Test 1
Spring 2013
Show all your work on these four sheets. You may use the back. 35 points total.

1. (15 points) For each of the examples below, determine which incidence axioms hold, and which parallel postulates hold. Circle the ones that hold. Hint: Look at the last page of the test.
(a) The Three-Point Plane: Point means one of the three symbols A, B, C, the lines are the sets $\{A, B\},\{A, C\},\{B, C\}$, and lie on means "is an element of".

A1 A2 A3 P1 P2 P3
(b) The Square Geometry: Point means one of the four vertices of a square, line means one of the sides of the square, and lie on means that the vertex is an endpoint of the side.
A1
A2
A3
P1
P2
P3
(c) The Klein Disk: Point means a point in the Cartesian plane such that the point lies inside the unit circle. Line is the part of a Euclidean line that lies inside the circle, and lie on has its usual Euclidean meaning.
A1 A2 A3 P1 P2 P3
(d) The Sphere: Point means a point on the surface of the sphere $x^{2}+y^{2}+z^{2}=1$. The lines are great circles on the sphere, and lie on means "is an element of".
A1 A2
A3
P1
P2
P3
(e) The Three-Point Line: Point means one of the three symbols A, B, C, the line is the set $\{A, B, C\}$, and lie on means "is an element of".
$\begin{array}{llllll}\text { A1 } & \text { A2 } & \text { A3 } & \text { P1 } & \text { P2 } & \text { P3 }\end{array}$
2. (10 points) Use the proof technique shown in the textbook and class to prove that $\sqrt{5}$ is irrational.
3. (10 points) Consider the Cartesian plane with the usual Euclidean metric:

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Let ℓ be a nonvertical line with equation $y=m x+b$. Define $f: \ell \rightarrow \mathbf{R}$ by $f(x, y)=x \sqrt{1+m^{2}}$. Show that f is a one-to-one correspondence satisfying $P Q=$ $|f(P)-f(Q)|$.

The Three Incidence Axioms.

A1. For every pair of distinct points P and Q there exists exactly one line ℓ such that both P and Q lie on ℓ.

A2. For every line ℓ there exists at least two distinct points P and Q such that both P and Q lie on ℓ.

A3. There exist three points that do not all lie on any one line.

The Three Parallel Postulates.

P1. For every line ℓ and for every point P that does not lie on ℓ, there is exactly one line m such that P lies on m and $m \| \ell$.

P2. For every line ℓ and for every point P that does not lie on ℓ, there is no line m such that P lies on m and $m \| \ell$.

P3. For every line ℓ and for every point P that does not lie on ℓ, there are at least two lines m and n such that P lies on both m and n, and both m and n are parallel to ℓ.

