1. (WMS, Problem 6.15.) Let Y have a distribution function given by

$$
F(y)= \begin{cases}0 & y<0 \\ 1-e^{-y^{2}}, & y \geq 0\end{cases}
$$

Find a transformation $G(U)$ such that, if U has a uniform distribution on the interval $(0,1)$, $G(U)$ has the same distribution as Y.

Solution. By probability integral transformation, if Y has $\operatorname{CDF} F$ and $U \sim \operatorname{Unif}(0,1)$, then $X=F^{-1}(U)$ has the same distribution as Y. In this problem, for $y \geq 0$

$$
u=F(y)=1-e^{-y^{2}} \Longrightarrow e^{-y^{2}}=1-u \Longrightarrow y^{2}=-\log (1-u) \Longrightarrow y=\sqrt{-\log (1-u)} .
$$

Therefore, required transformation is $G(U)=F^{-1}(U)=\sqrt{-\log (1-U)}$.
2. (WMS, Problem 6.20) Let the random variable Y possess a uniform distribution on the interval $(0,1)$. Derive the
(a) distribution of the random variable $W_{1}=Y^{2}$.

Solution. Because the distribution of a RV is specified by both PDF and CDF, here we'll find the CDF. Note that the support of W_{1} is also $[0,1]$. Hence, for $0 \leq w \leq 1$, the CDF of W_{1} is given by
$F_{W_{1}}(w)=P\left(W_{1} \leq w\right)=P\left(Y^{2} \leq w\right)=P(-\sqrt{w} \leq Y \leq \sqrt{w})=P(Y \leq \sqrt{w})=F_{Y}(\sqrt{w})=\sqrt{w}$
Hence, the CDF of W_{1} is given by

$$
F_{W_{1}}(w)= \begin{cases}0, & w<0 \\ \sqrt{w}, & 0 \leq w \leq 1 \\ 1, & w>1\end{cases}
$$

(b) distribution of the random variable $W_{2}=\sqrt{Y}$.

Solution. The support of W_{2} is also $[0,1]$. Hence, for $0 \leq w \leq 1$, the CDF of W_{2} is given by

$$
F_{W_{1}}(w)=P\left(W_{1} \leq w\right)=P(\sqrt{Y} \leq w)=P\left(Y \leq w^{2}\right)=F_{Y}\left(w^{2}\right)=w^{2}
$$

Hence, the CDF of W_{1} is given by

$$
F_{W_{2}}(w)= \begin{cases}0, & w<0 \\ w^{2}, & 0 \leq w \leq 1 \\ 1, & w>1\end{cases}
$$

3. (WMS, Problem 6.33.) The proportion of impurities in certain ore samples is a random variable Y with a density function given by

$$
f(y)= \begin{cases}(3 / 2) y^{2}+y, & 0 \leq y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

The dollar value of such samples is $U=5-(Y / 2)$. Find the probability density function for U.
Solution. Note that $u=g(y)=5-\frac{y}{2} \Longrightarrow y=10-2 u=h(u)$, which implies, $\frac{d}{d u} h(u)=-2$. Also,

$$
0 \leq y \leq 1 \Longrightarrow 0 \leq \frac{y}{2} \leq \frac{1}{2} \Longrightarrow 5-\frac{1}{2}=\frac{9}{2} \leq 5-\frac{y}{2}=u \leq 5
$$

which means the support of U is $\mathscr{U}=[9 / 2,5]$. By the method of transformation, the PDF of U is therefore given by,

$$
f_{U}(u)=f_{Y}(h(u))\left|\frac{d}{d u} h(u)\right|=2\left[\frac{3}{2}(10-2 u)^{2}+(10-2 u)\right], \quad \frac{9}{2} \leq u \leq 5
$$

4. Suppose $X \sim \operatorname{Bin}(n, p)$. Find the distribution of $Y=n-X$. For which value of p will Y and X have the same distribution?

Solution. The PMF of X is given by

$$
P(X=x)=\binom{n}{x} p^{x} q^{n-x}, \quad x=0,1, \cdots, n .
$$

where $q=1-p$. Note that the support of $Y=n-X$ is also $\{0,1, \cdots, n\}$. Therefore, for $y=0,1, \cdots, n$,

$$
P(Y=y)=P(n-X=y)=P(X=n-y)=\binom{n}{n-y} p^{n-y} q^{n-(n-y)}=\binom{n}{y} q^{y} p^{n-y} .
$$

Hence $Y \sim \operatorname{Bin}(n, q)$. Clearly, X and Y will have the same distribution if $p=q=1-p \Longrightarrow$ $p=1 / 2$.
5. Let $Z \sim N(0,1)$. Use the method of transformation to show that $X=\mu+\sigma Z$, for $\sigma>0$ has $N\left(\mu, \sigma^{2}\right)$ distribution.

Solution. The PDF of Z is given by

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi})} e^{-\frac{1}{2} z^{2}},-\infty<z<\infty
$$

Here $X=\mu+\sigma Z$. So the support of X is also $(-\infty, \infty)$. Also, $x=g(z)=\mu+\sigma z$ is an increasing function of z (since $\sigma>0$) and $x=\mu+\sigma z \Longrightarrow z=(x-\mu) / \sigma=h(x)$, with $\frac{d}{d x} h(x)=1 / \sigma$.
Therefore, for $x \in(-\infty, \infty)$, the PDF of X is given by

$$
f_{X}(x)=f_{Z}(h(x))\left|\frac{d}{d x} h(x)\right|=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} .
$$

which is the PDF of $N\left(\mu, \sigma^{2}\right)$.
6. (WMS, Problem 6.88.) Suppose that the length of time Y it takes a worker to complete a certain task has the probability density function given by

$$
f(y)= \begin{cases}e^{-(y-\theta)}, & y>\theta \\ 0, & \text { elsewhere }\end{cases}
$$

where θ is a positive constant that represents the minimum time until task completion. Let Y_{1}, \cdots, Y_{n} denote a random sample of completion times from this distribution. Find
(a) the density function for $Y_{(1)}=\min \left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.

Solution. Note that for all $i=1, \cdots, n, Y_{i}$ has support (θ, ∞) and CDF

$$
F(y)=\int_{\theta}^{y} e^{-(x-\theta)} d x=\left[-e^{-(x-\theta)}\right]_{\theta}^{y}=1-e^{-(y-\theta)}, \quad y \geq \theta .
$$

Therefore, for $0 \leq y \leq \theta$, the CDF of $Y_{(1)}$ is given by

$$
\begin{aligned}
F_{Y_{(1)}}(y) & =P\left(Y_{(1)} \leq y\right) \\
& =1-P\left(Y_{(1)}>y\right) \\
& =1-P\left(Y_{1}>y, \cdots, Y_{n}>y\right) \\
& =1-P\left(Y_{1} \leq y\right) \cdots P\left(Y_{n} \leq y\right) \\
& =1-\{1-F(y)\}^{n}=1-\left(e^{-(y-\theta)}\right)^{n}=1-e^{-n(y-\theta)} .
\end{aligned} \quad \text { (independence) } \quad \text {) }
$$

Hence, the PDF of $Y_{(1)}$ is given by:

$$
f_{Y_{(1)}}(y)= \begin{cases}\frac{d}{d y}\left(1-e^{-n(y-\theta)}\right)=n e^{-n(y-\theta)}, & y \geq \theta \\ 0, & \text { otherwise }\end{cases}
$$

(b) $E\left(Y_{(1)}\right)$.

Solution. We have

$$
\begin{aligned}
E\left(Y_{(1)}\right) & =\int_{\theta}^{\infty} y n e^{-n(y-\theta)} d y \\
& =\int_{0}^{\infty}(x+\theta) n e^{-n x} d x \\
& =\underbrace{\int_{0}^{\infty} x n e^{-n x} d x}_{\text {mean of } \operatorname{Exp}(\beta=1 / n)}+\theta \quad \quad \text { (substitute } x=y-\theta) \quad \underbrace{\int_{0}^{\infty} n e^{-n x} d x}_{\text {integral of } \operatorname{Exp}(\beta=1 / n)} \\
& =\frac{1}{n}+\theta .
\end{aligned}
$$

7. Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ be independent, uniformly distributed random variables on the interval $[0, \theta]$. Find the PDF of $Y_{(n)}=\max \left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$.

Solution. Recall that the CDF of Y_{i}, for $i=1, \cdots, n$ is given by:

$$
F(y)= \begin{cases}0, & y<0 \\ \frac{y}{\theta}, & 0 \leq y \leq \theta \\ 1, & y>1\end{cases}
$$

Note that the support of (the marginal distribution of) $Y_{(n)}$ is the same as that of any Y_{i}, $i=1, \cdots, n$, which is $[0, \theta]$. Therefore, for $0 \leq y \leq \theta$, the CDF of $Y_{(n)}$ is given by $F_{Y_{(n)}}(y)=P\left(Y_{(n)} \leq y\right)=P\left(Y_{1} \leq y, \cdots, Y_{n} \leq y\right) \stackrel{\text { indep }}{=} P\left(Y_{1} \leq y\right) \cdots P\left(Y_{n} \leq y\right)=\{F(y)\}^{n}=\left(\frac{y}{\theta}\right)^{n}$.

Hence, the PDF of $Y_{(n)}$ is given by:

$$
f_{Y_{(n)}}(y)= \begin{cases}\frac{d}{d y}\left(\frac{y}{\theta}\right)^{n}=n \frac{y^{n-1}}{\theta^{n}}, & 0 \leq y \leq \theta, \\ 0, & \text { otherwise }\end{cases}
$$

8. Suppose X_{1}, \cdots, X_{n} denote a random sample from $\operatorname{Exp}(\beta)$ distribution. Find the distribution of the sample mean $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

Solution. Recall that the MGF of $X_{i} \sim \operatorname{Exp}(\beta)$ is $M_{X_{i}}(t)=(1-\beta t)^{-1}$. Therefore, the MGF of \bar{X} is given by

$$
\begin{aligned}
M_{\bar{X}}(t) & =E\left(e^{t \bar{X}}\right) \\
& =E\left(e^{\frac{t}{n} \sum_{i=1}^{n} X_{i}}\right) \\
& =E\left(e^{\frac{t}{n} X_{1}} \cdots e^{\frac{t}{n} X_{1}}\right) \\
& =E\left(e^{\frac{t}{n} X_{1}}\right) \cdots E\left(e^{\frac{t}{n} X_{1}}\right) \\
& =M_{X_{1}}(t / n) \cdots M_{X_{n}}(t / n)=(1-(\beta / n) t)^{-n}
\end{aligned} \quad \text { (independence) }
$$

which is the MGF of $\operatorname{Gamma}(\alpha=n, \beta=\beta / n)$ distribution. Therefore, $\bar{X} \sim \operatorname{Gamma}(n, \beta / n)$.

