Name:		
MAS 4105	Test 2	Spring 2014

1. (10 points) Let $T: M_{2\times 2}(R) \rightarrow R$ be the linear transformation

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + c.$$
(a) Find a basis for $N(T)$.
(b) Find a basis for $R(T)$.
(c) Let β and γ be the standard ordered bases for $M_{2\times 2}(R)$ and R ,
respectively. Compute $[T]_{\beta}^{\gamma}$.

2. (10 points) Let V and W be vector spaces, and $T: V \rightarrow W$ a linear transformation. (a) Define N(T), and (b) Prove that N(T) is a subspace of V.

3. (10 points) Let V and W be vector spaces and $T: V \rightarrow W$ a one-to-one linear transformation. Prove that T carries linearly independent subsets of V onto linearly independent subsets of W.

4. (10 points) Let V, W, and Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations.

(a) Prove or disprove: If UT is one-to-one, then T is one-to-one.

(b) Prove or disprove: If UT is onto, then T is onto.