Name: \qquad
MAS 4105
Test 3
Spring 2014

1. (12 points) Let $T: P_{1}(R) \rightarrow P_{1}(R)$ be the linear transformation $T(a+b x)=(b-a)-b x$. Let $\beta=\{1, x\}$ and $\gamma=\{1+x, 1-x\}$ be ordered bases.
(a) Calculate $[T]_{\beta}^{\beta}$.
(b) Calculate $Q=[I]_{\gamma}^{\beta}$.
(c) Calculate $[T]_{\gamma}^{\gamma}$.
(d) Calculate T^{-1}. That is, find $T^{-1}(a+b x)$.
2. (10 points) Let V and W be vector spaces, and let $T: V \rightarrow W$ an invertible linear transformation. Prove that the inverse of T is linear.
3. (9 points) Let A be an invertible matrix. Prove that A^{t} is invertible.
4. (9 points) A square matrix Q is called orthogonal if $Q Q^{t}=I$. Prove that if Q is orthogonal, then $\operatorname{det}(Q)= \pm 1$.
