1. Let $X \sim \operatorname{Gamma}(\alpha, \beta)$ with density

$$
f(x)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta}, \quad x \geq 0
$$

(a) Prove that $X$ has MGF $M_{X}(t)=1 /(1-\beta t)^{\alpha}$ provided $t<\frac{1}{\beta}$.

Solution. By definition, the MGF is given by:

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x \\
& =\int_{0}^{\infty} e^{t x} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} e^{-x / \beta} x^{\alpha-1} d x \\
& =\frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} e^{-x\left(\frac{1}{\beta}-t\right)} x^{\alpha-1} d x \\
& =\frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} e^{-x\left(\frac{1}{\beta}-t\right)} x^{\alpha-1} d x \\
& =\frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} e^{-x /\left(\frac{\beta}{1-\beta t}\right)} x^{\alpha-1} d x \\
& =\frac{1}{\beta^{\alpha} \Gamma(\alpha)}\left(\frac{\beta}{1-\beta t}\right)^{\alpha} \Gamma(\alpha) \int_{0}^{\infty} \underbrace{\frac{1}{\left(\frac{\beta}{1-\beta t}\right)^{\alpha} \Gamma(\alpha)} e^{-x /\left(\frac{\beta}{1-\beta t}\right)} x^{\alpha-1}}_{\operatorname{PDF} \text { of Gamma }\left(\alpha, \frac{\beta}{1-\beta t}\right)} d x=\frac{1}{(1-\beta t)^{\alpha}},
\end{aligned}
$$

provided $\frac{1}{\beta}-t>0 \Longleftrightarrow t<\frac{1}{\beta}$.
(b) Using the above MGF, find $E(X)$ and $E\left(X^{2}\right)$. Then find $V(X)$.

Solution. We have $M_{X}(t)=1 /(1-\beta t)^{\alpha}=(1-\beta t)^{-\alpha}$. Therefore,

$$
\begin{aligned}
M_{X}^{\prime}(t) & =\frac{d}{d t} M_{X}(t)=-\alpha(1-\beta t)^{-\alpha-1}(-\beta)=\alpha \beta(1-\beta t)^{-(1+\alpha)} \\
M_{X}^{\prime \prime}(t) & =\frac{d^{2}}{d t^{2}} M_{X}(t)=\frac{d}{d t} M_{X}^{\prime}(t)=\alpha \beta\{-(1+\alpha)\}(1-\beta t)^{-(1+\alpha)-1}(-\beta) \\
& =\alpha(1+\alpha) \beta^{2}(1-\beta t)^{-(2+\alpha)}
\end{aligned}
$$

Therefore, $E(X)=\left.M_{X}^{\prime}(t)\right|_{t=0}=\alpha \beta$ and $E\left(X^{2}\right)=\left.M_{X}^{\prime \prime}(t)\right|_{t=0}=\alpha(1+\alpha) \beta^{2}$. Hence

$$
V(X)=E\left(X^{2}\right)-E^{2}(X)=\alpha(1+\alpha) \beta^{2}-\alpha^{2} \beta^{2}=\alpha \beta^{2} .
$$

2. Let $X \sim \chi_{\nu}^{2}$ (chi-squared distribution with $\nu$ degrees of freedom).
(a) Write down the density of $X$, using the definition of chi-squared distribution as a Gamma distribution with appropriately chosen parameters $\alpha$ and $\beta$.
Solution. Recall that $\chi_{\nu}^{2} \equiv \operatorname{Gamma}(\alpha=\nu / 2, \beta=2)$. Therefore, the PDF of $X$ is given by:

$$
f(x)=\frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} e^{-x / 2} x^{\frac{\nu}{2}-1} ; x \geq 0 .
$$

(b) Find $E(X)$ and $V(X)$.

Solution. Using the formulas, $E(X)=\alpha \beta=\frac{\nu}{2} \cdot 2=\nu$ and $V(X)=\alpha \beta^{2}=\frac{\nu}{2} \cdot 2^{2}=2 \nu$.
3. Let $X$ be a gamma random variable with mean If $E(X)=20$ and $V(X)=100$.
(a) Find $\alpha$ and $\beta$, the two parameters in a Gamma distribution.

Solution. Let $X \sim \operatorname{Gamma}(\alpha, \beta)$. Then $E(X)=\alpha \beta=20$ and $V(X)=\alpha \beta^{2}=100$. Therefore,

$$
\frac{V(X)}{E(X)}=\frac{100}{20} \Longrightarrow \frac{\alpha \beta^{2}}{\alpha \beta}=\beta=5
$$

Which means

$$
E(X)=\alpha \beta=\alpha \times 5=20 \Longrightarrow \alpha=4 .
$$

(b) Using Chebyshev's theorem, provide an interval such that the probability that $X$ lies in this interval is atleast $99 \%$.

Solution. Let $\mu_{X}$ and $\sigma_{X}^{2}$ respectively denote the mean and the variance of $X$. Then by Chebyshev's theorem,

$$
P\left(\mu_{X}-k \sigma_{X}<X<\mu_{X}+k \sigma_{X}\right)=P\left(\left|X-\mu_{X}\right|<k \sigma_{X}\right) \geq 1-\frac{1}{k^{2}} .
$$

We need $k$ such that $1-k^{-2}=0.99 \Longrightarrow k^{-2}=0.01 \Longrightarrow k=1 / 0.1=10$. Therefore

$$
0.99 \leq P(20-10 \sqrt{100}<X<20+10 \sqrt{100})=P(-80<X<120)=P(0<X<120),
$$

since $X$ is non-negative. Therefore, required interval is $(0,120)$.
4. Let $Z$ follow the standard normal distribution with PDF $f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}$ for $-\infty<z<\infty$. Verify that $f(z)$ is indeed a PDF. Observe that $f(z)>0$ for any $z \in \mathbb{R}$ is automatic. So all you have to prove is $\int_{-\infty}^{\infty} f(z) d z=1$. [Hint: Note that $\int_{0}^{\infty} e^{-\frac{z^{2}}{2}} d z=\int_{0}^{\infty} z^{-1} e^{-\frac{z^{2}}{2}} z d z$. Now use the substitution $t=z^{2} / 2$ and modify the proof for $E\left(Z^{2}\right)=1$.]

Solution. Note that

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(z) d z & =\int_{-\infty}^{\infty} \underbrace{\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}}_{\text {even function }} d z \\
& =2 \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
& =2 \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} z^{-1} e^{-\frac{z^{2}}{2}} z d z \\
& \left.=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty}(\sqrt{2 t})^{-1} e^{-t} d t \quad \text { (substitute } t=-z^{2} / 2\right) \\
& =\frac{2}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{2}} \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} d t \\
& =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} t^{\frac{1}{2}-1} e^{-t} d t=\frac{1}{\sqrt{\pi}} \Gamma(1 / 2)=\frac{1}{\sqrt{\pi}} \sqrt{\pi}=1
\end{aligned}
$$

5. The mode of a continuous RV $X$ is defined to be the point where $f_{X}$, the density of $X$, is maximum. Let $X \sim N\left(\mu, \sigma^{2}\right)$. Show that $X$ has mode $\mu$. Also find the density at the mode.

Solution. The density of $X$ is:

$$
f_{X}(x)=\frac{1}{(\sqrt{2 \pi}) \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, x \in \mathbb{R}
$$

There are two ways to solve this problem: using algebra, and using calculus.

Method 1 (using algebra). Note that, for all $x \in \mathbb{R}$

$$
\begin{aligned}
& \left(\frac{x-\mu}{\sigma}\right)^{2} \geq 0=\left(\frac{\mu-\mu}{\sigma}\right)^{2} \\
& \Longrightarrow-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2} \leq-\frac{1}{2}\left(\frac{\mu-\mu}{\sigma}\right)^{2} \\
& \Longrightarrow e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \leq e^{-\frac{1}{2}\left(\frac{\mu-\mu}{\sigma}\right)^{2}} \quad\left(e^{x} \text { is increasing in } x\right) \\
& \Longrightarrow f_{X}(x)=\frac{1}{(\sqrt{2 \pi}) \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \leq \frac{1}{(\sqrt{2 \pi}) \sigma} e^{-\frac{1}{2}\left(\frac{\mu-\mu}{\sigma}\right)^{2}}=f_{X}(\mu)
\end{aligned}
$$

Thus $f_{X}(x) \leq f_{X}(\mu)$ for all $x \in \mathbb{R}$, which means $f_{X}(x)$ is maximum when $x=\mu$. Hence $\mu$ is the mode of $X$.

Method 2 (using calculus). We need to maximize $f_{X}(x)$ with respect to $x$. Note that
$f_{X}^{\prime}(x)=\frac{d}{d x} f_{X}(x)=\frac{1}{(\sqrt{2 \pi}) \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}\left(-\frac{1}{2 \sigma^{2}} 2(x-\mu)(-1)\right)=\frac{1}{(\sqrt{2 \pi}) \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}\left(\frac{x-\mu}{\sigma^{2}}\right)$.
Therefore,

$$
f_{X}^{\prime}(x)=0 \Longrightarrow \frac{1}{(\sqrt{2 \pi}) \sigma} \underbrace{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}}_{>0 \text { for all } x \in \mathbb{R}}\left(\frac{x-\mu}{\sigma^{2}}\right)=0 \Longrightarrow x=\mu
$$

Again,

$$
f_{X}^{\prime \prime}(x)=\frac{d}{d x} f_{X}^{\prime}(x)=\frac{1}{(\sqrt{2 \pi}) \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}\left[\left(\frac{x-\mu}{\sigma^{2}}\right)^{2}-\frac{1}{\sigma^{2}}\right]
$$

which means

$$
\left.f_{X}^{\prime \prime}(x)\right|_{x=\mu}=-\frac{1}{(\sqrt{2 \pi}) \sigma^{3}}<0 .
$$

This proves that $f_{X}(x)$ is maximum when $x=\mu$. Therefore, the mode of $X$ is $\mu$.

The density at the mode is

$$
f_{X}(\mu)=\frac{1}{(\sqrt{2 \pi}) \sigma}
$$

6. (WMS, Problem 4.73.) The width of bolts of fabric is normally distributed with mean 950 mm (millimeters) and standard deviation 10 mm . For the following two problems, leave the final answers in terms of the standard normal CDF $\Phi$.
(a) What is the probability that a randomly chosen bolt has a width between 947 and 958 mm ? Solution. Let $X$ denote the width of a randomly selected bolt. Then, by assumption, $X \sim N\left(\mu=950, \sigma^{2}=10^{2}\right)$. Therefore, required probability

$$
\begin{aligned}
P(947 \leq X \leq 958) & =P\left(\frac{947-950}{10} \leq \frac{X-950}{10} \leq \frac{958-950}{10}\right) \\
& =P(-0.3 \leq Z \leq 0.8) \quad \text { where } Z \sim N(0,1) \\
& =\Phi(0.8)-\Phi(-0.3)
\end{aligned}
$$

(b) What is the appropriate value for $C$ such that a randomly chosen bolt has a width less than $C$ with probability 0.8531 ?

Solution. We need $C$ such that $P(X \leq C)=0.8531$. Now,

$$
P(X \leq C)=P\left(\frac{X-950}{10} \leq \frac{C-950}{10}\right)=\Phi\left(\frac{C-950}{10}\right)
$$

since $Z=\frac{X-950}{10} \sim N(0,1)$. Therefore,

$$
\Phi\left(\frac{C-950}{10}\right)=0.8531 \Longrightarrow \frac{C-950}{10}=\Phi^{-1}(0.8531) \Longrightarrow C=950+10 \Phi^{-1}(0.8531) .
$$

7. Let $X \sim N\left(\mu, \sigma^{2}\right)$. Using the values $\Phi(1)=0.841, \Phi(2)=0.977$ and $\Phi(3)=0.998$, calculate the probabilities $P(|X-\mu| \leq \sigma), P(|X-\mu| \leq 2 \sigma)$ and $P(|X-\mu| \leq 3 \sigma)$. [Note: This is almost like the empirical law, except for the fact that here the population quantities $\mu$ and $\sigma^{2}$ (which are typically unknown in a practical problem) instead of their sample analogues are used.]

Solution. Note that

$$
\begin{aligned}
P(|X-\mu| \leq \sigma) & =P\left(\left|\frac{X-\mu}{\sigma}\right| \leq 1\right) \\
& =P(|Z| \leq 1) \quad \text { where } Z \sim N(0,1) \\
& =P(-1 \leq Z \leq 1) \\
& =\Phi(1)-\Phi(-1) \\
& =\Phi(1)-(1-\Phi(1))=2 \Phi(1)-1=0.682
\end{aligned}
$$

Similarly, $P(|X-\mu| \leq 2 \sigma)=2 \Phi(2)-1=0.954$ and $P(|X-\mu| \leq 3 \sigma)=2 \Phi(3)-1=0.996$.
8. (WMS, Problem 4.80) Assume that Y is normally distributed with mean $\mu$ and standard deviation $\sigma$. After observing a value of $Y$, a mathematician constructs a rectangle with length $L=|Y|$ and width $W=3|Y|$. Let $A$ denote the area of the resulting rectangle. What is $E(A)$ ?

Solution. We have $A=L \times W$ (area $=$ length $\times$ width $)$. Therefore,

$$
E(A)=E(|Y| \times 3|Y|)=E\left(3 Y^{2}\right)=3 E\left(Y^{2}\right)=3\left[V(Y)+E^{2}(Y)\right]=3\left(\sigma^{2}+\mu^{2}\right) .
$$

