Name: \qquad

1. (10 points) Let $T: M_{2 \times 2}(R) \rightarrow R$ be the linear transformation
$T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a+c$.
(a) Find a basis for $N(T)$.
(b) Find a basis for $R(T)$.
(c) Let β and γ be the standard ordered bases for $M_{2 \times 2}(R)$ and R, respectively. Compute $[T]_{\beta}^{\gamma}$.
2. (10 points) Let V and W be vector spaces, and $T: V \rightarrow W$ a linear transformation. (a) Define $N(T)$, and (b) Prove that $N(T)$ is a subspace of V.
3. (10 points) Let V and W be vector spaces and $T: V \rightarrow W$ a one-to-one linear transformation. Prove that T carries linearly independent subsets of V onto linearly independent subsets of W.
4. (10 points) Let V, W, and Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations.
(a) Prove or disprove: If $U T$ is one-to-one, then T is one-to-one.
(b) Prove or disprove: If $U T$ is onto, then T is onto.
