
STA 4321/5325 Homework 8 April 5, 2017

1. First, a result: For any two RVs X and Y ,

E2(XY ) ≤ E(X2)E(Y 2) (Cauchy-Schwarz inequality).

Using the above inequality, prove that −1 ≤ ρX,Y ≤ 1.

Solution. Define U = X − E(X) and V = Y − E(Y ). Then E(U2) = E(X − E(X))2 = V (X),
E(V 2) = E(Y − E(Y ))2 = V (Y ) and E(UV ) = E[(X − E(X))(Y − E(Y ))] = Cov(X,Y ).
Therefore, by Cauchy Schwarz inequality

E2(UV ) ≤ E(U2)E(V 2) =⇒ 1 ≥ E2(UV )

E(U2)E(V 2)
=

Cov2(X,Y )

V (X)V (Y )
= ρ2X,Y =⇒ −1 ≤ ρX,Y ≤ 1.

2. Let Y denote the number of heads obtained in a sequence of n tosses of a coin with probability
of a head p. Note that Y can be represented as Y =

∑n
i=1Xi, where for i = 1, · · · , n,

Xi =

{
1, if the i-th toss results in a head

0, otherwise.

Using the above representation, show that E(Y ) = np and V (Y ) = npq, where q = 1− p.

Solution. First, note that because the trials are independent, Xi’s are also independent. Now
for all i = 1, · · · , n,

E(Xi) = 1× P (Xi = 1) + 0× P (Xi = 1) = P (Xi = 1) = 1

and E(X2
i ) = 12 × P (Xi = 1) + 02 × P (Xi = 1) = 1.

Therefore V (Xi) = E(X2
i )−E2(Xi) = p− p2 = p(1− p). Also, Cov(Xi, Xj) = 0 for i 6= j, since

Xi’s are independent. Therefore, from Y =
∑n

i=1Xi we have

E(Y ) =
n∑
i=1

E(Xi) = np

and V (Y ) =
n∑
i=1

V (Xi) + 2
∑∑
1≤i<j≤n

Cov(Xi, Xj) = np(1− p).

3. Let T1 ∼ Exp(β1) and T2 ∼ Exp(β2) be independent RVs.

(a) Find the joint density of T1 and T2.

Solution. Because T1 and T2 are independent, therefore, their joint PDF is given by

fT1,T2(t1, t2) = fT1(t1) fT1(t1) =

{
1

β1β2
e−t1/β1 e−t2/β2 , t1 > 0, t2 > 0

0 otherwise.

1



(b) Show that P (T1 ≤ T2) = β2/(β1 + β2).

Solution. We have

P (T1 ≤ T2) =

∫ ∞
t1=0

∫ ∞
t2=t1

1

β1β2
e−t1/β1e−t2/β2 dt2 dt1

=
1

β1β2

∫ ∞
t1=0

(∫ ∞
t2=t1

e−t2/β2 dt2

)
e−t1/β1 dt1

=
1

β1β2

∫ ∞
t1=0

[
−β2 e−t2/β2

]∞
t1
e−t1/β1 dt1

=
1

β1

∫ ∞
t1=0

e−t1/β2 e−t1/β1 dt1

=
1

β1

∫ ∞
t1=0

e
−t1

(
1
β2

+ 1
β2

)
dt1

=
1

β1

 e
−t1

(
1
β2

+ 1
β2

)
1
/(

1
β2

+ 1
β2

)
∞
0

=
1

β1
· β1β2
β1 + β2

=
β2

β1 + β2
.

(c) Let X = T1 − 2T2. Find E(X) and V (X).

Solution. Note that E(X) = E(T1)− 2E(T2) = β1− 2β2. Since T1 and T2 are independent,
therefore, Cov(T1, T2) = 0. Hence,

V (X) = V (T1) + (−2)2V (T2) = β21 + 4β22 .

4. (WMS, Problem 5.100.) Let Z be a standard normal random variable and let Y1 = Z and
Y2 = Z2 .

(a) What are E(Y1) and E(Y2)?

Solution. We have E(Y1) = E(Z) = 0 and E(Y2) = E(Z2) = V (Z)+E2(Z) = 1+0 = 1.

(b) Find Cov(Y1, Y2).

Solution. Let f(z) denote the density of Z. Then,

E(Z3) =

∫ ∞
−∞

z3 f(z)︸ ︷︷ ︸
odd function

dz = 0.

Hence, E(Y1Y2) = E(Z3) = 0, and therefore, Cov(Y1, Y2) = E(Y1Y2) − E(Y1)E(Y2) =
0− 0× 1 = 0.

5. (WMS, Problem 5.92.) Let Y1 and Y2 be RVs with joint PDF

f(y1, y2) =

{
6(1− y2), 0 ≤ y1 ≤ y2 ≤ 1

0, elsewhere.

Find Cov(Y1, Y2). Are Y1 and Y2 independent?
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Solution. We have,

E(Y1Y2) =

∫ 1

y2=0

∫ y2

y1=0
y1y2 6(1− y2) dy1 dy2

= 6

∫ 1

y2=0

(
y2 − y22

)(∫ y2

y1=0
y1 dy1

)
dy2

= 6

∫ 1

y2=0

(
y2 − y22

) [y21
2
dy1

]y2
0

dy2

= 3

∫ 1

y2=0

(
y32 − y42

)
dy2 = 3

[
1

4
− 1

5

]
=

3

20
,

E(Y1) =

∫ 1

y2=0

∫ y2

y1=0
y1 6(1− y2) dy1 dy2

= 6

∫ 1

y2=0
(1− y2)

(∫ y2

y1=0
y1 dy1

)
dy2

= 3

∫ 1

y2=0

(
y22 − y32

)
dy2 = 3

[
1

3
− 1

4

]
=

1

4
,

and E(Y2) =

∫ 1

y2=0

∫ y2

y1=0
y2 6(1− y2) dy1 dy2

= 6

∫ 1

y2=0

(
y2 − y22

)(∫ y2

y1=0
dy1

)
dy2

= 6

∫ 1

y2=0

(
y22 − y32

)
dy2 = 6

[
1

3
− 1

4

]
=

1

2
.

Therefore, Cov(Y1, Y2) = E(Y1Y2) − E(Y1)E(Y2) = 3
20 −

1
4 ·

1
2 = 1/40. Since Cov(Y1, Y2) 6= 0,

therefore Y1 and Y2 cannot be independent. (Also follows from dependent ranges.)

6. (WMS, Problem 5.139.) Suppose that a company has determined that the the number of jobs
per week, N , varies from week to week and has a Poisson distribution with mean λ. The number
of hours to complete each job, Yi, is Gamma distributed with parameters α and β. The total
time to complete all jobs in a week is T =

∑N
i=1 Yi. Note that T is the sum of a random number

of random variables. What is

(a) E(T |N = n)?

Solution. We have,

E(T |N = n) = E

(
N∑
i=1

Yi

∣∣∣∣∣N = n

)
= E

(
n∑
i=1

Yi

)
=

n∑
i=1

E (Yi) =
n∑
i=1

αβ = nαβ

(b) E(T ), the expected total time to complete all jobs?

Solution. By the tower property,

E(T ) = E[E(T |N)] = E(Nαβ) = αβE(N) = αβλ.
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7. (WMS, Problem 5.141.) Let Y1 have an exponential distribution with mean λ and the conditional
density of Y2 given Y1 = y1 be

f(y2|y1) =

{
1/y1, 0 ≤ y2 ≤ y1
0, elsewhere.

Find E(Y2) and V (Y2), the unconditional mean and variance of Y2.

Solution. Note that the conditional distribution of Y2 given Y1 = y1 is U(0, y1). Hence, E(Y2|Y1) =
Y1/2, and V (Y2|Y1) = (Y1− 0)2/12 = Y 2

1 /12. Also, Y1 ∼ Exp(λ). Hence V (Y1) = λ2. Therefore,

E(Y2) = E[E(Y2|Y1)] = E(Y1/2) =
λ

2
,

and V (Y2) = E[V (Y2|Y1)] + V [E(Y2|Y1)]
= E(Y 2

1 /12) + V (Y1/2)

=
1

12
E(Y 2

1 ) +
1

4
V (Y1)

=
1

12
{V (Y1) + E2(Y1)}+

1

4
V (Y1)

=
1

12
(λ2 + λ2) +

1

4
λ2 =

2

12
λ2 +

3

12
λ2 =

5λ2

12
.

8. Suppose that X and Y are RVs such that V (X) = 9, V (Y ) = 4, and ρX,Y = 1/6. Determine (a)
V (X + Y ) and (b) V (X − 3Y + 4).

Solution. Note that

ρX,Y =
Cov(X,Y )√
V (X)V (Y )

=
1

6
=⇒ Cov(X,Y ) =

1

6

√
V (X)V (Y ) =

1

6
· 6 = 1.

Therefore, (a) V (X+Y ) = V (X)+V (Y )+2Cov(X,Y ) = 9+4+2 = 15, and (b) V (X−3Y +4) =
V (X − 3Y ) = V (X) + (−3)2V (Y ) + 2(−3)Cov(X,Y ) = 9 + 9× 4− 6× 1 = 39.

9. Show that if E(X|Y ) is constant for all values of Y , then X and Y are uncorrelated. [Hint:
Note that E(Xg(Y )|Y = y) = g(y)E(X|Y = y) for any function g and any real number y.]

Solution. It is given that E(X|Y ) = k, where k ∈ R is a constant. This means

E(XY ) = E[E(XY |Y )] = E[Y E(X|Y )] = E(Y k) = kE(Y )

and E(X) = E[E(X|Y )] = E(k) = k. Therefore,

Cov(X,Y ) = E(XY )− E(X)E(Y ) = kE(Y )− kE(Y ) = 0

and hence Corr(X,Y ) = 0.
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