1. Suppose X is a RV with $E(X)=2$ and $V(X)=4$. Find $E(X+2)^{2}$. [Answer: 20.]
2. (WMS, Problem 4.28.) The proportion of time per day that all checkout counters in a supermarket are busy is a RV Y with PDF

$$
f(y)= \begin{cases}c y^{2}(1-y)^{4}, & 0 \leq y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find the value of c that makes $f(y)$ a probability density function. [Answer: $c=105$.]
(b) Find $E(Y)$. [Answer: 3/8.]
3. An absolutely continuous $\mathrm{RV} X$ with $\operatorname{PDF} f$ is called symmetric (about 0), if for every $x \in \mathbb{R}$, $f(x)=f(-x)$.
(a) Assuming it exists, show that $E(X)=0$.
(b) If F denotes the DF of X, show that $F(0)=\frac{1}{2}$. Hence find the median of X. (You can assume F to be strictly increasing on a neighborhood of 0 .)
[Hint: Use the properties of odd and even functions.]
4. (WMS, Problem 4.30.) The proportion of time Y that an industrial robot is in operation during a 40 -hour week is a random variable with probability density function

$$
f(y)= \begin{cases}2 y, & 0 \leq y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find $E(Y)$ and $V(Y)$. [Answer: $E(Y)=2 / 3, V(Y)=1 / 18$.]
(b) For the robot under study, the profit X for a week is given by $X=200 Y-60$. Find $E(X)$ and $V(X)$.
(c) Find an interval in which the profit should lie for at least 75% of the weeks that the robot is in use. [Answer: [20.9476, 167.6142].]
5. (WMS, Problem 4.47.) The failure of a circuit board interrupts work that utilizes a computing system until a new board is delivered. The delivery time, Y, is uniformly distributed on the interval one to five days. The cost of a board failure and interruption includes the fixed cost c_{0} of a new board and a cost that increases proportionally to Y^{2}. If C is the cost incurred, $C=c_{0}+c_{1} Y^{2}$. (c_{1} is a constant.)
(a) Find the probability that the delivery time exceeds two days. [Answer: 0.75.]
(b) In terms of c_{0} and c_{1}, find the expected cost associated with a single failed circuit board.
6. Recall that the MGF of a RV X is defined by $M_{X}(t):=E\left(e^{t X}\right)$. Hence, for continuous X, $M_{X}(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x, f$ being the PDF of X. From this definition, find the MGF of X when $X \sim \operatorname{Exp}(\beta)$. Hence (by differentiating) find $E(X)$ and $E\left(X^{2}\right)$. Then find $V(X)$. [Partial Answer: $M_{X}(t)=1 /(1-\beta t)$, provided $t<1 / \beta$.]
7. (WMS, Problem 4.97-4.98.) A manufacturing plant uses a specific bulk product. The amount of product used in one day can be modeled by an exponential distribution with $\beta=4$ (measurements in tons).
(a) Find the probability that the plant will use more than 4 tons on a given day.
(b) How much of the bulk product should be stocked so that the plants chance of running out of the product is only 0.05 ?
8. (WMS, Problem 4.91.) Let Y have an exponential distribution with $P(Y>2)=.0821$. Find $E(Y)$ and $P(Y \leq 1.7)$. [Partial Answer: $E(Y) \approx 0.8$.]

