1. (WMS, Problem 4.140.) Identify the distributions of the random variables with the following moment-generating functions:
(a) $M(t)=(1-4 t)^{-2}$.
(b) $M(t)=1 /(1-3.2 t)$.
(c) $M(t)=e^{-5 t+6 t^{2}}$.
2. The life (in hours) of an electronic tube manufactured by a certain process is normally distributed with mean 160 and variance σ^{2}. What is the maximum allowable value for σ if the life of a tube is to have a probability 0.8 of being between 120 and 200 hours? (Leave the answer in terms of the inverse the standard normal CDF Φ.)
3. Suppose that X has the beta distribution with parameters α and β, and let r and s be given positive integers. Determine the value of $E\left[X^{r}(1-X)^{s}\right]$.
4. (WMS, Problem 4.129.) During an eight-hour shift, the proportion of time Y that a sheet-metal stamping machine is down for maintenance or repairs has a beta distribution with $\alpha=1$ and $\beta=2$. That is, $f(y)=2(1-y), 0 \leq y \leq 1$. The cost (in hundreds of dollars) of this downtime, due to lost production and cost of maintenance and repair, is given by $C=10+20 Y+4 Y^{2}$. Find the mean of C.
5. Let X have a beta distribution with parameters $\alpha>1$ and $\beta>1$. Recall that the mode of (the distribution of) X is the maximizer of the density of X. Find the mode of X.
6. (WMS, Problem 4.145.) A random variable Y has the density function

$$
f(y)= \begin{cases}e^{y}, & y<0 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find $E\left(e^{3 Y / 2}\right)$.
(b) Find the moment-generating function for Y.
(c) Find $V(Y)$.
7. A RV X is said to have the Cauchy distribution with location parameter $\mu \in \mathbb{R}$ and scale parameter $\sigma>0$ if X has density

$$
f(x)=\frac{\sigma}{\pi} \frac{1}{\sigma^{2}+(x-\mu)^{2}} \cdot-\infty<x<\infty
$$

(a) Find the CDF F of X. [Hint: Use the fact that $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C$ where C is an arbitrary constant of integration.]
(b) For $0<p<1$, find the p-th quantile ϕ_{p} of (the distribution of) X. [Hint: Note that F is continuous and strictly increasing on \mathbb{R}.]
(c) Show that μ is the median of X.
8. (WMS, Problem 5.3.) Of nine executives in a business firm, four are married, three have never married, and two are divorced. Three of the executives are to be selected for promotion. Let Y_{1} denote the number of married executives and Y_{2} denote the number of never-married executives among the three selected for promotion. Assuming that the three are randomly selected from the nine available, find the joint probability function of Y_{1} and Y_{2}.

