- 1. Prove or disprove. Assume X is locally path connected and $A \subset X$ is connected, then A is path connected.
- 2. Assume X is second countable and A is an uncountable subset. Show that A has uncountably many limit points.
- 3. Assume $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable and there is a constant k > 1 with f'(x) > k for all $x \in \mathbb{R}$. Show that f has a unique fixed point x_0 and if $x > x_0$ then $f^n(x) \to \infty$ and if $x < x_0$ then $f^n(x) \to -\infty$. Hint: consider the functional inverse g with $f \circ g = \text{id}$.
- 4. Assume that X is a Baire space and $X = \bigcup_{n \in \mathbb{Z}_+} B_n$, then for some n, $\operatorname{Int}(\overline{B_n}) \neq \emptyset$.
- 5. $A \subset X$, and $C \subset X$ is connected and intersects both A and X A, then C also intersects intersects Bd(A)
- 6. Let \mathcal{T} and \mathcal{T}' be topologies on X with $\mathcal{T} \subset \mathcal{T}'$. What does compactness in one of these topologies imply about compactness in the other.
- 7. Show that a connected metric space with more than one point is uncountable.
- 8. Show that a Lindelöf metric space is second countable
- 9. Prove the following: Let (Y, d) be a metric space. Let B be a bounded subset of Y. Then B is bounded and diam $(B) = \text{diam}(\overline{B})$.
- 10. Assume X, Y are topological space with Y a metric space and $\mathcal{C}(X, Y)$ is all continuous functions from X to Y with the uniform topology. Show that the evaluation map $e: X \times \mathcal{C}(X, Y) \to Y$ given by e(x, f) = f(x) is continuous
- 11. If A is compact in a metric space (X, d) then for any $x \in X$ there exists an $a \in A$ with d(x, A) = d(x, a).
- 12. Let X be a set, let $f_n : X \to \mathbb{R}$ be a sequence of functions, and let $f : X \to \mathbb{R}$ be a function. Let $\overline{\rho}$ denote the uniform metric on the space \mathbb{R}^X . Prove that f_n converges uniformly to f if and only if the sequence f_n converges to f as elements of the metric space $(\mathbb{R}^X, \overline{\rho})$.