Newton's Method is Quadratically Convergent

Assume that r is a root to $f(x)=0$ and $f^{\prime}(x) \neq 0$. The sequence $\left\{x_{i}\right\}$ of Newton's algorithm is $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$. From Taylor's Theorem, we have

$$
f(r)=P_{1}(r)+R_{1}(r)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(r-x_{i}\right)+\frac{f^{\prime \prime}(c)}{2!}\left(r-x_{i}\right)^{2}
$$

where c is between r and x_{i}. Since $f(r)=0$,

$$
\begin{aligned}
& 0=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(r-x_{i}\right)+\frac{f^{\prime \prime}(c)}{2!}\left(r-x_{i}\right)^{2} \\
& \Rightarrow \frac{-f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}=\left(r-x_{i}\right)+\frac{f^{\prime \prime}(c)}{f^{\prime}\left(x_{i}\right)} \frac{\left(r-x_{i}\right)^{2}}{2} \\
& \Rightarrow x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}-r=x_{i+1}-r=\frac{f^{\prime \prime}(c)}{f^{\prime}\left(x_{i}\right)} \frac{\left(r-x_{i}\right)^{2}}{2} \\
& \Rightarrow \frac{\left|x_{i+1}-r\right|}{\left|x_{i}-r\right|^{2}}=\left|\frac{f^{\prime \prime}(c)}{2 f^{\prime}\left(x_{i}\right)}\right|=\lambda
\end{aligned}
$$

which shows that Newton's method is quadratically convergent.

