Introduction to Probability/
Fundamentals of Probability
Note: This exam is a sample, and intended to be of approximately the same length and style as the actual exam. However, it is NOT guaranteed to match the content or coverage of the actual exam. DO NOT use this as your primary study tool!

On my honor, I have neither given nor received unauthorized aid on this examination.

$$
\text { Signature: } \quad \text { Date: }
$$

Print Name: \qquad UFID: \qquad

Instructions:

i. This is a 50 minute exam. There are 4 problems, worth a total of 55 points. Maximum score is 50 , and whatever point you get above 50 will be considered as extra credit, and will be added to your total score accordingly.
ii. The exam consists of 6 pages, including one formula sheet. You may write on the back of pages if you need more space. Extra papers will be provided, if necessary. Make sure you arrange all the sheets in order before you turn in your exam.
iii. Remember to show your work. Answers lacking adequate justification may not receive full credit.
iv. You may quote and use (without proving) any result proved in class or given as homework (including extra homework).
v. You may use one letter-sized sheet of your own notes hand-written on both sides and a scientific calculator. (You are not required to bring a calculator - you may leave your answers in a form from which the numerical answer could be immediately calculated.)
vi. You may not use any books, other references, or any other electronic devices during the exam.

1. Suppose X and Y are jointly continuous with joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}2, & 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq x+y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Provide the marginal PDF of Y at $Y=0.7$, i.e., provide $f_{Y}(0.7)$.
(b) Provide the conditional PDF of X given $Y=0.7$.
(c) Find $E(X+Y)$.
2. Let Y_{1} and Y_{2} be independent Poisson random variables with means λ_{1} and λ_{2} respectively.
(a) Write down the joint PMF of Y_{1} and Y_{2}.
(b) Using the method of MGF or otherwise, show that $Y_{1}+Y_{2} \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$.
(c) Find the conditional PMF of Y_{1}, given that $Y_{1}+Y_{2}=m$.
3. (a) X is said to have Weibull distribution with parameters $\alpha>0$ and $m>0$, if X has PDF

$$
f_{X}(x)= \begin{cases}\frac{m}{\alpha} x^{m-1} e^{-x^{m} / \alpha}, & x>0 \\ 0, & \text { elsewhere } .\end{cases}
$$

Find the PDF of $Y=X^{m}$.
(b) Suppose Y_{1}, \cdots, Y_{n} is a random sample from the standard Pareto distribution with CDF

$$
F(y)= \begin{cases}0, & y<1 \\ 1-\frac{1}{y} & y \geq 1\end{cases}
$$

Find the PDF of $Y_{(1)}=\min \left\{Y_{1}, \cdots, Y_{n}\right\}$.
4. (a) Suppose X is a symmetric RV. Show that if g is an odd function (i.e., if $g(-x)=-g(x)$ for all $x \in \mathbb{R})$, then $Y=g(X)$ is also symmetric.
(b) Suppose X is an exponentially distributed random variable with mean β. Denote the "ceiling" of X by $Y=[X]$. Thus, Y is defined in the following way: $Y=k$ if and only if $k-1<X \leq k$ for $k=1,2, \cdots$. Show that Y has a geometric distribution with $p=1-e^{-1 / \beta}$.

Formula Sheet

Discrete Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Binomial	$\begin{gathered} p(y)=\binom{n}{y} p^{y}(1-p)^{n-y} ; \\ y=0,1, \ldots, n \end{gathered}$	$n p$	$n p(1-p)$	$\left[p e^{t}+(1-p)\right]^{n}$
Geometric	$\begin{gathered} p(y)=p(1-p)^{y-1} ; \\ y=1,2, \ldots \end{gathered}$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$	$\frac{p e^{t}}{1-(1-p) e^{t}}$
Hypergeometric	$\begin{gathered} p(y)=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}} ; \\ y=0,1, \ldots, n \text { if } n \leq r, \\ y=0,1, \ldots, r \text { if } n>r \end{gathered}$	$\frac{n r}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	
Poisson	$\begin{aligned} & p(y)=\frac{\lambda^{y} e^{-\lambda}}{y!} \\ & y=0,1,2, \ldots \end{aligned}$	λ	λ	$\exp \left[\lambda\left(e^{t}-1\right)\right]$
Negative binomial	$\begin{gathered} p(y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r} ; \\ y=r, r+1, \ldots \end{gathered}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^{2}}$	$\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$

Continuous Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Uniform	$f(y)=\frac{1}{\theta_{2}-\theta_{1}} ; \theta_{1} \leq y \leq \theta_{2}$	$\frac{\theta_{1}+\theta_{2}}{2}$	$\frac{\left(\theta_{2}-\theta_{1}\right)^{2}}{12}$	$\frac{e^{t \theta_{2}}-e^{t \theta_{1}}}{t\left(\theta_{2}-\theta_{1}\right)}$
Normal	$\begin{gathered} f(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\left(\frac{1}{2 \sigma^{2}}\right)(y-\mu)^{2}\right] \\ -\infty<y<+\infty \end{gathered}$	μ	σ^{2}	$\exp \left(\mu t+\frac{t^{2} \sigma^{2}}{2}\right)$
Exponential	$\begin{gathered} f(y)=\frac{1}{\beta} e^{-y / \beta} ; \quad \beta>0 \\ 0<y<\infty \end{gathered}$	β	β^{2}	$(1-\beta t)^{-1}$
Gamma	$\begin{gathered} f(y)=\left[\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\right] y^{\alpha-1} e^{-y / \beta} ; \\ 0<y<\infty \end{gathered}$	$\alpha \beta$	$\alpha \beta^{2}$	$(1-\beta t)^{-\alpha}$
Chi-square	$\begin{gathered} f(y)=\frac{(y)^{(v / 2)-1} e^{-y / 2}}{2^{v / 2} \Gamma(v / 2)} \\ y^{2}>0 \end{gathered}$	v	$2 v$	$(1-2 t)^{-v / 2}$
Beta	$\begin{gathered} f(y)=\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\right] y^{\alpha-1}(1-y)^{\beta-1} \\ 0<y<1 \end{gathered}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	does not exist in closed form

