HW3 – Due Monday, October 17, start of class No electronic submissions, only hard copy

1. (a) If $\{x_n\}$ is a sequence with $d(x_n, x_{n+1}) < 3^{-n}$ for all n, show that $\{x_n\}$ is Cauchy. (b) For each n let

$$x_n = \sum_{i=0}^n \frac{1}{3^i}.$$

Show that x_n is a Cauchy sequence and compute its limit.

2. Use the proof of the contraction mapping theorem to show that if F is a contraction with constant r with fixed point p, then for any initial point z

$$d(F^n(z), p) \le \frac{r^n d(z, F(z))}{1 - r}.$$

Hint: You may use this fact without proof: Assume that $\{x_n\}$ is a Cauchy sequence that converges to x. Thus given ϵ there is an N so that $d(x_n, x_m) < \epsilon$ when n, m > N. It is then also the case that $d(x_n, x) \leq \epsilon$ when n > N.

3. Let

$$F\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}0 & -1/2\\1/3 & 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}-1\\2\end{pmatrix}$$

- (a) Show that F is a contraction mapping. What is its contraction constant?
- (b) Compute the unique fixed point p of F.
- (c) Let

$$z_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Compute $z_3 = F^3(z_0)$ and $d(z_3, p)$ and compare it to the estimate you got for question 2. You may use a calculator on this question.

- 4. For a sequence $\{x_n\}$, a subsequence $\{x_{n_i}\}$ is formed by picking a subset n_i of the indices n. For example if $x_n = 1/n$, then $1/2, 1/4, 1/6, \ldots$ is a subsequence.
 - (a) If $\{x_n\}$ converges, show that any subsequence converges.
 - (b) Prove or disprove the converse: If every subsequence of $\{x_n\}$ converges, then $\{x_n\}$ converges.
 - (c) If $\{x_n\}$ is a Cauchy sequence, show that every subsequence is also a Cauchy sequence.
 - (d) (extra credit, harder) If $\{x_n\}$ is a Cauchy sequence and it has one convergence subsequence, then $\{x_n\}$ also converges.