1. (WMS, Problem 4.140.) Identify the distributions of the random variables with the following moment-generating functions:
(a) $M(t)=(1-4 t)^{-2}$.
(b) $M(t)=1 /(1-3.2 t)$.
(c) $M(t)=e^{-5 t+6 t^{2}}$.

Solution. (a) $\operatorname{Gamma}(\alpha=2, \beta=4)$, (b) $\operatorname{Gamma}(\alpha=1, \beta=3.2) \equiv \operatorname{Exp}(\beta=3.2)$, (c) $N(\mu=$ $-5, \sigma^{2}=2 \times 6=12$).
2. The life (in hours) of an electronic tube manufactured by a certain process is normally distributed with mean 160 and variance σ^{2}. What is the maximum allowable value for σ if the life of a tube is to have a probability 0.8 of being between 120 and 200 hours? (Leave the answer in terms of the inverse the standard normal CDF Φ.)

Solution. Let X be the life (in hours) of a randomly chosen tube. Then by assumption $X \sim$ $N\left(\mu=160, \sigma^{2}\right)$, so that here $Z=\frac{X-160}{\sigma} \sim N(0,1)$. Therefore, we need σ such that

$$
\begin{aligned}
& P(120 \leq X \leq 200)=0.8 \\
\Longrightarrow & P\left(\frac{120-160}{\sigma} \leq \frac{X-160}{\sigma} \leq \frac{200-160}{\sigma}\right)=0.8 \\
\Longrightarrow & P\left(-\frac{40}{\sigma} \leq Z \leq \frac{40}{\sigma}\right)=0.8 \\
\Longrightarrow & \Phi\left(\frac{40}{\sigma}\right)-\Phi\left(-\frac{40}{\sigma}\right)=2 \Phi\left(\frac{40}{\sigma}\right)-1=0.8 \\
\Longrightarrow & \Phi\left(\frac{40}{\sigma}\right)=0.9 \\
\Longrightarrow & \frac{40}{\sigma}=\Phi^{-1}(0.9) \Longrightarrow \sigma=\frac{40}{\Phi^{-1}(0.9)}(\mathrm{hrs}) .
\end{aligned}
$$

3. Suppose that X has the beta distribution with parameters α and β, and let r and s be given positive integers. Determine the value of $E\left[X^{r}(1-X)^{s}\right]$.

Solution. Note that X has PDF

$$
f(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, 0 \leq x \leq 1 .
$$

Hence,

$$
\begin{aligned}
E\left[X^{r}(1-X)^{s}\right] & =\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} \frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1} d x \\
& =\frac{1}{B(\alpha, \beta)} \int_{0}^{1} x^{\alpha+r-1}(1-x)^{\beta+s-1} d x=\frac{B(\alpha+r, \beta+s)}{B(\alpha, \beta)}
\end{aligned}
$$

4. (WMS, Problem 4.129.) During an eight-hour shift, the proportion of time Y that a sheet-metal stamping machine is down for maintenance or repairs has a beta distribution with $\alpha=1$ and $\beta=2$. That is, $f(y)=2(1-y), 0 \leq y \leq 1$. The cost (in hundreds of dollars) of this downtime, due to lost production and cost of maintenance and repair, is given by $C=10+20 Y+4 Y^{2}$. Find the mean of C.

Solution. Using formulas, $E(Y)=\frac{\alpha}{\alpha+\beta}=\frac{1}{3}$ and $V(Y)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}=\frac{2}{3^{2} \times 4}=\frac{1}{18}$. So, $E\left(Y^{2}\right)=V(Y)+E^{2}(Y)=\frac{1}{18}+\frac{1}{9}=\frac{3}{18}$ and hence,

$$
E(C)=E\left(10+20 Y+4 Y^{2}\right)=10+20 E(Y)+4 E\left(Y^{2}\right)=10+20 \times \frac{1}{3}+4 \times \frac{3}{18}=\frac{52}{3} .
$$

5. Let X have a beta distribution with parameters $\alpha>1$ and $\beta>1$. Recall that the mode of (the distribution of) X is the maximizer of the density of X. Find the mode of X.

Solution. The PDF of X is given by

$$
f(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1 .
$$

where $\alpha>1, \beta>1$, and we need to maximize $f(x)$ with respect to x. Since \log is an monotonically increasing function, therefore $f(x)$ and $\log f(x)$ have the same maximizer. So, instead of maximizing $f(x)$, we'll maximize

$$
l(x):=\log f(x)=-\log B(\alpha, \beta)+(\alpha-1) \log x+(\beta-1) \log (1-x) .
$$

Note that

$$
\begin{aligned}
& l^{\prime}(x)=\frac{\alpha-1}{x}-\frac{\beta-1}{1-x}=0 \\
\Longrightarrow & \frac{\alpha-1}{x}=\frac{\beta-1}{1-x} \\
\Longrightarrow & \frac{\beta-1}{\alpha-1}=\frac{1-x}{x}=\frac{1}{x}-1 \\
\Longrightarrow & \frac{1}{x}=\frac{\beta-1}{\alpha-1}+1=\frac{\alpha+\beta-2}{\alpha-1} \Longrightarrow x=\frac{\alpha-1}{\alpha+\beta-2} .
\end{aligned}
$$

Also,

$$
l^{\prime \prime}(x)=-\frac{\alpha-1}{x^{2}}-\frac{\beta-1}{(1-x)^{2}}<0
$$

since $\alpha>1$ and $\beta>1$. Therefore, $x_{0}:=\frac{\alpha-1}{\alpha+\beta-2}$ maximizes $l(x)$ and hence $f(x)$. Hence, x_{0} is the mode of X.
Note: Maximizing a log density instead of the actual density is often easier, and has plenty of applications in Statistics (e.g., in log likelihood maximization). Try solving Homework 6.5 (mode of the normal distribution) using this method.
6. (WMS, Problem 4.145.) A random variable Y has the density function

$$
f(y)= \begin{cases}e^{y}, & y<0 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find $E\left(e^{3 Y / 2}\right)$.

Solution. Note that

$$
E\left(e^{3 Y / 2}\right)=\int_{-\infty}^{0} e^{3 y / 2} e^{y} d y=\int_{-\infty}^{0} e^{5 y / 2} d y=\frac{2}{5}\left[e^{5 y / 2}\right]_{-\infty}^{0}=\frac{2}{5}
$$

(b) Find the moment-generating function for Y.

Solution. By definition,

$$
M_{Y}(t)=E\left(e^{t Y}\right)=\int_{-\infty}^{0} e^{t y} e^{y} d y=\int_{-\infty}^{0} e^{(t+1) y} d y=\left[\frac{e^{(t+1) y}}{t+1}\right]_{-\infty}^{0}=\frac{1}{t+1}
$$

provided $(t+1)>0 \Longrightarrow t>-1$.
(c) Find $V(Y)$.

Solution. We have,

$$
M_{X}^{\prime}(t)=-\frac{1}{(t+1)^{2}} \text { and } M_{X}^{\prime \prime}(t)=\frac{2}{(t+1)^{3}}
$$

Therefore, $E(Y)=\left.M_{X}^{\prime}(t)\right|_{t=0}=-1$ and $E\left(Y^{2}\right)=\left.M_{X}^{\prime \prime}(t)\right|_{t=0}=2$. Therefore, $V(Y)=$ $E\left(Y^{2}\right)-E^{2}(Y)=2-1=1$.
7. A RV X is said to have the Cauchy distribution with location parameter $\mu \in \mathbb{R}$ and scale parameter $\sigma>0$ if X has density

$$
f(x)=\frac{\sigma}{\pi} \frac{1}{\sigma^{2}+(x-\mu)^{2}},-\infty<x<\infty
$$

(a) Find the CDF F of X. [Hint: Use the fact that $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C$ where C is an arbitrary constant of integration.]

Solution. For $x \in \mathbb{R}$, the CDF F is given by

$$
\begin{aligned}
F(x)=\int_{-\infty}^{x} f(u) d u & =\int_{-\infty}^{x} \frac{\sigma}{\pi} \frac{1}{\sigma^{2}+(u-\mu)^{2}} d u \\
& =\frac{\sigma}{\pi} \int_{-\infty}^{x-\mu} \frac{d v}{\sigma^{2}+v^{2}} \\
& =\frac{\sigma}{\pi} \cdot \frac{1}{\sigma}\left[\arctan \left(\frac{v}{\sigma}\right)\right]_{-\infty}^{x-\mu} \\
& =\frac{1}{\pi}[\arctan \left(\frac{x-\mu}{\sigma}\right)-\underbrace{\arctan (-\infty)}_{=-\pi / 2}] \\
& =\frac{1}{\pi} \arctan \left(\frac{x-\mu}{\sigma}\right)+\frac{1}{2}
\end{aligned}
$$

(b) For $0<p<1$, find the p-th quantile ϕ_{p} of (the distribution of) X. [Hint: Note that F is continuous and strictly increasing on \mathbb{R}.]

Solution. Since F is continuous and strictly increasing on \mathbb{R}, therefore, F^{-1} exists and the p-th quantile ϕ_{p}, for $0<p<1$, is given by the equation

$$
\begin{aligned}
F\left(\phi_{p}\right)=p & \Longrightarrow \frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{\phi_{p}-\mu}{\sigma}\right)+\frac{1}{2}=p \\
& \Longrightarrow \arctan \left(\frac{\phi_{p}-\mu}{\sigma}\right)=\pi\left(p-\frac{1}{2}\right) \\
& \Longrightarrow \frac{\phi_{p}-\mu}{\sigma}=\tan \left[\pi\left(p-\frac{1}{2}\right)\right] \\
& \Longrightarrow \phi_{p}=\mu+\sigma \tan \left[\pi\left(p-\frac{1}{2}\right)\right]
\end{aligned}
$$

(c) Show that μ is the median of X.

Solution. By definition, the median is the $1 / 2$-th quantile $\phi_{1 / 2}$. Therefore, by plugging in $p=1 / 2$ in the expression for ϕ_{p} in part (b), we get

$$
\text { median }=\phi_{1 / 2}=\mu+\sigma \tan \left[\pi\left(\frac{1}{2}-\frac{1}{2}\right)\right]=\mu+\sigma \underbrace{\tan 0}_{=0}=\mu .
$$

8. (WMS, Problem 5.3.) Of nine executives in a business firm, four are married, three have never married, and two are divorced. Three of the executives are to be selected for promotion. Let Y_{1} denote the number of married executives and Y_{2} denote the number of never-married executives among the three selected for promotion. Assuming that the three are randomly selected from the nine available, find the joint probability function of Y_{1} and Y_{2}.

Solution. First, note that $\#(\mathcal{S})=$ number of ways 3 individuals can be chosen from $9=\binom{9}{3}$. Now, under the event $\left\{Y_{1}=y_{1}, Y_{2}=y_{2}\right\}$ (y_{1}, y_{2} are integers such that $y_{1} \geq 0, y_{2} \geq 0$ and $y_{1}+y_{2} \leq 3$), y_{1} individuals are chosen form 4 (married), y_{2} are chosen form 2 (never married), and $3-y_{1}-y_{2}$ from 2 (divorced) individuals. Therefore, the joint PMF of $\left(Y_{1}, Y_{2}\right)$ is given by:

$$
p_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=P\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right)=\frac{\binom{4}{y_{1}}\binom{3}{y_{2}}\binom{2}{3-y_{1}-y_{2}}}{\binom{9}{3}}, y_{1} \geq 0, y_{2} \geq 0, y_{1}+y_{2} \leq 3
$$

