

Error Formula for the Lagrange Interpolating Polynomial

Theorem: Let $f \in C^{n+1}[a, b]$ and x_0, x_1, \dots, x_n be distinct points in $[a, b]$. If $P(x)$ is the interpolating polynomial, then for each $x \in [a, b]$, there exists a number $c = c(x) \in (a, b)$ such that

$$f(x) = P(x) + \frac{f^{(n+1)}(c)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

Proof: If $x = x_k, k = 0, 1, \dots, n$, the product is zero and the theorem is clearly true. If $x \neq x_k$ then define

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^n \frac{(t - x_i)}{(x - x_i)}$$

Notice that $g \in C^{n+1}[a, b]$. For $t = x_k, k = 0, 1, \dots, n$,

$$g(x_k) = f(x_k) - P(x_k) - [f(x) - P(x)] \prod_{i=0}^n \frac{(x_k - x_i)}{(x - x_i)} = 0$$

Also,

$$g(x) = f(x) - P(x) - [f(x) - P(x)] \prod_{i=0}^n \frac{(x - x_i)}{(x - x_i)} = 0$$

The function g is zero at $n+2$ distinct points. So by the Generalized Rolle's Theorem, there exists $c = c(x) \in (a, b)$ such that $g^{(n+1)}(c) = 0$. We now have

$$(*) \quad 0 = g^{(n+1)}(c) = f^{(n+1)}(c) - P^{(n+1)}(c) - [f(x) - P(x)] \frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^n \frac{(t - x_i)}{(x - x_i)} \right]_{t=c}$$

Since P is a polynomial of degree $\leq n$, $P^{(n+1)}(c) = 0$. The product $\prod_{i=0}^n \frac{(t - x_i)}{(x - x_i)}$ is a polynomial of degree $n+1$ of the form

$$\prod_{i=0}^n \frac{(t - x_i)}{(x - x_i)} = \frac{1}{\prod_{i=0}^n (x - x_i)} t^{n+1} + (\text{lower degree terms})$$

Hence,

$$\frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^n \frac{(t - x_i)}{(x - x_i)} \right]_{t=c} = \frac{(n+1)!}{\prod_{i=0}^n (x - x_i)}$$

Finally, Equation $(*)$ simplifies to

$$0 = f^{(n+1)}(c) - [f(x) - P(x)] \frac{(n+1)!}{\prod_{i=0}^n (x - x_i)}$$

Rearranging, we have arrived at the conclusion,

$$f(x) = P(x) + \frac{f^{(n+1)}(c)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$