Name: \qquad
MAS 4105
Test 1

1. (12 points) Consider the following five vectors from R^{4}.

$$
u_{1}=(1,2,3,4), u_{2}=(2,5,7,9), u_{3}=(1,1,2,3), u_{4}=(0,1,2,-1), u_{5}=(0,0,-2,4)
$$

Hint: The matrices A and B are row equivalent.

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 1 & 0 & 0 \\
2 & 5 & 1 & 1 & 0 \\
3 & 7 & 2 & 2 & -2 \\
4 & 9 & 3 & -1 & 4
\end{array}\right) \quad B=\left(\begin{array}{ccccc}
1 & 0 & 3 & 0 & -4 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Do these five vectors span R^{4} ?
(b) Is the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ linearly independent?
(c) Is the set $\left\{u_{1}, u_{2}, u_{4}\right\}$ linearly independent?
(d) Is u_{5} in the span of $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$?
2. (9 points) Let W_{1} and W_{2} be subspaces of a vector space V. Prove that the sum $W_{1}+W_{2}$ is a subspace of V.
3. (9 points) Let S be a linearly independent subset of a vector space V. Let $v \in V, v \notin S$. Prove that if $S \cup\{v\}$ is linearly dependent, then $v \in \operatorname{Span}(S)$.
4. (10 points) Find the dimensions of the following vector spaces.
(a) The subspace $W=\{(x, y): x=y\} \subseteq R^{2}$.
(b) The subspace of $M_{4 \times 4}(R)$ consisting of all 4 by 4 symmetric matrices.
(c) The subspace of $M_{6 \times 6}(R)$ consisting of the diagonal matrices.
(d) The subspace W of $P_{4}(R)$ given by $W=\{f: f(2)=0\}$.
(e) The subspace of R^{3} consisting of all solutions to the system of equations

$$
\begin{aligned}
& x_{1}+x_{3}=0 \\
& x_{2}-x_{3}=0
\end{aligned}
$$

