TOPOLOGY REVIEW 1 • FALL 2021 • PROF. BOYLAND

- 1. Let Y be the set of all sequences in $\{0,1\}^{\mathbb{Z}_+}$ that are eventually zero. So $\underline{x} \in Y$ if and only if there exists an N so that $x_i = 0$ for $i \geq N$. Show that Y is countable.
- 2. Construct a homeomorphism from $\{0,1\}^{\mathbb{Z}_+}$ to a proper subset of itself where $\{0,1\}^{\mathbb{Z}_+}$ is given the product topology.
- 3. Prove or disprove.
 - (a) $\overline{A \cap B} = \overline{A} \cap \overline{B}$
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (c) $\overline{A-B} = \overline{A} \overline{B}$
 - (d) $Int(A \times B) = Int A \times Int B$
 - (e) $Int(A \cup B) = Int A \cup Int B$
 - (f) Int(A B) = Int A Int B
- 4. Give \mathbb{R} the finite complement topology.
 - (a) To which point or points does the sequence $x_n = 1/n$ converge.
 - (b) What is $\overline{\{2\}}$.
- 5. Assume $A \subset X$ and $f: A \to Y$ is continuous with Y Hausdorff. If there are continuous $g: \overline{A} \to Y$ and $h: \overline{A} \to Y$ that both extend f i.e. f(a) = g(a) = h(a) for all $a \in A$ show that f = g. This says that continuous functions extend uniquely to the closure.
- 6. Let $B \subset \mathbb{R}^{\mathbb{Z}_+}$ be defined as

$$B = \prod_{i \in \mathbb{Z}_+} (-1, 1) = (-1, 1) \times (-1, 1) \times (-1, 1) \times \dots$$

.

- (a) Is B open in the box topology?
- (b) Is B open in the uniform topology?
- (c) Is B open in the product topology?
- 7. If (X, d) is a metric space and $A \subset X$ for $x \in X$ define

$$d(x,A) = \inf\{d(x,a) \colon a \in A\}.$$

- (a) Show that the function $f: X \to [0, \infty)$ defined by f(x) = d(x, A) is continuous
- (b) Show that $x \in \overline{A}$ if and only if f(x) = 0.
- 8. If (X, d) is a metric space show that for any x and $\epsilon > 0$,

$$\overline{B_{\epsilon}(x)} \subset \{ y \in X \colon d(y,x) \le \epsilon \}.$$

9. If (X, \mathcal{T}_X) is a topological space and $f: X \to Y$ is a surjective function, is

$$\{f(U)\colon U\in\mathcal{T}_X\}$$

a topology on Y? Prove your answer.

- 10. Assume $A \subset X$.
 - (a) Show that Bd(A) is a closed set
 - (b) Prove that if $Bd(A) = \emptyset$ then A is both open and closed.