Generalized Rolle's Theorem

Recall Rolle's Theorem: Let f be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b) then there exists $c \in (a,b)$ such that f'(c) = 0. The Generalized Rolle's Theorem extends this idea to higher order derivatives:

Generalized Rolle's Theorem: Let f be continuous on [a,b] and n times differentiable on (a,b). If f is zero at the n+1 distinct points $x_0 < x_1 < ... < x_n$ in [a,b], then there exists a number c in (a,b) such that $f^{(n)}(c) = 0$.

Proof: The argument uses mathematical induction. If n = 1 then we have the original Rolle's Theorem. To see how the induction argument works, consider the next case, n = 2. Then f(x) = 0 at three points $x_0 < x_1 < x_2$. Applying Rolle's Theorem on the interval $[x_0, x_1]$, there exists $c_1 \in (x_0, x_1)$ such that $f'(c_1) = 0$. Similarly, there exists $c_2 \in (x_1, x_2)$ such that $f'(c_2) = 0$. Now, using Rolle's Theorem again, $f'(c_1) = f'(c_2) = 0$ implies that there exists $c \in (a, b)$ such that f''(c) = 0. The full mathematical induction argument follows.