1. First, a result: For any two RVs X and Y,

$$
E^{2}(X Y) \leq E\left(X^{2}\right) E\left(Y^{2}\right) \quad \text { (Cauchy-Schwarz inequality). }
$$

Using the above inequality, prove that $-1 \leq \rho_{X, Y} \leq 1$.
2. Let Y denote the number of heads obtained in a sequence of n tosses of a coin with probability of a head p. Note that Y can be represented as $Y=\sum_{i=1}^{n} X_{i}$, where for $i=1, \cdots, n$,

$$
X_{i}= \begin{cases}1, & \text { if the } i \text {-th toss results in a head } \\ 0, & \text { otherwise }\end{cases}
$$

Using the above representation, show that $E(Y)=n p$ and $V(Y)=n p q$, where $q=1-p$.
3. Let $T_{1} \sim \operatorname{Exp}\left(\beta_{1}\right)$ and $T_{2} \sim \operatorname{Exp}\left(\beta_{2}\right)$ be independent RVs.
(a) Find the joint density of T_{1} and T_{2}.
(b) Show that $P\left(T_{1} \leq T_{2}\right)=\beta_{2} /\left(\beta_{1}+\beta_{2}\right)$.
(c) Let $X=T_{1}-2 T_{2}$. Find $E(X)$ and $V(X)$. [Answer: $E(X)=\beta_{1}-2 \beta_{2}, V(X)=\beta_{1}^{2}+4 \beta_{2}^{2}$.]
4. (WMS, Problem 5.100.) Let Z be a standard normal random variable and let $Y_{1}=Z$ and $Y_{2}=Z^{2}$.
(a) What are $E\left(Y_{1}\right)$ and $E\left(Y_{2}\right)$?
(b) Find $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$.
5. (WMS, Problem 5.92.) Let Y_{1} and Y_{2} be RVs with joint PDF

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}6\left(1-y_{2}\right), & 0 \leq y_{1} \leq y_{2} \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

Find $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$. Are Y_{1} and Y_{2} independent? [Answer: $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=1 / 40$.]
6. (WMS, Problem 5.139.) Suppose that a company has determined that the the number of jobs per week, N, varies from week to week and has a Poisson distribution with mean λ. The number of hours to complete each job, Y_{i}, is Gamma distributed with parameters α and β. The total time to complete all jobs in a week is $T=\sum_{i=1}^{N} Y_{i}$. Note that T is the sum of a random number of random variables. What is
(a) $E(T \mid N=n)$? [Answer: $n \alpha \beta$.]
(b) $E(T)$, the expected total time to complete all jobs? [Answer: $\alpha \beta \lambda$.]
7. (WMS, Problem 5.141.) Let Y_{1} have an exponential distribution with mean λ and the conditional density of Y_{2} given $Y_{1}=y_{1}$ be

$$
f\left(y_{2} \mid y_{1}\right)= \begin{cases}1 / y_{1}, & 0 \leq y_{2} \leq y_{1} \\ 0, & \text { elsewhere }\end{cases}
$$

Find $E\left(Y_{2}\right)$ and $V\left(Y_{2}\right)$, the unconditional mean and variance of Y_{2}. [Answer: $E\left(Y_{2}\right)=$ $\lambda / 2, V\left(Y_{2}\right)=5 \lambda^{2} / 12$.]
8. Suppose that X and Y are RVs such that $V(X)=9, V(Y)=4$, and $\rho_{X, Y}=1 / 6$. Determine (a) $V(X+Y)$ and (b) $V(X-3 Y+4)$.
9. Show that if $E(X \mid Y)$ is constant for all values of Y, then X and Y are uncorrelated. [Hint: Note that $E(X g(Y) \mid Y=y)=g(y) E(X \mid Y=y)$ for any function g and any real number y.]

