1. First, a result: For any two RVs X and Y,

$$
E^{2}(X Y) \leq E\left(X^{2}\right) E\left(Y^{2}\right) \quad \text { (Cauchy-Schwarz inequality). }
$$

Using the above inequality, prove that $-1 \leq \rho_{X, Y} \leq 1$.
Solution. Define $U=X-E(X)$ and $V=Y-E(Y)$. Then $E\left(U^{2}\right)=E(X-E(X))^{2}=V(X)$, $E\left(V^{2}\right)=E(Y-E(Y))^{2}=V(Y)$ and $E(U V)=E[(X-E(X))(Y-E(Y))]=\operatorname{Cov}(X, Y)$. Therefore, by Cauchy Schwarz inequality

$$
E^{2}(U V) \leq E\left(U^{2}\right) E\left(V^{2}\right) \Longrightarrow 1 \geq \frac{E^{2}(U V)}{E\left(U^{2}\right) E\left(V^{2}\right)}=\frac{\operatorname{Cov}^{2}(X, Y)}{V(X) V(Y)}=\rho_{X, Y}^{2} \Longrightarrow-1 \leq \rho_{X, Y} \leq 1
$$

2. Let Y denote the number of heads obtained in a sequence of n tosses of a coin with probability of a head p. Note that Y can be represented as $Y=\sum_{i=1}^{n} X_{i}$, where for $i=1, \cdots, n$,

$$
X_{i}= \begin{cases}1, & \text { if the } i \text {-th toss results in a head } \\ 0, & \text { otherwise }\end{cases}
$$

Using the above representation, show that $E(Y)=n p$ and $V(Y)=n p q$, where $q=1-p$.
Solution. First, note that because the trials are independent, X_{i} 's are also independent. Now for all $i=1, \cdots, n$,

$$
\begin{aligned}
E\left(X_{i}\right) & =1 \times P\left(X_{i}=1\right)+0 \times P\left(X_{i}=1\right)=P\left(X_{i}=1\right)=1 \\
\text { and } E\left(X_{i}^{2}\right) & =1^{2} \times P\left(X_{i}=1\right)+0^{2} \times P\left(X_{i}=1\right)=1
\end{aligned}
$$

Therefore $V\left(X_{i}\right)=E\left(X_{i}^{2}\right)-E^{2}\left(X_{i}\right)=p-p^{2}=p(1-p)$. Also, $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for $i \neq j$, since X_{i} 's are independent. Therefore, from $Y=\sum_{i=1}^{n} X_{i}$ we have

$$
\begin{aligned}
E(Y) & =\sum_{i=1}^{n} E\left(X_{i}\right)=n p \\
\text { and } V(Y) & =\sum_{i=1}^{n} V\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq n} \sum \operatorname{Cov}\left(X_{i}, X_{j}\right)=n p(1-p) .
\end{aligned}
$$

3. Let $T_{1} \sim \operatorname{Exp}\left(\beta_{1}\right)$ and $T_{2} \sim \operatorname{Exp}\left(\beta_{2}\right)$ be independent RVs.
(a) Find the joint density of T_{1} and T_{2}.

Solution. Because T_{1} and T_{2} are independent, therefore, their joint PDF is given by

$$
f_{T_{1}, T_{2}}\left(t_{1}, t_{2}\right)=f_{T_{1}}\left(t_{1}\right) f_{T_{1}}\left(t_{1}\right)= \begin{cases}\frac{1}{\beta_{1} \beta_{2}} e^{-t_{1} / \beta_{1}} e^{-t_{2} / \beta_{2}}, & t_{1}>0, t_{2}>0 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Show that $P\left(T_{1} \leq T_{2}\right)=\beta_{2} /\left(\beta_{1}+\beta_{2}\right)$.

Solution. We have

$$
\begin{aligned}
P\left(T_{1} \leq T_{2}\right) & =\int_{t_{1}=0}^{\infty} \int_{t_{2}=t_{1}}^{\infty} \frac{1}{\beta_{1} \beta_{2}} e^{-t_{1} / \beta_{1}} e^{-t_{2} / \beta_{2}} d t_{2} d t_{1} \\
& =\frac{1}{\beta_{1} \beta_{2}} \int_{t_{1}=0}^{\infty}\left(\int_{t_{2}=t_{1}}^{\infty} e^{-t_{2} / \beta_{2}} d t_{2}\right) e^{-t_{1} / \beta_{1}} d t_{1} \\
& =\frac{1}{\beta_{1} \beta_{2}} \int_{t_{1}=0}^{\infty}\left[-\beta_{2} e^{-t_{2} / \beta_{2}}\right]_{t_{1}}^{\infty} e^{-t_{1} / \beta_{1}} d t_{1} \\
& =\frac{1}{\beta_{1}} \int_{t_{1}=0}^{\infty} e^{-t_{1} / \beta_{2}} e^{-t_{1} / \beta_{1}} d t_{1} \\
& =\frac{1}{\beta_{1}} \int_{t_{1}=0}^{\infty} e^{-t_{1}\left(\frac{1}{\beta_{2}}+\frac{1}{\beta_{2}}\right)} d t_{1} \\
& =\frac{1}{\beta_{1}}\left[\frac{e^{-t_{1}\left(\frac{1}{\beta_{2}}+\frac{1}{\beta_{2}}\right)}}{1 /\left(\frac{1}{\beta_{2}}+\frac{1}{\beta_{2}}\right)}\right]_{0}^{\infty}=\frac{1}{\beta_{1}} \cdot \frac{\beta_{1} \beta_{2}}{\beta_{1}+\beta_{2}}=\frac{\beta_{2}}{\beta_{1}+\beta_{2}} .
\end{aligned}
$$

(c) Let $X=T_{1}-2 T_{2}$. Find $E(X)$ and $V(X)$.

Solution. Note that $E(X)=E\left(T_{1}\right)-2 E\left(T_{2}\right)=\beta_{1}-2 \beta_{2}$. Since T_{1} and T_{2} are independent, therefore, $\operatorname{Cov}\left(T_{1}, T_{2}\right)=0$. Hence,

$$
V(X)=V\left(T_{1}\right)+(-2)^{2} V\left(T_{2}\right)=\beta_{1}^{2}+4 \beta_{2}^{2} .
$$

4. (WMS, Problem 5.100.) Let Z be a standard normal random variable and let $Y_{1}=Z$ and $Y_{2}=Z^{2}$.
(a) What are $E\left(Y_{1}\right)$ and $E\left(Y_{2}\right)$?

Solution. We have $E\left(Y_{1}\right)=E(Z)=0$ and $E\left(Y_{2}\right)=E\left(Z^{2}\right)=V(Z)+E^{2}(Z)=1+0=1$.
(b) Find $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$.

Solution. Let $f(z)$ denote the density of Z. Then,

$$
E\left(Z^{3}\right)=\int_{-\infty}^{\infty} \underbrace{z^{3} f(z)}_{\text {odd function }} d z=0
$$

Hence, $E\left(Y_{1} Y_{2}\right)=E\left(Z^{3}\right)=0$, and therefore, $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=E\left(Y_{1} Y_{2}\right)-E\left(Y_{1}\right) E\left(Y_{2}\right)=$ $0-0 \times 1=0$.
5. (WMS, Problem 5.92.) Let Y_{1} and Y_{2} be RVs with joint PDF

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}6\left(1-y_{2}\right), & 0 \leq y_{1} \leq y_{2} \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

Find $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$. Are Y_{1} and Y_{2} independent?

Solution. We have,

$$
\begin{aligned}
E\left(Y_{1} Y_{2}\right) & =\int_{y_{2}=0}^{1} \int_{y_{1}=0}^{y_{2}} y_{1} y_{2} 6\left(1-y_{2}\right) d y_{1} d y_{2} \\
& =6 \int_{y_{2}=0}^{1}\left(y_{2}-y_{2}^{2}\right)\left(\int_{y_{1}=0}^{y_{2}} y_{1} d y_{1}\right) d y_{2} \\
& =6 \int_{y_{2}=0}^{1}\left(y_{2}-y_{2}^{2}\right)\left[\frac{y_{1}^{2}}{2} d y_{1}\right]_{0}^{y_{2}} d y_{2} \\
& =3 \int_{y_{2}=0}^{1}\left(y_{2}^{3}-y_{2}^{4}\right) d y_{2}=3\left[\frac{1}{4}-\frac{1}{5}\right]=\frac{3}{20}, \\
E\left(Y_{1}\right) & =\int_{y_{2}=0}^{1} \int_{y_{1}=0}^{y_{2}} y_{1} 6\left(1-y_{2}\right) d y_{1} d y_{2} \\
& =6 \int_{y_{2}=0}^{1}\left(1-y_{2}\right)\left(\int_{y_{1}=0}^{y_{2}} y_{1} d y_{1}\right) d y_{2} \\
& =3 \int_{y_{2}=0}^{1}\left(y_{2}^{2}-y_{2}^{3}\right) d y_{2}=3\left[\frac{1}{3}-\frac{1}{4}\right]=\frac{1}{4},
\end{aligned}
$$

$$
\text { and } E\left(Y_{2}\right)=\int_{y_{2}=0}^{1} \int_{y_{1}=0}^{y_{2}} y_{2} 6\left(1-y_{2}\right) d y_{1} d y_{2}
$$

$$
=6 \int_{y_{2}=0}^{1}\left(y_{2}-y_{2}^{2}\right)\left(\int_{y_{1}=0}^{y_{2}} d y_{1}\right) d y_{2}
$$

$$
=6 \int_{y_{2}=0}^{1}\left(y_{2}^{2}-y_{2}^{3}\right) d y_{2}=6\left[\frac{1}{3}-\frac{1}{4}\right]=\frac{1}{2} .
$$

Therefore, $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=E\left(Y_{1} Y_{2}\right)-E\left(Y_{1}\right) E\left(Y_{2}\right)=\frac{3}{20}-\frac{1}{4} \cdot \frac{1}{2}=1 / 40$. Since $\operatorname{Cov}\left(Y_{1}, Y_{2}\right) \neq 0$, therefore Y_{1} and Y_{2} cannot be independent. (Also follows from dependent ranges.)
6. (WMS, Problem 5.139.) Suppose that a company has determined that the the number of jobs per week, N, varies from week to week and has a Poisson distribution with mean λ. The number of hours to complete each job, Y_{i}, is Gamma distributed with parameters α and β. The total time to complete all jobs in a week is $T=\sum_{i=1}^{N} Y_{i}$. Note that T is the sum of a random number of random variables. What is
(a) $E(T \mid N=n)$?

Solution. We have,

$$
E(T \mid N=n)=E\left(\sum_{i=1}^{N} Y_{i} \mid N=n\right)=E\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} E\left(Y_{i}\right)=\sum_{i=1}^{n} \alpha \beta=n \alpha \beta
$$

(b) $E(T)$, the expected total time to complete all jobs?

Solution. By the tower property,

$$
E(T)=E[E(T \mid N)]=E(N \alpha \beta)=\alpha \beta E(N)=\alpha \beta \lambda .
$$

7. (WMS, Problem 5.141.) Let Y_{1} have an exponential distribution with mean λ and the conditional density of Y_{2} given $Y_{1}=y_{1}$ be

$$
f\left(y_{2} \mid y_{1}\right)= \begin{cases}1 / y_{1}, & 0 \leq y_{2} \leq y_{1} \\ 0, & \text { elsewhere }\end{cases}
$$

Find $E\left(Y_{2}\right)$ and $V\left(Y_{2}\right)$, the unconditional mean and variance of Y_{2}.

Solution. Note that the conditional distribution of Y_{2} given $Y_{1}=y_{1}$ is $U\left(0, y_{1}\right)$. Hence, $E\left(Y_{2} \mid Y_{1}\right)=$ $Y_{1} / 2$, and $V\left(Y_{2} \mid Y_{1}\right)=\left(Y_{1}-0\right)^{2} / 12=Y_{1}^{2} / 12$. Also, $Y_{1} \sim \operatorname{Exp}(\lambda)$. Hence $V\left(Y_{1}\right)=\lambda^{2}$. Therefore,

$$
\begin{aligned}
E\left(Y_{2}\right) & =E\left[E\left(Y_{2} \mid Y_{1}\right)\right]=E\left(Y_{1} / 2\right)=\frac{\lambda}{2}, \\
\text { and } V\left(Y_{2}\right) & =E\left[V\left(Y_{2} \mid Y_{1}\right)\right]+V\left[E\left(Y_{2} \mid Y_{1}\right)\right] \\
& =E\left(Y_{1}^{2} / 12\right)+V\left(Y_{1} / 2\right) \\
& =\frac{1}{12} E\left(Y_{1}^{2}\right)+\frac{1}{4} V\left(Y_{1}\right) \\
& =\frac{1}{12}\left\{V\left(Y_{1}\right)+E^{2}\left(Y_{1}\right)\right\}+\frac{1}{4} V\left(Y_{1}\right) \\
& =\frac{1}{12}\left(\lambda^{2}+\lambda^{2}\right)+\frac{1}{4} \lambda^{2}=\frac{2}{12} \lambda^{2}+\frac{3}{12} \lambda^{2}=\frac{5 \lambda^{2}}{12} .
\end{aligned}
$$

8. Suppose that X and Y are RVs such that $V(X)=9, V(Y)=4$, and $\rho_{X, Y}=1 / 6$. Determine (a) $V(X+Y)$ and (b) $V(X-3 Y+4)$.

Solution. Note that

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{V(X) V(Y)}}=\frac{1}{6} \Longrightarrow \operatorname{Cov}(X, Y)=\frac{1}{6} \sqrt{V(X) V(Y)}=\frac{1}{6} \cdot 6=1 .
$$

Therefore, (a) $V(X+Y)=V(X)+V(Y)+2 \operatorname{Cov}(X, Y)=9+4+2=15$, and (b) $V(X-3 Y+4)=$ $V(X-3 Y)=V(X)+(-3)^{2} V(Y)+2(-3) \operatorname{Cov}(X, Y)=9+9 \times 4-6 \times 1=39$.
9. Show that if $E(X \mid Y)$ is constant for all values of Y, then X and Y are uncorrelated. [Hint: Note that $E(X g(Y) \mid Y=y)=g(y) E(X \mid Y=y)$ for any function g and any real number y.]

Solution. It is given that $E(X \mid Y)=k$, where $k \in \mathbb{R}$ is a constant. This means

$$
E(X Y)=E[E(X Y \mid Y)]=E[Y E(X \mid Y)]=E(Y k)=k E(Y)
$$

and $E(X)=E[E(X \mid Y)]=E(k)=k$. Therefore,

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=k E(Y)-k E(Y)=0
$$

and hence $\operatorname{Corr}(X, Y)=0$.

