STA 4321/5325 Solution to Homework 1 Janu

1. Elections are being held for two offices, with Democratic and Republican candidates (and no other parties or independent candidates) for both offices. Define the events

 $A = \{$ the first office is won by a Democratic candidate $\}$

 $B = \{$ the second office is won by a Democratic candidate $\}$

Describe the following events using unions, intersections and/or complements of A and B.

- (a) The second office is won by a Republican.
- (b) Both offices are won by Democrats.
- (c) At least one of the offices is won by a Democrat.
- (d) Both offices are won by Republicans.
- (e) At least one of the offices is won by a Republican.

Solution. (a) B. (b) $A \cap B$. (c) $A \cup B$. (d) $A \cap B$. (e) $A \cup B$.

- 2. (WMS, Problem 2.11.) A sample space consists of five simple events, E_1, E_2, E_3, E_4 , and E_5 .
 - (a) If $P(E_1) = P(E_2) = 0.15$, $P(E_3) = 0.4$, and $P(E_4) = 2P(E_5)$, find the probabilities of E_4 and E_5 .
 - (b) If $P(E_1) = 3P(E_2) = 0.3$, find the probabilities of the remaining simple events if you know that the remaining simple events are equally probable.
 - Solution. (a) Since $P(S) = P(E_1) + \dots + P(E_5) = 1$, $1 = 0.15 + 0.15 + 0.40 + 3P(E_5)$. So, $P(E_5) = 0.10$ and $P(E_4) = 0.20$.
 - (b) Obviously, $P(E_3) + P(E_4) + P(E_5) = 0.6$. Thus, they are all equal to 0.2.

- 3. (WMS, Problem 2.18.) Suppose two balanced coins are tossed and the upper faces are observed.
 - (a) List the sample points for this experiment.
 - (b) Assign a reasonable probability to each sample point. (Are the sample points equally likely?)
 - (c) Let A denote the event that exactly one head is observed and B the event that at least one head is observed. List the sample points in A and B separately.
 - (d) From your answer to part (c), find P(A), P(B), $P(A \cap B)$, $P(A \cup B)$ and $P(\overline{A} \cup B)$.

Solution. (a) $S = \{HH, TH, HT, TT\}.$

- (b) If the two coins are balanced, each of the four outcomes are equally likely, and hence each simple event has probability 1/4 = 0.25.
- (c) $A = \{HT, TH\}, B = \{HT, TH, HH\}.$

- (d) P(A) = 1/2, P(B) = 3/4, $P(A \cap B) = P(A) = 1/2$, $P(A \cup B) = P(B) = 3/4$, $P(\bar{A} \cup B) = P(S) = 1$.
- 4. (WMS, Problem 2.5.) Let S denote the sample space (universe) and A, B denote two arbitrary events (sets). Use the identities $A = A \cap S$ and $S = B \cup \overline{B}$, and the distributive law to prove that
 - (a) $A = (A \cap B) \cup (A \cap \overline{B}).$
 - (b) If $B \subseteq A$ then $A = B \cup (A \cap \overline{B})$.
 - (c) Further, show that $(A \cap B)$ and $(A \cap \overline{B})$ are mutually exclusive, and therefore, A is the union of two mutually exclusive sets, $(A \cap B)$ and $(A \cap \overline{B})$. [This is called partitioning of A with respect to B.]
 - (d) Also show that B and $(A \cap \overline{B})$ are mutually exclusive and if $B \subseteq A$, A is the union of two mutually exclusive sets, B and $(A \cap \overline{B})$.
 - Solution. (a) Note that $A = A \cap S = A \cap (B \cup \overline{B})$. Therefore, using the distributive law, we get $A = (A \cap B) \cup (A \cap \overline{B})$.
 - (b) If $B \subseteq A$, then $A \cap B = B$. Substitute $(A \cap B)$ by B in part (a) to get the result.
 - (c) $(A \cap B) \cap (A \cap \overline{B}) = A \cap (B \cap \overline{B}) \cap A = \emptyset$ (by associativity of intersection), since $B \cap \overline{B} = \emptyset$. Therefore, using part (a), $A = (A \cap B) \cup (A \cap \overline{B})$, with $(A \cap B)$ and $(A \cap \overline{B})$ mutually exclusive. This completes the proof.
 - (d) $B \cap (A \cap \overline{B}) = B \cap \overline{B} \cap A = \emptyset$. If $B \subseteq A$, then $A \cap B = B$. Substitute $(A \cap B)$ by B in part (c) to get the result.

- 5. (WMS, Problem 2.21-2.24.) Let A and B be two events.
 - (a) Use the results derived in problem 4 and the Axioms from class to prove that $P(A) = P(A \cap B) + P(A \cap \overline{B})$.
 - (b) Suppose $B \subseteq A$. Use the result proved in part (a) to show that $P(A) = P(B) + P(A \cap \overline{B})$.
 - (c) Finally, using non-negativity of probability show that $P(B) \leq P(A)$, if $B \subseteq A$. [That is, if A contains B then the probability of A cannot be smaller than that of B.]
 - Solution. (a) Since A is union of two ME events $(A \cap B)$ and $(A \cap \overline{B})$, therefore, by finite additivity (second consequence of the Axioms), we get $P(A) = P((A \cap B) \cup (A \cap \overline{B})) = P(A \cap B) + P(A \cap \overline{B})$.
 - (b) If $B \subseteq A$, then $A \cap B = B$. Substituting $(A \cap B)$ by B in part (a), we get $P(A) = P(B) + P(A \cap \overline{B})$.
 - (c) By non-negativity of probability, we get $P(A \cap \overline{B}) \ge 0$. Therefore, from part (b), $P(A) = P(B) + P(A \cap \overline{B}) \ge P(B) + 0 = P(B)$.

- 6. (WMS, Problem 2.28.) Four equally qualified people apply for two identical positions in a company. One and only one applicant is a member of a minority group. The positions are filled by choosing two of the applicants at random.
 - (a) List the possible outcomes for this experiment.
 - (b) Assign reasonable probabilities to the sample points.
 - (c) Find the probability that the applicant from the minority group is selected for a position.
 - Solution. (a) Denote the four candidates as A_1, A_2, A_3 , and M. Since order is not important (all we need is two people; it does not matter in which order we choose), the sample space is: $S = \{A_1A_2, A_1A_3, A_1M, A_2A_3, A_2M, A_3M\}$.
 - (b) Because the two applicants are chosen at random, we can assume equally likely outcomes, so that each sample point has probability 1/6.
 - (c) Let $C = \{\text{minority hired}\}$. Then $P(C) = P(A_1M) + P(A_2M) + P(A_3M) = 3/6 = 1/2$.