
STA 4321/5325 Solution to Homework 4 February 24, 2017

1. (WMS, Problem 3.118.) Five cards are dealt at random and without replacement from a standard
deck of 52 cards. What is the probability that the hand contains all 4 aces if it is known that it
contains at least 3 aces?

Solution. Note that here the population consists of N = 52 cards, with r = 4 aces and the sample
size is n = 5. Let X denote the number of aces in the hand. Then X ∼ HG(N = 52, r = 4, n = 5)
which means that the PMF of X is

p(x) =

(
4
x

)(
48
5−x
)(

52
5

) ; x = 0, 1, 2, 3, 4.

Hence, required probability:

P (X = 4|X ≥ 3) =
P ({X = 4} ∩ {X ≥ 3})

P (X ≥ 3)
=
P (X = 4)

P (X ≥ 3)
=

(
4
4

)(
48
1

)(
4
4

)(
48
1

)
+
(
4
3

)(
48
2

) = 0.0105.

2. (WMS, Problem 3.135.) A salesperson has found that the probability of a sale on a single
contact is approximately 0.03. If the salesperson contacts 100 prospects, what is the probability
of making at least one sale?

Solution. We can assume sales on different contacts to be independent. Let X = # sales. Then
X ∼ Bin(n = 100, p = 0.03). Because n = 100 is large, p = 0.03 is small and np = 3 is moderate,
we can approximate the Bin(n = 100, p = 0.03) distribution by the Poi(λ = np = 3) distribution.
Therefore, required probability:

P (X ≥ 1) = 1− P (X < 1) = 1− P (X = 0) ≈ 1− e−3 30

0!
= 1− e−3 = 0.9502.

3. An airline sells 200 tickets for a certain flight on an airplane that has only 198 seats because, on
the average, 1 percent of purchasers of airline tickets do not appear for the departure of their
flight. Determine the probability that everyone who appears for the departure of this flight will
have a seat. [Hint: Define X = # people who do not appear for their flight.]

Solution. As suggested in the hint, let X = # people who do not appear for their flight. We
can assume that the passengers independently decide to show up or not, and we’ll consider not
appearing for the flight a success (for the airline!). Then X is the number of successes in a
sequence of n = 200 independent Bernoulli trials with probability of success p = 1% = 0.01. So,
X ∼ Bin(n = 200, p = 0.01). Because n = 200 is large, p = 0.01 is small and np = 2 is moderate,
we can approximate the Bin(n = 200, p = 0.01) distribution by Poi(λ = np = 2) distribution.

Now, everyone will get a seat if and only if at least 2 passengers do not appear, i.e., X ≥ 2.
Therefore, required probability:

P (X ≥ 2) = 1− P (X ≤ 1)
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= 1− P (X = 0)− P (X = 1)

≈ 1− e−2 20

0!
− e−2 21

1!

= 1− 3e−2 = 0.5940.

4. Suppose a discrete RV X with support X = {−N,−(N − 1), · · · ,−1, 0, 1, · · · , N − 1, N} is
symmetric (about 0), i.e., P (X = k) = P (X = −k) for all k.

(a) Show for any odd positive integer r, µ′r = 0, where µ′r denotes the r-th raw moment of X.

(b) Prove that for any k, µk = µ′k, where µk denotes the k-th central moment of X. Thus, µr
is also zero when r is an odd positive integer.

Solution. (a) Let p(k) = P (X = k) for k ∈ R. Then, p(k) = p(−k) for all k. Therefore, for any
odd positive integer r,

µ′r = E(Xr)

=
∑
x∈X

xrp(x) =
N∑

x=−N
xrp(x) =

−1∑
x=−N

xrp(x) + 0 +
N∑

x=1

xrp(x)

=

N∑
y=1

(−y)r︸ ︷︷ ︸
=−yr

p(−y)︸ ︷︷ ︸
=p(y)

+
N∑

x=1

xrp(x) (y = −x)

= −
N∑

x=1

xrp(x) +
N∑

x=1

xrp(x) = 0. QED.

(b) Since r = 1 is an odd positive integer, therefore, from part (a), µ = E(X) = µ′1 = 0. Hence
µr = E(X − µ)r = E(X − 0)r = E(Xr) = µ′r.

5. (WMS, Problem 3.147 - 3.148.) Let Y have a geometric distribution with probability of success
p, and define q = 1− p.

(a) Show that the MGF for Y is MY (t) = pet

1−qet .

Solution. The MGF for Y is

MY (t) = E(etY )

=
∑
y

etyp(y) =
∞∑
y=1

etyqy−1p

= pet
∞∑
y=1

et(y−1)qy−1

= pet
∞∑
x=0

(qet)x x = y − 1

= pet
1

1− qet

provided |qet| < 1 ⇐⇒ et < 1/q ⇐⇒ t < log(1/q) = − log q.
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(b) Differentiate the MGF in part (a) to find E(Y ) and E(Y 2). Then find V (Y ).

Solution. Verify that

M ′Y (t) =
d

dt
MY (t) =

pet

(1− qet)2

M ′′Y (t) =
d2

dt2
MY (t) =

pet(1 + qet)

(1− qet)3
.

Therefore,

E(X) = M ′Y (t)
∣∣
t=0

=
pet

(1− qet)2

∣∣∣∣
t=0

=
p

(1− q)2
=

p

p2
=

1

p

E(X2) = M ′′Y (t)
∣∣
t=0

=
pet(1 + qet)

(1− qet)3

∣∣∣∣
t=0

=
p(1 + q)

(1− q)3
=
p(1 + q)

p3
=

1 + q

p2
.

Hence,

V (X) = E(X2)− E2(X) =
1 + q

p2
− 1

p2
=

q

p2
.

6. First, a result: If X is a nonnegative RV with finite expectation and a > 0, then

P (X ≥ a) ≤ E(X)

a
(Markov inequality).

Using the above inequality, prove Chebyshev’s theorem: if Y is a RV with mean µ and finite
variance σ2, then, for any constant k > 0,

P (|Y − µ| ≥ kσ) ≤ 1

k2
.

Solution. First, note that for a real number y, |y − µ| ≥ kσ ⇐⇒ (y − µ)2 ≥ k2σ2. Thus, the
two sets {|Y − µ| ≥ kσ} and {(Y − µ)2 ≥ k2σ2} are the same. Now if we let X = (Y − µ)2 then
X is a nonnegative RV with expectation E(X) = E(Y − µ)2 = V (Y ) = σ2 <∞. (We’ll assume
σ > 0.) Hence, we can apply Markov inequality on X = (Y − µ)2. Thus,

P (|Y − µ| ≥ kσ) = P
(
(Y − µ)2 ≥ k2σ2

)
= P (X ≥ k2σ2) X = (Y − µ)2

≤ E(X)

k2σ2
(Markov inequality)

=
σ2

k2σ2
=

1

k2
QED.

7. This exercise demonstrates the tightness of Chebyshev’s theorem. For any constant k, define a
RV X with support X = {−1, 0, 1} and PMF pX(−1) = px(1) = 1

2k2
and pX(0) = 1− 1

k2
.

(a) Verify that pX is indeed a PMF.

(b) Find the mean µX and variance σ2X of X.
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(c) Show that P (|X − µX | ≥ kσX) = 1
k2

. [Note: Thus, for any positive constant k, we can
construct a RV X (and hence a probability distribution), for which equality holds in the
Chebyshev theorem.]

Solution. (a) Clearly pX(x) ≥ 0 for all x ∈ R, and∑
x∈X

pX(x) = pX(−1) + pX(0) + pX(1) =
1

2k2
+ 1− 1

k2
+

1

2k2
= 1.

(b) Observe that X is symmetric (about 0). Therefore, from problem 4 in this homework, we
get

µX = E(X) = 0

σ2X = V (X) = E(X2) = 1× 1

2k2
+ 0 + 1× 1

2k2
=

1

k2
.

(c) From part (b), we have σX = 1
k . Therefore,

P (|X − µX | ≥ kσX) = P

(
|X| ≥ k · 1

k

)
= P (|X| ≥ 1) = P (X = ±1)

= p(1) + p(−1) =
1

2k2
+

1

2k2
=

1

k2
.

8. A RV X with support X = {1, 2, · · · , N} is said to follow a discrete uniform distribution (over
the set of first N positive integers) if all elements of the support X are equally probable as
values of X, i.e., if P (X = x) = c, for some constant c and for all x ∈X .

(a) Find c.

(b) Find E(X) and V (X). The following formulas should be helpful:

1 + 2 + · · ·+N =
N(N + 1)

2

12 + 22 + · · ·+N2 =
N(N + 1)(2N + 1)

6

Solution. (a) From
∑

x∈X p(x) = 1 we get,
∑N

x=1 c = Nc = 1 =⇒ c = 1
N . Thus, the PMF of

X is p(x) = 1
N for x = 1, · · · , N .

(b) We have

E(X) =
∑
x∈X

xp(x) =
N∑

x=1

x
1

N
=

1

N
· N(N + 1)

2
=
N + 1

2

and

E(X2) =
∑

x2∈X

xp(x) =
N∑

x=1

x2
1

N
=

1

N
· N(N + 1)(2N + 1)

6
=

(N + 1)(2N + 1)

6
.
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Hence,

V (X) = E(X2)− E2(X)

=
(N + 1)(2N + 1)

6
− (N + 1)2

4

=
2(N + 1)(2N + 1)− 3(N + 1)2

12

=
(N + 1)(4N + 2− 3N − 3)

12
=

(N + 1)(N − 1)

12
=
N2 − 1

12
.

9. (WMS, Problem 4.8.) Suppose that Y has PDF

f(y) =

{
ky(1− y), 0 ≤ y ≤ 1

0, elsewhere.

(a) Find the value of k that makes f(y) a probability density function.

(b) Find the CDF F (y) of Y .

(c) Calculate P (0.4 ≤ Y < 1).

(d) Calculate P (Y ≤ 0.4 | Y ≤ 0.8) and hence find P (Y ≥ 0.4 | Y ≤ 0.8).

Solution. (a) Clearly f(y) ≥ 0 for all y. Now, from
∫∞
−∞ f(y) dy = 1 we get,

k

∫ 1

0
y(1− y) dy = k

(∫ 1

0
y dy −

∫ 1

0
y2 dy

)
= k

(
1

2
− 1

3

)
=
k

6
= 1 =⇒ k = 6.

(b) Clearly F (y) = 0 for y < 0 and F (y) = 1 for y ≥ 1 as Y has support Y = [0, 1]. For
0 ≤ y ≤ 1,

F (y) =

∫ y

−∞
f(x)dx = 6

∫ y

0
x(1−x)dx = 6

(∫ y

0
x dx−

∫ y

0
x2 dx

)
= 6

(
y2

2
− y3

3

)
= y2(3−2y).

Thus, the DF of Y is given by:

F (y) =


0, y < 0

y2(3− 2y), 0 ≤ y < 1

1, y ≥ 1.

(c) Note that,

P (0.4 ≤ Y < 1) = P (0.4 < Y ≤ 1) (Y is continuous)

= F (1)− F (0.4)

= 1− (0.4)2(3− 2× 0.4) = 1− 0.352 = 0.648.

(d) Note that,

P (Y ≤ 0.4 | Y ≤ 0.8) =
P ({Y ≤ 0.4} ∩ {Y ≤ 0.4})

P (Y ≤ 0.8)
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=
P (Y ≤ 0.4)

P (Y ≤ 0.8)
=

(0.4)2(3− 2× 0.4)

(0.8)2(3− 2× 0.8)
=

0.352

0.896
≈ 0.3928.

Also,

P (Y ≥ 0.4 | Y ≤ 0.8) = P (Y > 0.4 | Y ≤ 0.8) (Y is continuous)

= 1− P (Y ≤ 0.4 | Y ≤ 0.8) ≈ 1− 0.3928 = 0.6072.

10. (WMS, Problem 4.19.) Let the DF of a random variable Y be

F (y) =


0, y ≤ 0
y
8 , 0 < y < 2
y2

16 , 2 ≤ y < 4

1, y ≥ 4.

(a) Find the PDF of Y .

(b) Find P (1 ≤ Y ≤ 3).

(c) Find P (Y ≥ 1.5).

(d) Find P (Y ≥ 1|Y ≤ 3).

Solution. (a) Observe that Y has support Y = (0, 4). So, if f denotes the PDF of Y , then
f(y) = 0 for y /∈ Y = (0, 4). Thus Y has PDF,

f(y) =


d
dy

y
8 = 1

8 , 0 < y < 2
d
dy

y2

16 = 2y
16 = y

8 , 2 ≤ y < 4

0, otherwise.

(b) We have,

P (1 ≤ Y ≤ 3) = P (1 < Y ≤ 3) (Y is continuous)

= F (3)− F (1)

=
32

16
− 1

8
=

9

16
− 2

16
=

7

16
.

(c) Note that

P (Y ≥ 1.5) = 1− P (Y < 1.5) = 1− P (Y ≤ 1.5) = 1− F (1.5) = 1− 1.5

8
= 1− 3

16
=

13

16
.

(d) From part (a), P (1 ≤ Y ≤ 3) = 7/16. Therefore,

P (Y ≥ 1|Y ≤ 3) =
P (1 ≤ Y ≤ 3)

P (Y ≤ 3)
=

7/16

9/16
=

7

9
.
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