HW1 - Due Friday, January 20, start of class
 No electronic submissions, only hard copy
 Be sure to justify all your answers completely.

1. Let $g(x)=2^{-x-1}$.
(a) Show that $g([0,1]) \subset[0,1]$.
(b) Show that g is a contraction on $[0,1]$.
(c) Compute the smallest possible contraction constant k for g on $[0,1]$ and estimate how many iterates n it will take for $g^{n}(0)$ to be within 10^{-4} of the fixed point.
2. $f(x)=\log (1-x)$ (Note: \log is the natural \log).
(a) Estimate the error in using the second order Taylor polynomial T_{2} expanded about zero for f to compute $\log (.9)$.
(b) Compute $T_{2}(.1)$
(c) Compute the actual error in using $T_{2}(.1)$ to compute $\log (.9)$ (You can assume here that your calculator/computer computes $\log (.9)$ exactly).
(d) Compare the actual error with your error estimate.
3. Assume that $g \in C[a, b]$ and $g(a)>a$ and $g(b)<b$. Show that g has a fixed point in $[a, b]$.
4. Write a computer program that implements the midpoint method and use it to compute all the roots of $f(x)=x^{3}-6.1 x^{2}+10.8 x-5.8$ to within an accuracy of 10^{-5}. Turn in both your code and the results of your computation.
5. Assume $g \in C^{2}[a, b]$ with $g([a, b]) \subset[a, b]$ and fixed point $p \in(a, b)$. Assume that $g^{\prime}(p)=0$. Show using the Taylor theorem with remainer expanded about p that for any $x \in[a, b]$ with $x \neq p$

$$
\frac{|g(x)-p|}{|x-p|^{2}} \leq M
$$

where $M=\max \left\{\left|g^{\prime \prime}(z)\right|: z \in[a, b]\right\} / 2$.

Note: Just so there is no confusion about indices, the nth Taylor poloynomial of f expanded about a is

$$
T_{n}(x)=f(a)+(x-a) f^{\prime}(a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

