

so cancellation must be allowed as the index of various classes must add and perhaps 

cancel. The inclusion of signs in the transition matrix also allows it to be used for 

entropy estimates ( [ 53,521) 

We leave it to the reader to use the computations of Section 3.4 to compute that 

rotation set of Hk is [ -1, 11. This rotation set could perhaps be called the “linking 

interval”. 
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