STA 4321/5325

Homework 8

1. First, a result: For any two RVs X and Y,

 $E^2(XY) \le E(X^2)E(Y^2)$ (Cauchy-Schwarz inequality).

Using the above inequality, prove that $-1 \le \rho_{X,Y} \le 1$.

2. Let Y denote the number of heads obtained in a sequence of n tosses of a coin with probability of a head p. Note that Y can be represented as $Y = \sum_{i=1}^{n} X_i$, where for $i = 1, \dots, n$,

$$X_i = \begin{cases} 1, & \text{if the } i\text{-th toss results in a head} \\ 0, & \text{otherwise.} \end{cases}$$

Using the above representation, show that E(Y) = np and V(Y) = npq, where q = 1 - p.

- 3. Let $T_1 \sim \text{Exp}(\beta_1)$ and $T_2 \sim \text{Exp}(\beta_2)$ be independent RVs.
 - (a) Find the joint density of T_1 and T_2 .
 - (b) Show that $P(T_1 \le T_2) = \beta_2/(\beta_1 + \beta_2)$.
 - (c) Let $X = T_1 2T_2$. Find E(X) and V(X). [Answer: $E(X) = \beta_1 2\beta_2$, $V(X) = \beta_1^2 + 4\beta_2^2$.]
- 4. (WMS, Problem 5.100.) Let Z be a standard normal random variable and let $Y_1 = Z$ and $Y_2 = Z^2$.
 - (a) What are $E(Y_1)$ and $E(Y_2)$?
 - (b) Find $Cov(Y_1, Y_2)$.
- 5. (WMS, Problem 5.92.) Let Y_1 and Y_2 be RVs with joint PDF

$$f(y_1, y_2) = \begin{cases} 6(1 - y_2), & 0 \le y_1 \le y_2 \le 1\\ 0, & \text{elsewhere.} \end{cases}$$

Find $Cov(Y_1, Y_2)$. Are Y_1 and Y_2 independent? [Answer: $Cov(Y_1, Y_2) = 1/40$.]

- 6. (WMS, Problem 5.139.) Suppose that a company has determined that the number of jobs per week, N, varies from week to week and has a Poisson distribution with mean λ . The number of hours to complete each job, Y_i , is Gamma distributed with parameters α and β . The total time to complete all jobs in a week is $T = \sum_{i=1}^{N} Y_i$. Note that T is the sum of a random number of random variables. What is
 - (a) E(T|N=n)? [Answer: $n\alpha\beta$.]
 - (b) E(T), the expected total time to complete all jobs? [Answer: $\alpha\beta\lambda$.]
- 7. (WMS, Problem 5.141.) Let Y_1 have an exponential distribution with mean λ and the conditional density of Y_2 given $Y_1 = y_1$ be

$$f(y_2|y_1) = \begin{cases} 1/y_1, & 0 \le y_2 \le y_1\\ 0, & \text{elsewhere.} \end{cases}$$

Find $E(Y_2)$ and $V(Y_2)$, the unconditional mean and variance of Y_2 . [Answer: $E(Y_2) = \lambda/2, V(Y_2) = 5\lambda^2/12.$]

- 8. Suppose that X and Y are RVs such that V(X) = 9, V(Y) = 4, and $\rho_{X,Y} = 1/6$. Determine (a) V(X + Y) and (b) V(X 3Y + 4).
- 9. Show that if E(X|Y) is constant for all values of Y, then X and Y are uncorrelated. [Hint: Note that E(Xg(Y)|Y=y) = g(y)E(X|Y=y) for any function g and any real number y.]