1. (WMS, Problem 3.118.) Five cards are dealt at random and without replacement from a standard deck of 52 cards. What is the probability that the hand contains all 4 aces if it is known that it contains at least 3 aces?

Solution. Note that here the population consists of $N=52$ cards, with $r=4$ aces and the sample size is $n=5$. Let X denote the number of aces in the hand. Then $X \sim \operatorname{HG}(N=52, r=4, n=5)$ which means that the PMF of X is

$$
p(x)=\frac{\binom{4}{x}\binom{48}{5-x}}{\binom{52}{5}} ; \quad x=0,1,2,3,4
$$

Hence, required probability:

$$
P(X=4 \mid X \geq 3)=\frac{P(\{X=4\} \cap\{X \geq 3\})}{P(X \geq 3)}=\frac{P(X=4)}{P(X \geq 3)}=\frac{\binom{4}{4}\binom{48}{1}}{\binom{4}{4}\binom{48}{1}+\binom{4}{3}\binom{48}{2}}=0.0105 .
$$

2. (WMS, Problem 3.135.) A salesperson has found that the probability of a sale on a single contact is approximately 0.03 . If the salesperson contacts 100 prospects, what is the probability of making at least one sale?

Solution. We can assume sales on different contacts to be independent. Let $X=\#$ sales. Then $X \sim \operatorname{Bin}(n=100, p=0.03)$. Because $n=100$ is large, $p=0.03$ is small and $n p=3$ is moderate, we can approximate the $\operatorname{Bin}(n=100, p=0.03)$ distribution by the $\operatorname{Poi}(\lambda=n p=3)$ distribution. Therefore, required probability:

$$
P(X \geq 1)=1-P(X<1)=1-P(X=0) \approx 1-e^{-3} \frac{3^{0}}{0!}=1-e^{-3}=0.9502 .
$$

3. An airline sells 200 tickets for a certain flight on an airplane that has only 198 seats because, on the average, 1 percent of purchasers of airline tickets do not appear for the departure of their flight. Determine the probability that everyone who appears for the departure of this flight will have a seat. [Hint: Define $X=\#$ people who do not appear for their flight.]

Solution. As suggested in the hint, let $X=\#$ people who do not appear for their flight. We can assume that the passengers independently decide to show up or not, and we'll consider not appearing for the flight a success (for the airline!). Then X is the number of successes in a sequence of $n=200$ independent Bernoulli trials with probability of success $p=1 \%=0.01$. So, $X \sim \operatorname{Bin}(n=200, p=0.01)$. Because $n=200$ is large, $p=0.01$ is small and $n p=2$ is moderate, we can approximate the $\operatorname{Bin}(n=200, p=0.01)$ distribution by $\operatorname{Poi}(\lambda=n p=2)$ distribution.
Now, everyone will get a seat if and only if at least 2 passengers do not appear, i.e., $X \geq 2$. Therefore, required probability:

$$
P(X \geq 2)=1-P(X \leq 1)
$$

$$
\begin{aligned}
& =1-P(X=0)-P(X=1) \\
& \approx 1-e^{-2} \frac{2^{0}}{0!}-e^{-2} \frac{2^{1}}{1!} \\
& =1-3 e^{-2}=0.5940 .
\end{aligned}
$$

4. Suppose a discrete RV X with support $\mathscr{X}=\{-N,-(N-1), \cdots,-1,0,1, \cdots, N-1, N\}$ is symmetric (about 0), i.e., $P(X=k)=P(X=-k)$ for all k.
(a) Show for any odd positive integer $r, \mu_{r}^{\prime}=0$, where μ_{r}^{\prime} denotes the r-th raw moment of X.
(b) Prove that for any $k, \mu_{k}=\mu_{k}^{\prime}$, where μ_{k} denotes the k-th central moment of X. Thus, μ_{r} is also zero when r is an odd positive integer.

Solution. (a) Let $p(k)=P(X=k)$ for $k \in \mathbb{R}$. Then, $p(k)=p(-k)$ for all k. Therefore, for any odd positive integer r,

$$
\begin{array}{rlrl}
\mu_{r}^{\prime} & =E\left(X^{r}\right) & \\
& =\sum_{x \in \mathscr{X}} x^{r} p(x)=\sum_{x=-N}^{N} x^{r} p(x)=\sum_{x=-N}^{-1} x^{r} p(x)+0+\sum_{x=1}^{N} x^{r} p(x) & \\
& =\sum_{y=1}^{N} \underbrace{(-y)^{r}}_{=-y^{r}} \underbrace{p(-y)}_{=p(y)}+\sum_{x=1}^{N} x^{r} p(x) & & (y=-x) \\
& =-\sum_{x=1}^{N} x^{r} p(x)+\sum_{x=1}^{N} x^{r} p(x)=0 . & \text { QED. }
\end{array}
$$

(b) Since $r=1$ is an odd positive integer, therefore, from part (a), $\mu=E(X)=\mu_{1}^{\prime}=0$. Hence $\mu_{r}=E(X-\mu)^{r}=E(X-0)^{r}=E\left(X^{r}\right)=\mu_{r}^{\prime}$.
5. (WMS, Problem 3.147-3.148.) Let Y have a geometric distribution with probability of success p, and define $q=1-p$.
(a) Show that the MGF for Y is $M_{Y}(t)=\frac{p e^{t}}{1-q e^{t}}$.

Solution. The MGF for Y is

$$
\begin{aligned}
M_{Y}(t) & =E\left(e^{t Y}\right) \\
& =\sum_{y} e^{t y} p(y)=\sum_{y=1}^{\infty} e^{t y} q^{y-1} p \\
& =p e^{t} \sum_{y=1}^{\infty} e^{t(y-1)} q^{y-1} \\
& =p e^{t} \sum_{x=0}^{\infty}\left(q e^{t}\right)^{x} \\
& =p e^{t} \frac{1}{1-q e^{t}}
\end{aligned}
$$

provided $\left|q e^{t}\right|<1 \Longleftrightarrow e^{t}<1 / q \Longleftrightarrow t<\log (1 / q)=-\log q$.
(b) Differentiate the MGF in part (a) to find $E(Y)$ and $E\left(Y^{2}\right)$. Then find $V(Y)$.

Solution. Verify that

$$
\begin{aligned}
& M_{Y}^{\prime}(t)=\frac{d}{d t} M_{Y}(t)=\frac{p e^{t}}{\left(1-q e^{t}\right)^{2}} \\
& M_{Y}^{\prime \prime}(t)=\frac{d^{2}}{d t^{2}} M_{Y}(t)=\frac{p e^{t}\left(1+q e^{t}\right)}{\left(1-q e^{t}\right)^{3}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E(X) & =\left.M_{Y}^{\prime}(t)\right|_{t=0}
\end{aligned}=\left.\frac{p e^{t}}{\left(1-q e^{t}\right)^{2}}\right|_{t=0}=\frac{p}{(1-q)^{2}}=\frac{p}{p^{2}}=\frac{1}{p} .
$$

Hence,

$$
V(X)=E\left(X^{2}\right)-E^{2}(X)=\frac{1+q}{p^{2}}-\frac{1}{p^{2}}=\frac{q}{p^{2}} .
$$

6. First, a result: If X is a nonnegative RV with finite expectation and $a>0$, then

$$
P(X \geq a) \leq \frac{E(X)}{a} \quad \text { (Markov inequality). }
$$

Using the above inequality, prove Chebyshev's theorem: if Y is a RV with mean μ and finite variance σ^{2}, then, for any constant $k>0$,

$$
P(|Y-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Solution. First, note that for a real number $y,|y-\mu| \geq k \sigma \Longleftrightarrow(y-\mu)^{2} \geq k^{2} \sigma^{2}$. Thus, the two sets $\{|Y-\mu| \geq k \sigma\}$ and $\left\{(Y-\mu)^{2} \geq k^{2} \sigma^{2}\right\}$ are the same. Now if we let $X=(Y-\mu)^{2}$ then X is a nonnegative RV with expectation $E(X)=E(Y-\mu)^{2}=V(Y)=\sigma^{2}<\infty$. (We'll assume $\sigma>0$.) Hence, we can apply Markov inequality on $X=(Y-\mu)^{2}$. Thus,

$$
\begin{aligned}
P(|Y-\mu| \geq k \sigma) & =P\left((Y-\mu)^{2} \geq k^{2} \sigma^{2}\right) & & \\
& =P\left(X \geq k^{2} \sigma^{2}\right) & & X=(Y-\mu)^{2} \\
& \leq \frac{E(X)}{k^{2} \sigma^{2}} & & \text { (Markov inequality) } \\
& =\frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}} & & \text { QED. }
\end{aligned}
$$

7. This exercise demonstrates the tightness of Chebyshev's theorem. For any constant k, define a RV X with support $\mathscr{X}=\{-1,0,1\}$ and PMF $p_{X}(-1)=p_{x}(1)=\frac{1}{2 k^{2}}$ and $p_{X}(0)=1-\frac{1}{k^{2}}$.
(a) Verify that p_{X} is indeed a PMF.
(b) Find the mean μ_{X} and variance σ_{X}^{2} of X.
(c) Show that $P\left(\left|X-\mu_{X}\right| \geq k \sigma_{X}\right)=\frac{1}{k^{2}}$. [Note: Thus, for any positive constant k, we can construct a RV X (and hence a probability distribution), for which equality holds in the Chebyshev theorem.]

Solution. (a) Clearly $p_{X}(x) \geq 0$ for all $x \in \mathbb{R}$, and

$$
\sum_{x \in \mathscr{X}} p_{X}(x)=p_{X}(-1)+p_{X}(0)+p_{X}(1)=\frac{1}{2 k^{2}}+1-\frac{1}{k^{2}}+\frac{1}{2 k^{2}}=1
$$

(b) Observe that X is symmetric (about 0). Therefore, from problem 4 in this homework, we get

$$
\begin{aligned}
& \mu_{X}=E(X)=0 \\
& \sigma_{X}^{2}=V(X)=E\left(X^{2}\right)=1 \times \frac{1}{2 k^{2}}+0+1 \times \frac{1}{2 k^{2}}=\frac{1}{k^{2}} .
\end{aligned}
$$

(c) From part (b), we have $\sigma_{X}=\frac{1}{k}$. Therefore,

$$
\begin{aligned}
P\left(\left|X-\mu_{X}\right| \geq k \sigma_{X}\right) & =P\left(|X| \geq k \cdot \frac{1}{k}\right) \\
& =P(|X| \geq 1)=P(X= \pm 1) \\
& =p(1)+p(-1)=\frac{1}{2 k^{2}}+\frac{1}{2 k^{2}}=\frac{1}{k^{2}} .
\end{aligned}
$$

8. A RV X with support $\mathscr{X}=\{1,2, \cdots, N\}$ is said to follow a discrete uniform distribution (over the set of first N positive integers) if all elements of the support \mathscr{X} are equally probable as values of X, i.e., if $P(X=x)=c$, for some constant c and for all $x \in \mathscr{X}$.
(a) Find c.
(b) Find $E(X)$ and $V(X)$. The following formulas should be helpful:

$$
\begin{aligned}
1+2+\cdots+N & =\frac{N(N+1)}{2} \\
1^{2}+2^{2}+\cdots+N^{2} & =\frac{N(N+1)(2 N+1)}{6}
\end{aligned}
$$

Solution. (a) From $\sum_{x \in \mathscr{X}} p(x)=1$ we get, $\sum_{x=1}^{N} c=N c=1 \Longrightarrow c=\frac{1}{N}$. Thus, the PMF of X is $p(x)=\frac{1}{N}$ for $x=1, \cdots, N$.
(b) We have

$$
E(X)=\sum_{x \in \mathscr{X}} x p(x)=\sum_{x=1}^{N} x \frac{1}{N}=\frac{1}{N} \cdot \frac{N(N+1)}{2}=\frac{N+1}{2}
$$

and

$$
E\left(X^{2}\right)=\sum_{x^{2} \in \mathscr{X}} x p(x)=\sum_{x=1}^{N} x^{2} \frac{1}{N}=\frac{1}{N} \cdot \frac{N(N+1)(2 N+1)}{6}=\frac{(N+1)(2 N+1)}{6} .
$$

Hence,

$$
\begin{aligned}
V(X) & =E\left(X^{2}\right)-E^{2}(X) \\
& =\frac{(N+1)(2 N+1)}{6}-\frac{(N+1)^{2}}{4} \\
& =\frac{2(N+1)(2 N+1)-3(N+1)^{2}}{12} \\
& =\frac{(N+1)(4 N+2-3 N-3)}{12}=\frac{(N+1)(N-1)}{12}=\frac{N^{2}-1}{12} .
\end{aligned}
$$

9. (WMS, Problem 4.8.) Suppose that Y has PDF

$$
f(y)= \begin{cases}k y(1-y), & 0 \leq y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find the value of k that makes $f(y)$ a probability density function.
(b) Find the CDF $F(y)$ of Y.
(c) Calculate $P(0.4 \leq Y<1)$.
(d) Calculate $P(Y \leq 0.4 \mid Y \leq 0.8)$ and hence find $P(Y \geq 0.4 \mid Y \leq 0.8)$.

Solution. (a) Clearly $f(y) \geq 0$ for all y. Now, from $\int_{-\infty}^{\infty} f(y) d y=1$ we get,

$$
k \int_{0}^{1} y(1-y) d y=k\left(\int_{0}^{1} y d y-\int_{0}^{1} y^{2} d y\right)=k\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{k}{6}=1 \Longrightarrow k=6 .
$$

(b) Clearly $F(y)=0$ for $y<0$ and $F(y)=1$ for $y \geq 1$ as Y has support $\mathscr{Y}=[0,1]$. For $0 \leq y \leq 1$,

$$
F(y)=\int_{-\infty}^{y} f(x) d x=6 \int_{0}^{y} x(1-x) d x=6\left(\int_{0}^{y} x d x-\int_{0}^{y} x^{2} d x\right)=6\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}\right)=y^{2}(3-2 y) .
$$

Thus, the DF of Y is given by:

$$
F(y)= \begin{cases}0, & y<0 \\ y^{2}(3-2 y), & 0 \leq y<1 \\ 1, & y \geq 1\end{cases}
$$

(c) Note that,

$$
\begin{aligned}
P(0.4 \leq Y<1) & =P(0.4<Y \leq 1) \quad(\mathrm{Y} \text { is continuous }) \\
& =F(1)-F(0.4) \\
& =1-(0.4)^{2}(3-2 \times 0.4)=1-0.352=0.648 .
\end{aligned}
$$

(d) Note that,

$$
P(Y \leq 0.4 \mid Y \leq 0.8)=\frac{P(\{Y \leq 0.4\} \cap\{Y \leq 0.4\})}{P(Y \leq 0.8)}
$$

$$
=\frac{P(Y \leq 0.4)}{P(Y \leq 0.8)}=\frac{(0.4)^{2}(3-2 \times 0.4)}{(0.8)^{2}(3-2 \times 0.8)}=\frac{0.352}{0.896} \approx 0.3928 .
$$

Also,

$$
\begin{aligned}
P(Y \geq 0.4 \mid Y \leq 0.8) & =P(Y>0.4 \mid Y \leq 0.8) \quad(\mathrm{Y} \text { is continuous }) \\
& =1-P(Y \leq 0.4 \mid Y \leq 0.8) \approx 1-0.3928=0.6072 .
\end{aligned}
$$

10. (WMS, Problem 4.19.) Let the DF of a random variable Y be

$$
F(y)= \begin{cases}0, & y \leq 0 \\ \frac{y}{8}, & 0<y<2 \\ \frac{y^{2}}{16}, & 2 \leq y<4 \\ 1, & y \geq 4\end{cases}
$$

(a) Find the PDF of Y.
(b) Find $P(1 \leq Y \leq 3)$.
(c) Find $P(Y \geq 1.5)$.
(d) Find $P(Y \geq 1 \mid Y \leq 3)$.

Solution. (a) Observe that Y has support $\mathscr{Y}=(0,4)$. So, if f denotes the PDF of Y, then $f(y)=0$ for $y \notin \mathscr{Y}=(0,4)$. Thus Y has PDF,

$$
f(y)= \begin{cases}\frac{d}{d y} \frac{y}{8}=\frac{1}{8}, & 0<y<2 \\ \frac{d}{d y} \frac{y^{2}}{16}=\frac{2 y}{16}=\frac{y}{8}, & 2 \leq y<4 \\ 0, & \text { otherwise }\end{cases}
$$

(b) We have,

$$
\begin{aligned}
P(1 \leq Y \leq 3) & =P(1<Y \leq 3) \quad(\mathrm{Y} \text { is continuous }) \\
& =F(3)-F(1) \\
& =\frac{3^{2}}{16}-\frac{1}{8}=\frac{9}{16}-\frac{2}{16}=\frac{7}{16} .
\end{aligned}
$$

(c) Note that

$$
P(Y \geq 1.5)=1-P(Y<1.5)=1-P(Y \leq 1.5)=1-F(1.5)=1-\frac{1.5}{8}=1-\frac{3}{16}=\frac{13}{16} .
$$

(d) From part (a), $P(1 \leq Y \leq 3)=7 / 16$. Therefore,

$$
P(Y \geq 1 \mid Y \leq 3)=\frac{P(1 \leq Y \leq 3)}{P(Y \leq 3)}=\frac{7 / 16}{9 / 16}=\frac{7}{9} .
$$

