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The Ultimate Goal

Understand stochastic motion of higher dimensional objects on man-
ifolds under the limits of slow driving and low temperature.

Classical Currents

We are interested in stochastic processes on CW complexes. These are
motivated by Langevin dynamics on smooth manifolds, governed by the
Langevin equation for M :

ẋ = u(x, t) + ξ(x, t) (1)
where,

•u = −∇f for a Morse function f : M → R, and
• ξ is a Gaussian stochastic vector field such that

• 〈ξj(x, t)〉 = 0
• 〈ξi(x, t), ξj(x, t′)〉 = β−1gij(x)δ(t− t′).

A solution to this equation is a stochastic trajectory η : [0, τ ]→M . For
large τ , we may assume η(0) = η(τ ), so that η : S1→M , giving rise to
the average empirical current density:

Qτ,β(u) = 1
τ

[η] ∈ H1(M ;R) .

Consider an electrical circuit, represented by a circular wire M = S1 ×
D2. For a single electron, the contribution to the current is ωα = 1

tN ,
where N = N+ −N−.

Figure 1: The stochastic motion of points, e.g., electrons, under the Langevin equa-
tion [1]. We are interested in the motion of wires or sheets of electrons, for example.

The goal of this work is to generalize the following.
Theorem [2] In the low-noise, adiabatic limit, the current quantizes:

lim
β→∞

lim
τ→∞Qτ,β ∈ H1(M ;Z) ⊂ H1(M ;R)

A Discrete Version

We discretize the problem to a CW complex, or triangulation, of the
manifold. Instead of points, we consider the motion of cycles of higher
dimension.

Figure 2: Stochastic motion of a circle on a triangulated torus. The initial cycle (right)
evolves over time to the perturbed cycle (back left).

The current generated by such a process is governed by two pieces: the
Kirchhoff solution and the Boltzmann distribution.

The Kirchhoff Problem

Fix a finite, connected CW complex X of dimension d. Equip every
d-cell α with a ‘resistance’ by

α 7→ eβWαα .

A network problem forX consists of constructing an orthogonal splitting

0 //Zd(X ;R) i //Cd(X ;R) −∂ //Bd−1(X ;R)
K
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//0 .
This splitting is equivalent to Kirchhoff’s laws.
A spanning tree for X is a subcomplex T such that
•Hd(T ;Z) = 0,
•βd−1(T ) = βd−1(X),
•X (d−1) ⊂ T , where X (k) is the k-skeleton of X .
Weight the trees by

wT := θ2
T

∏
α∈Td

e−βWα .

where θT is the order of the torsion subgroup of Hd−1(T ;Z).

The Kirchhoff Theorem

Theorem. The orthogonal splitting K is given by

K(b) = 1
∆

∑
T

wTK
T
b ,

where KT
b is the unique d-chain in T which bounds b.

The Boltzmann Distribution

Equip every (d− 1)-cell b with its ‘energy’ by

b 7→ eβEbb .

The Hodge problem forX is to find an explicit formula for an orthogonal
splitting of the quotient map in

0 //Bd−1(X ;R) //Zd−1(X ;R) q
//Hd−1(X ;R) //

ρ

yy

0,
A spanning co-tree for X is a subcomplex L such that
•Hd−1(L;Q) ∼= Hd−1(X ;Q),
•βd−2(L) = βd−2(X),
•X (d−2) ⊂ L ⊂ X (d−1).
Let

φL : Zd−1(L;Z) −→ Hd−1(X ;Q)
denote the induced inclusion map. We weight spanning co-trees by

τL = | cok φL|2
∏

b∈Ld−1

eβEb .

The Boltzmann Distribution

Theorem. The orthogonal splitting ρ is given by
ρ(x) = 1

Λ
∑
L

τLψL(x) .

where ψL(x) is the unique cycle in L representing x.

These two pieces combine to give the main result:

Quantization in Higher Dimensions

For a finite, connected CW complex X , in the low-noise, adiabatic
limit, the current satisfies:

lim
β→∞

lim
τ→∞Qτ,β ∈ Hd(X ;Z[ 1

D]) ⊂ Hd(X ;R) ,

where
D = θX

∏
L

µL
∏
T

θTνT ,

• θX is the order of the torsion subgroup of Hd−1(X ;Z),
•µL is the covolume of Hd−1(L;R) ⊂ Hd−1(X ;R),
• νT is the covolume of Hd−1(T ;R) ⊂ Hd−1(X ;R).
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