1. Suppose that X and Y have a discrete joint distribution for which the joint PMF is defined as follows:

$$
p(x, y)= \begin{cases}c|x+y|, & x=-1,0,1 \text { and } y=-1,0,1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine:
(a) the value of the constant c. [Answer: $c=1 / 8$.]
(b) $P(X=0, Y=-1)$.
(c) $P(X=1)$.
(d) $P(|X-Y|<1)$.
2. (WMS, Problem 5.14, 5.32.) Suppose that the random variables Y_{1} and Y_{2} have joint probability density function $f\left(y_{1}, y_{2}\right)$ given by

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}6 y_{1}^{2} y_{2}, & 0 \leq y_{1} \leq y_{2}, y_{1}+y_{2} \leq 2 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Verify that this is a valid joint density function.
(b) What is the probability that $Y_{1}+Y_{2}$ is less than 1? [Answer: $1 / 32$.]
(c) Show that the marginal density of Y_{1} is a beta density with $\alpha=3$ and $\beta=2$.
(d) Derive the conditional density of Y_{2} given $Y_{1}=y_{1}$. [Answer: $f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right)=\frac{1}{2} y_{2} /(1-$ $\left.y_{1}\right), 0 \leq y_{1} \leq y_{2} \leq 2-y_{1}$.]
(e) Find $P\left(Y_{2}<1.1 \mid Y_{1}=0.60\right)$.
3. A fair die is rolled, and then a coin with probability p of Heads is flipped as many times as the die roll says, e.g., if the result of the die roll is a 3 , then the coin is flipped 3 times. Let X be the result of the die roll and Y be the number of times the coin lands Heads.
(a) Find the conditional PMF of Y given $X=x$. [Answer: $p_{Y \mid X}(y \mid x)=\binom{x}{y} p^{y}(1-p)^{x-y}, y=$ $0, \cdots, x ; x=1,2, \cdots, 6$.]
(b) Find the joint PMF of X and Y. Are they independent? [Hint: Note that $p_{X, Y}(x, y)=$ $p_{Y \mid X}(y \mid x) p_{X}(x)$.]
(c) Find the marginal PMFs of X and Y. [Answer: $p_{X}(x)=1 / 6, x=1, \cdots, 6$ and $p_{Y}(y)=$ $\left.\frac{1}{6} p^{y} \sum_{x=y}^{6}\binom{x}{y}(1-p)^{x-y}, y=0,1, \cdots, 6.\right]$
4. (WMS, Problem 5.34.) If Y_{1} is uniformly distributed on the interval $(0,1)$ and, for $0<y_{1}<1$,

$$
f\left(y_{2} \mid y_{1}\right)= \begin{cases}1 / y_{1}, & 0 \leq y_{2} \leq y_{1} \\ 0, & \text { elsewhere }\end{cases}
$$

(a) what is the "name" of the conditional distribution of Y_{2} given $Y_{1}=y_{1}$?
(b) find the joint density function of Y_{1} and Y_{2}. [Answer: $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=1 / y_{1}, 0 \leq y_{2} \leq y_{1} \leq$ 1.]
(c) find the marginal density function for Y_{2}. [Answer: $f_{Y_{2}}\left(y_{2}\right)=-\log \left(y_{2}\right), 0 \leq y_{2} \leq 1$.]
5. (WMS, Problem 5.62.) Suppose that the probability that a head appears when a coin is tossed is p and the probability that a tail occurs is $q=1-p$. Person A tosses the coin until the first head appears and stops. Person B does likewise. The results obtained by persons A and B are assumed to be independent. What is the probability that A and B stop on exactly the same number toss? [Answer: $p^{2} /\left[1-(1-p)^{2}\right]$.]

