
Second Mean Value Theorem for Integrals 

Theorem:  Let f  be continuous and g  integrable on  , .a b   If   0g x  (or 

  0g x  ) on  ,a b , then there exists a point , ,c a c b   such that  
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Proof:  Assume   0g x  .  Let  minm f x  and  maxM f x  on  , .a b   We 
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If   0
b
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g x dx   we are done, so assume   0.
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By the Intermediate Value Theorem, there exists  ,c a b  such that  
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That is, f takes on all values between m and .M    The proof for   0g x   is 

similar. 

 

 


