Error Formula for the

Lagrange Interpolating Polynomial

Theorem: Let $f \in C^{n+1}[a, b]$ and $x_{0}, x_{1}, \ldots, x_{n}$ be distinct points in $[a, b]$. If $P(x)$ is the interpolating polynomial, then for each $x \in[a, b]$, there exists a number $c=c(x) \in(a, b)$ such that

$$
f(x)=P(x)+\frac{f^{(n+1)}(c)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Proof: If $x=x_{k}, k=0,1, \ldots, n$, the product is zero and the theorem is clearly true. If $x \neq x_{k}$ then define

$$
g(t)=f(t)-P(t)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}
$$

Notice that $g \in C^{n+1}[a, b]$. For $t=x_{k}, k=0,1, \ldots, n$,

$$
g\left(x_{k}\right)=f\left(x_{k}\right)-P\left(x_{k}\right)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(x_{k}-x_{i}\right)}{\left(x-x_{i}\right)}=0
$$

Also,

$$
g(x)=f(x)-P(x)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(x-x_{i}\right)}{\left(x-x_{i}\right)}=0
$$

The function g is zero at $n+2$ distinct points. So by the Generalized Rolle's Theorem, there exists $c=c(x) \in(a, b)$ such that $g^{(n+1)}(c)=0$. We now have
$(*) \quad 0=g^{(n+1)}(c)=f^{(n+1)}(c)-P^{(n+1)}(c)-[f(x)-P(x)] \frac{d^{n+1}}{d t^{n+1}}\left[\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}\right]_{t=c}$
Since P is a polynomial of degree $\leq n, P^{(n+1)}(c)=0$. The product $\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}$ is a polynomial of degree $n+1$ of the form

$$
\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}=\frac{1}{\prod_{i=0}^{n}\left(x-x_{i}\right)} t^{n+1}+(\text { lower degree terms })
$$

Hence,

$$
\frac{d^{n+1}}{d t^{n+1}}\left[\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}\right]_{t=c}=\frac{(n+1)!}{\prod_{i=0}^{n}\left(x-x_{i}\right)}
$$

Finally, Equation (*) simplifies to

$$
0=f^{(n+1)}(c)-[f(x)-P(x)] \frac{(n+1)!}{\prod_{i=0}^{n}\left(x-x_{i}\right)}
$$

Rearranging, we have arrived at the conclusion,

$$
f(x)=P(x)+\frac{f^{(n+1)}(c)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

