Homework 8

1. First, a result: For any two RVs X and Y,

 $E^2(XY) \le E(X^2)E(Y^2)$ (Cauchy-Schwarz inequality).

Using the above inequality, prove that $-1 \le \rho_{X,Y} \le 1$.

Solution. Define U = X - E(X) and V = Y - E(Y). Then $E(U^2) = E(X - E(X))^2 = V(X)$, $E(V^2) = E(Y - E(Y))^2 = V(Y)$ and E(UV) = E[(X - E(X))(Y - E(Y))] = Cov(X, Y). Therefore, by Cauchy Schwarz inequality

$$E^{2}(UV) \leq E(U^{2})E(V^{2}) \implies 1 \geq \frac{E^{2}(UV)}{E(U^{2})E(V^{2})} = \frac{\operatorname{Cov}^{2}(X,Y)}{V(X)V(Y)} = \rho_{X,Y}^{2} \implies -1 \leq \rho_{X,Y} \leq 1.$$

2. Let Y denote the number of heads obtained in a sequence of n tosses of a coin with probability of a head p. Note that Y can be represented as $Y = \sum_{i=1}^{n} X_i$, where for $i = 1, \dots, n$,

$$X_i = \begin{cases} 1, & \text{if the } i\text{-th toss results in a head} \\ 0, & \text{otherwise.} \end{cases}$$

Using the above representation, show that E(Y) = np and V(Y) = npq, where q = 1 - p.

Solution. First, note that because the trials are independent, X_i 's are also independent. Now for all $i = 1, \dots, n$,

$$E(X_i) = 1 \times P(X_i = 1) + 0 \times P(X_i = 1) = P(X_i = 1) = 1$$

and $E(X_i^2) = 1^2 \times P(X_i = 1) + 0^2 \times P(X_i = 1) = 1.$

Therefore $V(X_i) = E(X_i^2) - E^2(X_i) = p - p^2 = p(1-p)$. Also, $Cov(X_i, X_j) = 0$ for $i \neq j$, since X_i 's are independent. Therefore, from $Y = \sum_{i=1}^n X_i$ we have

$$E(Y) = \sum_{i=1}^{n} E(X_i) = np$$

and $V(Y) = \sum_{i=1}^{n} V(X_i) + 2 \sum_{1 \le i < j \le n} Cov(X_i, X_j) = np(1-p).$

3. Let $T_1 \sim \text{Exp}(\beta_1)$ and $T_2 \sim \text{Exp}(\beta_2)$ be independent RVs.

(a) Find the joint density of T_1 and T_2 .

Solution. Because T_1 and T_2 are independent, therefore, their joint PDF is given by

$$f_{T_1,T_2}(t_1,t_2) = f_{T_1}(t_1) f_{T_1}(t_1) = \begin{cases} \frac{1}{\beta_1\beta_2} e^{-t_1/\beta_1} e^{-t_2/\beta_2}, & t_1 > 0, t_2 > 0\\ 0 & \text{otherwise.} \end{cases}$$

(b) Show that $P(T_1 \le T_2) = \beta_2/(\beta_1 + \beta_2)$.

Solution. We have

$$P(T_{1} \leq T_{2}) = \int_{t_{1}=0}^{\infty} \int_{t_{2}=t_{1}}^{\infty} \frac{1}{\beta_{1}\beta_{2}} e^{-t_{1}/\beta_{1}} e^{-t_{2}/\beta_{2}} dt_{2} dt_{1}$$

$$= \frac{1}{\beta_{1}\beta_{2}} \int_{t_{1}=0}^{\infty} \left(\int_{t_{2}=t_{1}}^{\infty} e^{-t_{2}/\beta_{2}} dt_{2} \right) e^{-t_{1}/\beta_{1}} dt_{1}$$

$$= \frac{1}{\beta_{1}\beta_{2}} \int_{t_{1}=0}^{\infty} \left[-\beta_{2} e^{-t_{2}/\beta_{2}} \right]_{t_{1}}^{\infty} e^{-t_{1}/\beta_{1}} dt_{1}$$

$$= \frac{1}{\beta_{1}} \int_{t_{1}=0}^{\infty} e^{-t_{1}/\beta_{2}} e^{-t_{1}/\beta_{1}} dt_{1}$$

$$= \frac{1}{\beta_{1}} \int_{t_{1}=0}^{\infty} e^{-t_{1}\left(\frac{1}{\beta_{2}} + \frac{1}{\beta_{2}}\right)} dt_{1}$$

$$= \frac{1}{\beta_{1}} \left[\frac{e^{-t_{1}\left(\frac{1}{\beta_{2}} + \frac{1}{\beta_{2}}\right)}}{1/\left(\frac{1}{\beta_{2}} + \frac{1}{\beta_{2}}\right)} \right]_{0}^{\infty} = \frac{1}{\beta_{1}} \cdot \frac{\beta_{1}\beta_{2}}{\beta_{1} + \beta_{2}} = \frac{\beta_{2}}{\beta_{1} + \beta_{2}}.$$

(c) Let $X = T_1 - 2T_2$. Find E(X) and V(X).

Solution. Note that $E(X) = E(T_1) - 2E(T_2) = \beta_1 - 2\beta_2$. Since T_1 and T_2 are independent, therefore, $Cov(T_1, T_2) = 0$. Hence,

$$V(X) = V(T_1) + (-2)^2 V(T_2) = \beta_1^2 + 4\beta_2^2.$$

- 4. (WMS, Problem 5.100.) Let Z be a standard normal random variable and let $Y_1=Z$ and $Y_2=Z^2$.
 - (a) What are $E(Y_1)$ and $E(Y_2)$?

Solution. We have $E(Y_1) = E(Z) = 0$ and $E(Y_2) = E(Z^2) = V(Z) + E^2(Z) = 1 + 0 = 1$. \Box

(b) Find $Cov(Y_1, Y_2)$.

Solution. Let f(z) denote the density of Z. Then,

$$E(Z^3) = \int_{-\infty}^{\infty} \underbrace{z^3 f(z)}_{\text{odd function}} dz = 0.$$

Hence, $E(Y_1Y_2) = E(Z^3) = 0$, and therefore, $Cov(Y_1, Y_2) = E(Y_1Y_2) - E(Y_1)E(Y_2) = 0 - 0 \times 1 = 0$.

5. (WMS, Problem 5.92.) Let Y_1 and Y_2 be RVs with joint PDF

$$f(y_1, y_2) = \begin{cases} 6(1 - y_2), & 0 \le y_1 \le y_2 \le 1\\ 0, & \text{elsewhere.} \end{cases}$$

Find $Cov(Y_1, Y_2)$. Are Y_1 and Y_2 independent?

Solution. We have,

$$E(Y_1Y_2) = \int_{y_2=0}^{1} \int_{y_1=0}^{y_2} y_1y_2 \ 6(1-y_2) \ dy_1 \ dy_2$$

= $6 \int_{y_2=0}^{1} (y_2 - y_2^2) \left(\int_{y_1=0}^{y_2} y_1 \ dy_1 \right) \ dy_2$
= $6 \int_{y_2=0}^{1} (y_2 - y_2^2) \left[\frac{y_1^2}{2} \ dy_1 \right]_{0}^{y_2} \ dy_2$
= $3 \int_{y_2=0}^{1} (y_2^3 - y_2^4) \ dy_2 = 3 \left[\frac{1}{4} - \frac{1}{5} \right] = \frac{3}{20}$

,

$$E(Y_1) = \int_{y_2=0}^{1} \int_{y_1=0}^{y_2} y_1 \, 6(1-y_2) \, dy_1 \, dy_2$$

= $6 \int_{y_2=0}^{1} (1-y_2) \left(\int_{y_1=0}^{y_2} y_1 \, dy_1 \right) \, dy_2$
= $3 \int_{y_2=0}^{1} (y_2^2 - y_2^3) \, dy_2 = 3 \left[\frac{1}{3} - \frac{1}{4} \right] = \frac{1}{4},$

and
$$E(Y_2) = \int_{y_2=0}^{1} \int_{y_1=0}^{y_2} y_2 \, 6(1-y_2) \, dy_1 \, dy_2$$

= $6 \int_{y_2=0}^{1} (y_2 - y_2^2) \left(\int_{y_1=0}^{y_2} dy_1 \right) \, dy_2$
= $6 \int_{y_2=0}^{1} (y_2^2 - y_2^3) \, dy_2 = 6 \left[\frac{1}{3} - \frac{1}{4} \right] = \frac{1}{2}.$

Therefore, $\operatorname{Cov}(Y_1, Y_2) = E(Y_1Y_2) - E(Y_1)E(Y_2) = \frac{3}{20} - \frac{1}{4} \cdot \frac{1}{2} = 1/40$. Since $\operatorname{Cov}(Y_1, Y_2) \neq 0$, therefore Y_1 and Y_2 cannot be independent. (Also follows from dependent ranges.) \Box

- 6. (WMS, Problem 5.139.) Suppose that a company has determined that the number of jobs per week, N, varies from week to week and has a Poisson distribution with mean λ . The number of hours to complete each job, Y_i , is Gamma distributed with parameters α and β . The total time to complete all jobs in a week is $T = \sum_{i=1}^{N} Y_i$. Note that T is the sum of a random number of random variables. What is
 - (a) E(T|N = n)?

Solution. We have,

$$E(T|N=n) = E\left(\sum_{i=1}^{N} Y_i \middle| N=n\right) = E\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} E\left(Y_i\right) = \sum_{i=1}^{n} \alpha\beta = n\alpha\beta$$

(b) E(T), the expected total time to complete all jobs?

Solution. By the tower property,

$$E(T) = E[E(T|N)] = E(N\alpha\beta) = \alpha\beta E(N) = \alpha\beta\lambda$$

7. (WMS, Problem 5.141.) Let Y_1 have an exponential distribution with mean λ and the conditional density of Y_2 given $Y_1 = y_1$ be

$$f(y_2|y_1) = \begin{cases} 1/y_1, & 0 \le y_2 \le y_1\\ 0, & \text{elsewhere.} \end{cases}$$

Find $E(Y_2)$ and $V(Y_2)$, the unconditional mean and variance of Y_2 .

Solution. Note that the conditional distribution of Y_2 given $Y_1 = y_1$ is $U(0, y_1)$. Hence, $E(Y_2|Y_1) = Y_1/2$, and $V(Y_2|Y_1) = (Y_1 - 0)^2/12 = Y_1^2/12$. Also, $Y_1 \sim \text{Exp}(\lambda)$. Hence $V(Y_1) = \lambda^2$. Therefore,

$$E(Y_2) = E[E(Y_2|Y_1)] = E(Y_1/2) = \frac{\lambda}{2},$$

and $V(Y_2) = E[V(Y_2|Y_1)] + V[E(Y_2|Y_1)]$
 $= E(Y_1^2/12) + V(Y_1/2)$
 $= \frac{1}{12}E(Y_1^2) + \frac{1}{4}V(Y_1)$
 $= \frac{1}{12}\{V(Y_1) + E^2(Y_1)\} + \frac{1}{4}V(Y_1)$
 $= \frac{1}{12}(\lambda^2 + \lambda^2) + \frac{1}{4}\lambda^2 = \frac{2}{12}\lambda^2 + \frac{3}{12}\lambda^2 = \frac{5\lambda^2}{12}.$

8. Suppose that X and Y are RVs such that V(X) = 9, V(Y) = 4, and $\rho_{X,Y} = 1/6$. Determine (a) V(X + Y) and (b) V(X - 3Y + 4).

Solution. Note that

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{1}{6} \implies \text{Cov}(X,Y) = \frac{1}{6}\sqrt{V(X)V(Y)} = \frac{1}{6} \cdot 6 = 1.$$

Therefore, (a) $V(X+Y) = V(X) + V(Y) + 2\operatorname{Cov}(X,Y) = 9 + 4 + 2 = 15$, and (b) $V(X-3Y+4) = V(X-3Y) = V(X) + (-3)^2 V(Y) + 2(-3)\operatorname{Cov}(X,Y) = 9 + 9 \times 4 - 6 \times 1 = 39$.

9. Show that if E(X|Y) is constant for all values of Y, then X and Y are uncorrelated. [Hint: Note that E(Xg(Y)|Y = y) = g(y)E(X|Y = y) for any function g and any real number y.]

Solution. It is given that E(X|Y) = k, where $k \in \mathbb{R}$ is a constant. This means

$$E(XY) = E[E(XY|Y)] = E[YE(X|Y)] = E(Yk) = kE(Y)$$

and E(X) = E[E(X|Y)] = E(k) = k. Therefore,

$$Cov(X, Y) = E(XY) - E(X)E(Y) = kE(Y) - kE(Y) = 0$$

and hence $\operatorname{Corr}(X, Y) = 0$.