1. Suppose that X and Y have a discrete joint distribution for which the joint PMF is defined as follows:

$$
f(x, y)= \begin{cases}c|x+y|, & x=-1,0,1 \text { and } y=-1,0,1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine:
(a) the value of the constant c .

Solution. The joint PMF is tabulated as follows.

	Y	-1	0	1	$P_{X}(x)$
X		-1			
-1	2 c	c	0	3 c	
0	c	0	c	2 c	
1	0	c	2 c	3 c	
$P_{Y}(y)$	3 c	2 c	3 c	8 c	

Therefore, from $\sum_{x} \sum_{y} p(x, y)=1$, we get $8 c=1 \Longrightarrow c=1 / 8$.
(b) $P(X=0, Y=-1)$.

Solution. From the table, $P(X=0, Y=-1)=c=1 / 8$.
(c) $P(X=1)$.

Solution. Again, from the table, $P(X=1)=3 / 8$.
(d) $P(|X-Y|<1)$.

Solution. Note that $P(|X-Y|<1)=P(|X-Y|=0)=P(X=Y)=p(-1,-1)+p(0,0)+$ $p(1,1)=4 / 8=1 / 2$.
2. (WMS, Problem 5.14, 5.32.) Suppose that the random variables Y_{1} and Y_{2} have joint probability density function $f\left(y_{1}, y_{2}\right)$ given by

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}6 y_{1}^{2} y_{2}, & 0 \leq y_{1} \leq y_{2}, y_{1}+y_{2} \leq 2 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Verify that this is a valid joint density function.

Solution. Note that $f\left(y_{1}, y_{2}\right)$ is non negative everywhere. So we only need to show that it integrates up to 1 . We will integrate over the independent range of y_{1} and the dependent range of y_{2}. Note that $1 \leq y_{1} \leq y_{2} \Longrightarrow y_{1}+y_{2} \geq 2 y_{1}$. Therefore, $0 \leq 2 y_{1} \leq y_{1}+y_{2} \leq$ $2 \Longrightarrow 0 \leq y_{1} \leq 1$, and of course $y_{1} \leq y_{2} \leq 2-y_{1}$. Hence,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(y_{1}, y_{2}\right) d y_{2} d y_{1}=\int_{0}^{1} \int_{y_{1}}^{2-y_{1}} 6 y_{1}^{2} y_{2} d y_{2} d y_{1}
$$

$$
\begin{aligned}
& =\int_{0}^{1} 3 y_{1}^{2}\left[y_{2}^{2}\right]_{y_{1}}^{2-y_{1}} d y_{1} \\
& =\int_{0}^{1} 3 y_{1}^{2} 2 \cdot 2\left(1-y_{1}\right) d y_{1} \\
& =12 B(3,2)=12 \frac{\Gamma(3) \Gamma(2)}{\Gamma(5)}=12 \frac{2!\cdot 1}{4!}=1 .
\end{aligned}
$$

(b) What is the probability that $Y_{1}+Y_{2}$ is less than 1 ?

Solution. By similar arguments as in part (a), here we have $0 \leq y_{1} \leq 1 / 2$ and $y_{1} \leq y_{2} \leq$ $1-y_{1}$. Therefore,

$$
\begin{aligned}
P(X+Y \leq 1) & =\int_{0}^{\frac{1}{2}} \int_{y_{1}}^{1-y_{1}} 6 y_{1}^{2} y_{2} d y_{2} d y_{1} \\
& =\int_{0}^{\frac{1}{2}} 3 y_{1}^{2}\left[y_{2}^{2}\right]_{y_{1}}^{1-y_{1}} d y_{1} \\
& =\int_{0}^{\frac{1}{2}} 3 y_{1}^{2}\left(1-2 y_{1}\right) d y_{1} \\
& =\int_{0}^{\frac{1}{2}}\left(3 y_{1}^{2}-6 y_{1}^{3}\right) d y_{1}=\left[y^{3}-3 \frac{y^{4}}{2}\right]_{0}^{\frac{1}{2}}=\frac{1}{8}-\frac{3}{32}=\frac{1}{32} .
\end{aligned}
$$

(c) Show that the marginal density of Y_{1} is a beta density with $\alpha=3$ and $\beta=2$.

Solution. The dependent range for y_{2} is $y_{1} \leq y_{2} \leq 2-y_{1}$. Therefore, marginal PDF of Y_{1} is (see part (a)):

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{y_{1}}^{2-y_{1}} 6 y_{1}^{2} y_{2} d y_{2}=12 \cdot y_{1}^{3-1}\left(1-y_{1}\right)^{2-1}, 0 \leq y_{1} \leq 1
$$

which is the density of $\operatorname{Beta}(\alpha=3, \beta=2)$.
(d) Derive the conditional density of Y_{2} given $Y_{1}=y_{1}$.

Solution. By definition, the conditional PDF of Y_{2} given $Y_{1}=y_{1}$ is

$$
f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right)=\frac{f\left(y_{1}, y_{2}\right)}{f_{Y_{1}}\left(y_{1}\right)}=\frac{1}{2} \frac{y_{2}}{\left(1-y_{1}\right)}, 0 \leq y_{1} \leq y_{2} \leq 2-y_{1} .
$$

(e) Find $P\left(Y_{2}<1.1 \mid Y_{1}=0.60\right)$.

Solution. From part (d),

$$
f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid 0.60\right)=\frac{1}{2} \frac{y_{2}}{(1-0.60)}=(1.25) y_{2}, 0.60 \leq y_{2} \leq 1.40 .
$$

Therefore, $P\left(Y_{2}<1.1 \mid Y_{1}=0.60\right)=\int_{0.60}^{1.10}(1.25) y_{2} d y_{2}=1.25 \times 0.5\left[y_{2}^{2}\right]_{0.60}^{1.10} \approx 0.531$.
3. A fair die is rolled, and then a coin with probability p of Heads is flipped as many times as the die roll says, e.g., if the result of the die roll is a 3 , then the coin is flipped 3 times. Let X be the result of the die roll and Y be the number of times the coin lands Heads.
(a) Find the conditional PMF of Y given $X=x$.

Solution. Note that the (marginal) PMF of X is $p_{X}(x)=1 / 6$ for $x=1, \cdots, 6$. Now, given that the result of the die roll is x, Y is the number of heads in a series of x tosses. So, conditional on $X=x, Y \sim \operatorname{Bin}(n=x, p)$. Hence, the conditional PMF of Y given $X=x$ is given by

$$
p_{Y \mid X}(y \mid x)=\binom{x}{y} p^{y}(1-p)^{x-y}, y=0, \cdots, x, x=1,2, \cdots, 6 .
$$

(b) Find the joint PMF of X and Y. Are they independent? [Hint: Note that $p_{X, Y}(x, y)=$ $p_{Y \mid X}(y \mid x) p_{X}(x)$.] The joint PMF of X and Y is:

$$
p_{X, Y}(x, y)=p_{Y \mid X}(y \mid x) p_{X}(x)=\frac{1}{6}\binom{x}{y} p^{y}(1-p)^{x-y}, y=0, \cdots, x, x=1,2, \cdots, 6 .
$$

X and Y are not independent since the conditional distribution of Y given $X=x$ depends on x.
(c) Find the marginal PMFs of X and Y.

Solution. The marginal PMF of X is $p_{X}(x)=1 / 6$ for $x=1, \cdots, 6$. To find the marginal PMF of Y, we first need to find the dependent range of x. Note that $y=0, \cdots, x \Longrightarrow$ $x \geq y$ and of course $x \leq 6$. Since x is an integer, therefore, the dependent range of x is: $x=y, y+1, \cdots, 6$ for $y=0,1 \cdots, 6$ (result of a die roll). Therefore, the marginal PMF of Y is given by:

$$
p_{Y}(y)=\sum_{x=y}^{6} p_{X, Y}(x, y)=\frac{1}{6} p^{y} \sum_{x=y}^{6}\binom{x}{y}(1-p)^{x-y}, x=y, y+1, \cdots, 6, y=0,1 \cdots, 6 .
$$

4. (WMS, Problem 5.34.) If Y_{1} is uniformly distributed on the interval $(0,1)$ and, for $0<y_{1}<1$,

$$
f\left(y_{2} \mid y_{1}\right)= \begin{cases}1 / y_{1}, & 0 \leq y_{2} \leq y_{1} \\ 0, & \text { elsewhere }\end{cases}
$$

(a) what is the "name" of the conditional distribution of Y_{2} given $Y_{1}=y_{1}$?

Solution. Uniform distribution with $\theta_{1}=0, \theta_{2}=1$, i.e., $U(0, y)$.
(b) find the joint density function of Y_{1} and Y_{2}.

Solution. The joint PDF of X and Y is:

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right) f_{Y_{1}}\left(y_{1}\right)=\frac{1}{y_{1}}, 0 \leq y_{2} \leq y_{1}, 0 \leq y_{1} \leq 1 .
$$

(c) find the marginal density function for Y_{2}.

Solution. Note that the dependent range for y_{1} is $y_{2} \leq y_{1} \leq 1$ for $0 \leq y_{2} \leq 1$. Therefore, the marginal PDF of Y_{2} is:

$$
f_{Y_{2}}\left(y_{2}\right)=\int_{y_{2}}^{1} \frac{d y_{1}}{y_{1}}=\left[\log y_{1}\right]_{y_{2}}^{1}=-\log y_{2}, 0 \leq y_{2} \leq 1 .
$$

5. (WMS, Problem 5.62.) Suppose that the probability that a head appears when a coin is tossed is p and the probability that a tail occurs is $q=1-p$. Person A tosses the coin until the first head appears and stops. Person B does likewise. The results obtained by persons A and B are assumed to be independent. What is the probability that A and B stop on exactly the same number toss?

Solution. Let X and Y respectively denote the number of trials required to get the first head by A and B. Then, $X \sim \operatorname{Geo}(p)$ and $Y \sim \operatorname{Geo}(p)$ independently. Therefore, required probability is:

$$
\begin{aligned}
P(X=Y) & =\sum_{k=1}^{\infty} P(X=Y=k) \\
& =\sum_{k=1}^{\infty} P(X=k) P(Y=k) \\
& =\sum_{k=1}^{\infty} p^{2}\left(q^{2}\right)^{k-1}=\frac{p^{2}}{1-q^{2}} .
\end{aligned}
$$

