
Error Formula for the  

Lagrange Interpolating Polynomial 

 

Theorem:  Let  1 ,nf C a b  and  0 1, , , nx x x  be distinct points in ,a b .  If  P x is 

the interpolating polynomial, then for each  ,x a b , there exists a number 

   ,c c x a b  such that  
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Proof:  If , 0,1, ,kx x k n   , the product is zero and the theorem is clearly true. 

If 
kx x then define  
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Notice that  1 ,ng C a b .  For , 0,1, , ,kt x k n   
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Also, 
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The function g is zero at 2n  distinct points.  So by the Generalized Rolle’s 

Theorem, there exists    ,c c x a b   such that    1
0.

n
g c


   We now have 
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Since P is a polynomial of degree n ,    1
0.

n
P c


   The product 
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  is a 

polynomial of degree 1n   of the form 
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Hence,  
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Finally, Equation    simplifies to 
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Rearranging, we have arrived at the conclusion, 
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