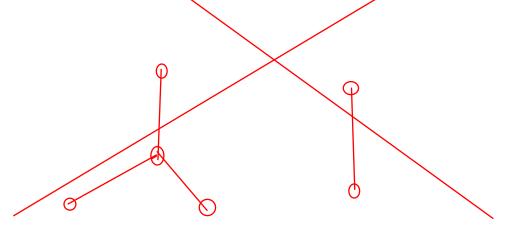
TOPOLOGY REVIEW 2.2 • SPRING 2022 • PROF. BOYLAND

This exam covers material from Lectures 19-34. Also review HW 2.4-2.6.

- 1. (a) If X and Y are completely regular and homeomorphic, show that their Stone-Čech compactifications are homeopmorphic.
 - (b) Show that $\beta \mathbb{N}$ is homeomorphic to $\beta \mathbb{Z}$.
- 2. Give $\{0,1\}$ the discrete topology. Show that $\{0,1\}^{\mathbb{Z}}$ with the product topology is compact.
- 3. Define a category and a functor and show that the composition of two functors is a functor.
- 4. Compute the fundamental group of the two-dimensional torus minus n > 0 distinct points.
- 5. Let \sim and \bowtie be equivalence relations on X and Y respectively. $f: X \to Y$ is a continuous function such that $x \sim x'$ implies $f(x) \bowtie f(x')$, Show that f induces a continuous function $X/\sim \to X/\bowtie$.
- 6. State the hypothesis on $X, U, V, U \cap V, x_0$ in the SVK Theorem. Show that if U and V are simply connected, then so is X.
- 7. Let $Z = \{0, 1\}$, $X = \{a, b, c\}$, and $Y = \{\alpha, \beta\}$. $f : Z \to X$ is f(0) = a, f(1) = b and $g : Z \to y$ is $g(0) = \alpha = g(1)$. Describe the pushout in the category of Sets.
- 8. Define a simplex, a simplicial complex, and simplicial homology with \mathbb{Z} coefficients and compute the homology of the simplex pictured below.
- 9. Recall that a poset gives rise to a simplicial complex. Which poset gives rise to the standard k-simplex?



not on qual