1. Elections are being held for two offices, with Democratic and Republican candidates (and no other parties or independent candidates) for both offices. Define the events

 $A = \{$ the first office is won by a Democratic candidate $\}$

 $B = \{\text{the second office is won by a Democratic candidate}\}\$

Describe the following events using unions, intersections and/or complements of A and B.

- (a) The second office is won by a Republican.
- (b) Both offices are won by Democrats.
- (c) At least one of the offices is won by a Democrat.
- (d) Both offices are won by Republicans.
- (e) At least one of the offices is won by a Republican.
- 2. (WMS, Problem 2.11.) A sample space consists of five simple events, E_1, E_2, E_3, E_4 , and E_5 .
 - (a) If $P(E_1) = P(E_2) = 0.15$, $P(E_3) = 0.4$, and $P(E_4) = 2P(E_5)$, find the probabilities of E_4 and E_5 .
 - (b) If $P(E_1) = 3P(E_2) = 0.3$, find the probabilities of the remaining simple events if you know that the remaining simple events are equally probable.
- 3. (WMS, Problem 2.18.) Suppose two balanced coins are tossed and the upper faces are observed.
 - (a) List the sample points for this experiment.
 - (b) Assign a reasonable probability to each sample point. (Are the sample points equally likely?)
 - (c) Let A denote the event that exactly one head is observed and B the event that at least one head is observed. List the sample points in both A and B.
 - (d) From your answer to part (c), find P(A), P(B), $P(A \cap B)$, $P(A \cup B)$ and $P(\bar{A} \cup B)$.
- 4. (WMS, Problem 2.5.) Let S denote the sample space (universe) and A, B denote two arbitrary events (sets). Use the identities $A = A \cap S$ and $S = B \cup \overline{B}$, and the distributive law to prove that
 - (a) $A = (A \cap B) \cup (A \cap \overline{B}).$
 - (b) If $B \subseteq A$ then $A = B \cup (A \cap \bar{B})$.
 - (c) Further, show that $(A \cap B)$ and $(A \cap \bar{B})$ are mutually exclusive, and therefore, A is the union of two mutually exclusive sets, $(A \cap B)$ and $(A \cap \bar{B})$. [This is called partitioning of A with respect to B.]
 - (d) Also show that B and $(A \cap \bar{B})$ are mutually exclusive and if $B \subseteq A$, A is the union of two mutually exclusive sets, B and $(A \cap \bar{B})$.
- 5. (WMS, Problem 2.21-2.24.) Let A and B be two events.

- (a) Use the results derived in problem 4 and the Axioms from class to prove that $P(A) = P(A \cap B) + P(A \cap \overline{B})$.
- (b) Suppose $B \subseteq A$. Use the result proved in part (a) to show that $P(A) = P(B) + P(A \cap \overline{B})$.
- (c) Finally, using non-negativity of probability show that $P(B) \leq P(A)$, if $B \subseteq A$. [That is, if A contains B then the probability of A cannot be smaller than that of B.]
- 6. (WMS, Problem 2.28.) Four equally qualified people apply for two identical positions in a company. One and only one applicant is a member of a minority group. The positions are filled by choosing two of the applicants at random.
 - (a) List the possible outcomes for this experiment.
 - (b) Assign reasonable probabilities to the sample points.
 - (c) Find the probability that the applicant from the minority group is selected for a position.