1. Suppose X is a RV with $E(X)=2$ and $V(X)=4$. Find $E(X+2)^{2}$.

Solution. By the formula, $V(X)=E\left(X^{2}\right)-E^{2}(X) \Longrightarrow E\left(X^{2}\right)=V(X)+E^{2}(X)$. Therefore, in the current setting, $E\left(X^{2}\right)=V(X)+E^{2}(X)=4+4=8$. Therefore,

$$
E(X+2)^{2}=E\left(X^{2}+4 X+4\right)=E\left(X^{2}\right)+4 E(X)+4=8+4 \times 2+4=20
$$

2. (WMS, Problem 4.28.) The proportion of time per day that all checkout counters in a supermarket are busy is a RV Y with PDF

$$
f(y)= \begin{cases}c y^{2}(1-y)^{4}, & 0 \leq y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find the value of c that makes $f(y)$ a probability density function.
(b) Find $\mathrm{E}(\mathrm{Y})$.

Solution. (a) Observe that

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =c \int_{0}^{1} y^{2}(1-y)^{4} d y \\
& \left.=c \int_{1}^{0}(1-z)^{2} z^{4}(-1) d z \quad \text { (substitute } z=1-y\right) \\
& =c \int_{0}^{1}(1-z)^{2} z^{4} d z \quad\left(\int_{a}^{b} g(x) d x=-\int_{b}^{a} g(x) d x\right) \\
& =c \int_{0}^{1}\left(1-2 z+z^{2}\right) z^{4} d z \\
& =c \int_{0}^{1}\left(z^{4}-2 z^{5}+z^{6}\right) d z \\
& =c\left(\left.\frac{z^{5}}{5}\right|_{0} ^{1}-\left.\frac{2 z^{6}}{6}\right|_{0} ^{1}+\left.\frac{z^{7}}{7}\right|_{0} ^{1}\right)=c\left(\frac{1}{5}-\frac{1}{3}+\frac{1}{7}\right)=\frac{c}{105} .
\end{aligned}
$$

Hence, from $\int_{-\infty}^{\infty} f(x) d x=1$, we get $\frac{c}{105}=1 \Longrightarrow c=105$.
(b) Note that

$$
\begin{aligned}
E(Y)=\int_{-\infty}^{\infty} y f(y) d y & =105 \int_{0}^{1} y y^{2}(1-y)^{4} d y \\
& \left.=105 \int_{0}^{1}(1-z)^{3} z^{4} d z \quad \text { (substitute } z=1-y\right) \\
& =105 \int_{0}^{1}\left(1-3 z+3 z^{2}-z^{3}\right) z^{4} d z \\
& =105 \int_{0}^{1}\left(z^{4}-3 z^{5}+3 z^{6}-z^{7}\right) d z
\end{aligned}
$$

$$
\begin{aligned}
& =105\left(\left.\frac{z^{5}}{5}\right|_{0} ^{1}-\left.\frac{3 z^{6}}{6}\right|_{0} ^{1}+\left.\frac{3 z^{7}}{7}\right|_{0} ^{1}-\left.\frac{z^{8}}{8}\right|_{0} ^{1}\right) \\
& =105\left(\frac{1}{5}-\frac{1}{2}+\frac{3}{7}-\frac{1}{8}\right)=\frac{105}{280}=\frac{3}{8} .
\end{aligned}
$$

3. An absolutely continuous $\mathrm{RV} X$ with $\operatorname{PDF} f$ is called symmetric (about 0), if for every $x \in \mathbb{R}$, $f(x)=f(-x)$.
(a) Assuming it exists, show that $E(X)=0$.
(b) If F denotes the DF of X, show that $F(0)=\frac{1}{2}$. Hence find the median of X. (You can assume F to be strictly increasing on a neighborhood of 0 .)
[Hint: Use the properties of odd and even functions.]
Solution. (a) Method 1 (Direct proof): Note that

$$
\begin{array}{rlr}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x & \\
& =\int_{\infty}^{-\infty}(-y) f(-y)(-1) d y & \text { substitue } y=-x \Longrightarrow d y=-d x \\
& =\int_{-\infty}^{\infty}(-y) f(-y) d y & \left(\int_{a}^{b} g(x) d x=-\int_{b}^{a} g(x) d x\right) \\
& =\int_{-\infty}^{\infty}(-y) f(y) d y & \text { since } f(y)=f(-y) \text { for all } y \\
& =-\int_{-\infty}^{\infty} y f(y) d y=-E(X) &
\end{array}
$$

Hence, $2 E(X)=0 \Longrightarrow E(X)=0$.

Method 2 (Using property of odd functions): By definition, $E(X)=\int_{-\infty}^{\infty} x f(x) d x$. Note that the integrand $g(x)=x f(x)$ is odd, since $g(-x)=-x f(-x)=-x f(x)=-g(x)$. Hence, $E(X)$, an (definite) integral of an odd function over the symmetric interval $(-\infty, \infty)$, is zero.
(b) We have, $\int_{-\infty}^{\infty} f(y) d y=1$ (integral of a PDF over the entire real line). Note that the integrand $f(y)$ is an even function since $f(y)=f(-y)$. Therefore,

$$
1=\int_{-\infty}^{\infty} f(y) d y=2 \int_{0}^{\infty} f(y) d y=2 P(Y>0) \Longrightarrow P(Y>0)=\frac{1}{2}
$$

Thus, $F(0)=P(Y \leq 0)=1-P(Y>0)=1-\frac{1}{2}=\frac{1}{2}$.
To find the median $\phi_{1 / 2}$, first note that F is strictly increasing on a neighborhood of 0 . So, F^{-1} exists as a function on that neighborhood. Therefore, $\phi_{1 / 2}$ is obtained by solving

$$
F\left(\phi_{1 / 2}\right)=\frac{1}{2} \Longleftrightarrow \phi_{1 / 2}=F^{-1}\left(\frac{1}{2}\right)=F^{-1}(F(0))=0
$$

4. (WMS, Problem 4.30.) The proportion of time Y that an industrial robot is in operation during a 40 -hour week is a random variable with probability density function

$$
f(y)= \begin{cases}2 y, & 0 \leq y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find $E(Y)$ and $V(Y)$.
(b) For the robot under study, the profit X for a week is given by $X=200 Y-60$. Find $E(X)$ and $V(X)$.
(c) Find an interval in which the profit should lie for at least 75% of the weeks that the robot is in use.

Solution. (a) We have

$$
E(Y)=\int_{-\infty}^{\infty} y f(y) d y=\int_{0}^{1} y 2 y d y=\left.\frac{2 y^{3}}{3}\right|_{0} ^{1}=\frac{2}{3}
$$

and

$$
E\left(Y^{2}\right)=\int_{-\infty}^{\infty} y^{2} f(y) d y=\int_{0}^{1} y^{2} 2 y d y=\left.\frac{2 y^{4}}{4}\right|_{0} ^{1}=\frac{1}{2}
$$

Therefore, $V(Y)=E\left(Y^{2}\right)-E^{2}(Y)=\frac{1}{2}-\frac{4}{9}=\frac{1}{18}$.
(b) By the formula, $E(X)=E(200 Y-60)=200 E(Y)-6=200(2 / 3)-60=220 / 3$ and $V(X)=V(200 Y-60)=200^{2} V(Y)=20000 / 9$.
(c) Recall from Chebyshev's theorem, the two standard deviation $(k=2)$ interval about mean has probability greater than or equal to $1-\frac{1}{k^{2}}=1-\frac{1}{4}=\frac{3}{4}=75 \%$. Hence, required interval in the current setting $=[220 / 3-2 \sqrt{20000 / 9}, 220 / 3+2 \sqrt{20000 / 9}]=[-20.9476,167.6142]$.
5. (WMS, Problem 4.47.) The failure of a circuit board interrupts work that utilizes a computing system until a new board is delivered. The delivery time, Y, is uniformly distributed on the interval one to five days. The cost of a board failure and interruption includes the fixed cost c_{0} of a new board and a cost that increases proportionally to Y^{2}. If C is the cost incurred, $C=c_{0}+c_{1} Y^{2}$. (c_{1} is a constant.)
(a) Find the probability that the delivery time exceeds two days.
(b) In terms of c_{0} and c_{1}, find the expected cost associated with a single failed circuit board.

Solution. (a) By assumption, $Y \sim U\left(\theta_{1}=1, \theta_{2}=5\right)$. Let $F_{Y}(\cdot)$ denote the DF of Y. Therefore, required probability

$$
P(Y>2)=1-P(Y \leq 2)=1-F_{Y}(2)=1-\frac{2-\theta_{1}}{\theta_{2}-\theta_{1}}=1-\frac{1}{4}=\frac{3}{4}=0.75 .
$$

(b) Recall, if $Y \sim U\left(\theta_{1}, \theta_{2}\right)$ then $E(Y)=\frac{\theta_{1}+\theta_{2}}{2}=3$ and $V(Y)=\frac{\left(\theta_{2}-\theta_{1}\right)^{2}}{12}=\frac{4}{3}$. Therefore, $E\left(Y^{2}\right)=V(Y)+E^{2}(Y)=\frac{4}{3}+9=\frac{31}{3}$. (See solution to problem 1). Hence,

$$
E(C)=E\left(c_{0}+c_{1} Y^{2}\right)=c_{0}+c_{1} E\left(Y^{2}\right)=c_{0}+c_{1} \frac{31}{3}
$$

6. Recall that the MGF of a RV X is defined by $M_{X}(t):=E\left(e^{t X}\right)$. Hence, for continuous X, $M_{X}(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x, f$ being the PDF of X. From this definition, find the MGF of X when $X \sim \operatorname{Exp}(\beta)$. Hence (by differentiating) find $E(X)$ and $E\left(X^{2}\right)$. Then find $V(X)$.

Solution. By definition,

$$
\begin{aligned}
M_{X}(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x & =\int_{0}^{\infty} e^{t x} \frac{1}{\beta} e^{-\frac{x}{\beta}} d x \\
& =\frac{1}{\beta} \int_{0}^{\infty} e^{-\left(\frac{1}{\beta}-t\right) x} d x \\
& =\frac{1}{\beta} \int_{0}^{\infty} e^{-\left(\frac{1-\beta t}{\beta}\right) x} d x \\
& =\frac{1}{\beta}\left[-\frac{e^{-\left(\frac{1-\beta t}{\beta}\right) x}}{\left(\frac{1-\beta t}{\beta}\right)}\right]_{0}^{\infty}=\frac{1}{1-\beta t},
\end{aligned}
$$

provided $\frac{1}{\beta}-t>0 \Longleftrightarrow t<\frac{1}{\beta}$. Note that

$$
\begin{aligned}
& M_{X}^{\prime}(t)=\frac{d}{d t} M_{X}(t)=\frac{-1}{(1-\beta t)^{2}}(-\beta)=\frac{\beta}{(1-\beta t)^{2}} \\
& M_{X}^{\prime \prime}(t)=\frac{d^{2}}{d t^{2}} M_{X}(t)=\frac{d}{d t} M_{X}^{\prime}(t)=\beta \frac{-2}{(1-\beta t)^{3}}(-\beta)=\frac{2 \beta^{2}}{(1-\beta t)^{3}} .
\end{aligned}
$$

Therefore, $E(X)=\left.M_{X}^{\prime}(t)\right|_{t=0}=\beta$ and $E\left(X^{2}\right)=\left.M_{X}^{\prime \prime}(t)\right|_{t=0}=2 \beta^{2}$. Hence

$$
V(X)=E\left(X^{2}\right)-E^{2}(X)=2 \beta^{2}-\beta^{2}=\beta^{2} .
$$

7. (WMS, Problem 4.97-4.98.) A manufacturing plant uses a specific bulk product. The amount of product used in one day can be modeled by an exponential distribution with $\beta=4$ (measurements in tons).
(a) Find the probability that the plant will use more than 4 tons on a given day.
(b) How much of the bulk product should be stocked so that the plants chance of running out of the product is only 0.05 ?

Solution. Let X denote the amount (in tons) of product used in one day. Then by assumption $X \sim \operatorname{Exp}(\beta=4)$. So, the DF of X is $F_{X}(x)=1-e^{-x / \beta}=1-e^{-x / 4}$ for $x \geq 0$.
(a) Required probability $=P(X>4)=1-P(X \leq 4)=1-F_{X}(4)=1-\left(1-e^{-4 / 4}\right)=e^{-1}=$ 0.3679 .
(b) We need x (in tons) such that $P(X>x)=0.05$. Now $P(X>x)=1-F_{X}(x)=e^{-x / 4}$. Therefore, $e^{-x / 4}=0.05 \Longrightarrow-x / 4=\log (0.05) \Longrightarrow x=-4 \log (0.05)=11.9829$ tons.
8. (WMS, Problem 4.91.) Let Y have an exponential distribution with $P(Y>2)=.0821$. Find $E(Y)$ and $P(Y \leq 1.7)$.

Solution. Let $Y \sim \operatorname{Exp}(\beta)$. We need to find β. Recall Y has $\operatorname{DF} F_{Y}(y)=1-e^{-y / \beta}$ for $y \geq 0$. Therefore,
$P(Y>2)=1-F_{Y}(2)=e^{-2 / \beta}=0.0821 \Longrightarrow-\frac{2}{\beta}=\log (0.0821) \Longrightarrow \beta=\frac{2}{-\log (0.0821)} \approx 0.8$.
Hence, $E(Y)=\beta=0.8$ and $P(Y \leq 1.7)=1-e^{-1.7 / 0.8} \approx 0.8806$.

