Name:		
MAS 4105	Test 3	Spring 2014
1. (12 points) Let $T: P_1(R) \rightarrow P_1(R)$ be the linear transformation $T(a+bx)=(b-a)-bx$. Let $\beta = \{1,x\}$ and $\gamma = \{1+x,1-x\}$ be ordered bases.		
(a) Calculate $\left[T ight]_{eta}^{eta}$.		
(b) Calculate $Q = \begin{bmatrix} I \end{bmatrix}_{\gamma}^{eta}$.		
(c) Calculate $\left[T ight]_{\!\!\!\!\!\gamma}^{\!\!\!\!\gamma}.$		

(d) Calculate T^{-1} . That is, find $T^{-1}(a+bx)$.

2. (10 points) Let V and W be vector spaces, and let $T: V \rightarrow W$ an invertible linear transformation. Prove that the inverse of T is linear.

3. (9 points) Let A be an invertible matrix. Prove that A^{t} is invertible.

4. (9 points) A square matrix Q is called **orthogonal** if $QQ^t = I$. Prove that if Q is orthogonal, then det $(Q) = \pm 1$.