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Langevin dynamics

• We’re interested in stochastic processes on CW complexes.
These are motivated by Langevin dynamics on smooth
manifolds.

• Fix a smooth, compact, Riemannian manifold (M, g), a Morse
function f : M → R, and a Markovian, Gaussian, stochastic
vector field ξ on M, depending on β = 1

kBT .
• A particle on M will undergo motion governed by the

Langevin equation

ẋ = u(x) + ξ(x , t) ,

where locally, u(x) = −∇f (x).
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Solution

• A solution to this equation is a stochastic trajectory or process
represented by η : [0, τ ]→ M.

• For long times τ , we may assume the trajectory is closed
η : S1 → M, giving rise to

Qτ,β(u) = 1
τ

[η] ∈ H1(M;R)

known as the average empirical current density.
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Classical currents

• Consider an electrical circuit, represented by a circular wire
(M = S1 × D2) attached to a battery.

• The current at α is the number of charged particle crossings
at an oriented cross-section α of the wire, per unit time.

• For a single electron, the contribution to the current is
Qα = 1

t N, where N = N+ − N−. If η : S1 → M is the
trajectory, then Q = [η]t−1 ∈ H1(M;R).
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On manifolds

• Consider a closed (d − 1)-cycle η0 : N → M. The process
consists of the following two phenomena.

• Initially the cycle will evolve deterministically according to
−∇f , and tend to a neighborhood of M(d−1).

• On longer time scales, ξ can push a segment of ηt against the
gradient flow and up to a critical point of dimension d .

• The average current associated to η0 is

QτD ,β(u) = 1
τ [ητ ] ∈ Hd (M;R) .
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On CW complexes

• Consider a closed (d − 1)-cycle x̂ ∈ Zd−1(X ;Z). The process
consists of the following two phenomena.

• Initially the cycle will evolve deterministically according to
MX , and evolve within a neighborhood of X (d−1).

• On longer time scales, ξ can push a segment of x̂ out of the
(d − 1)-skeleton and across a cell of dimension d .

• The average current associated to x̂ is

QτD ,β(γ) = 1
τ [x̂τ ] ∈ Hd (X ;R) .
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On CW complexes
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Evolution on CW complexes: the state space

Fix a (d − 1)-cycle x̂0 ∈ Zd−1(X ;Z):

1. The state space is Z [x̂ ]
d−1(X ;R), which consists of all real

(d − 1)-cycles homologous to x̂0.
2. A transition z → z ′ requires a d-cell α and a (d − 1)-cell i

such that
z ′ = z − 〈i , z〉〈∂α, i , 〉∂α .
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Evolution on CW complexes

(movie)
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Parameters

• The space of parameters is the real vector space

MX = {(E ,W )| E : Xd−1 → R,W : Xd → R}

• We’re interested in periodic families of parameters.
• A periodic driving protocol is a smooth path

γ : R→MX

such that γ(0) = γ(τD). Equivalently, it is a smooth Moore
loop (τD, γ), where γ : S1 →MX and τD is the period.
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Parameters

Extend these to the chain complex:

eβE : Cd−1(X ;R)→ Cd−1(X ;R) eβW : Cd (X ;R)→ Cd (X ;R)
x 7→ eβEx · x α 7→ eβWα · α.

This allows us to define modified inner products on Cd (X ;R) and
Cd−1(X ;R)

〈x , y〉E := eβEx 〈x , y〉 〈α, γ〉W := eβWα〈α, γ〉 .

Define the adjoint of ∂ with respect to these modified inner
products

∂∗E ,W = e−βW ∂∗eβE .
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The dynamical equation

The dynamical operator H(t) : Cd−1(X ;R)→ Cd−1(X ;R) is

H(t) := H(τD, β, γ)(t) = −∂e−βW (t)∂∗eβE(t)

Definition
Fix an initial cycle x̂ ∈ Zd−1(X ;Z), a periodic driving protocol
(τD, γ), and β > 0. The dynamical equation for x̂ is

dρ(t)
dt = τDH(t)ρ(t) ρ(0) = x̂ .

where ρ : [0, τ ]→ Cd−1(X ;R).
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The Adiabatic Theorem

Theorem (C, Chernyak, Klein)
Let (τD, γ) be a periodic driving protocol and fix x̂ ∈ Zd−1(X ;Z).
There exists τ0 such that for all τD > τ0, a periodic solution ρ of
the dynamical equation for x̂ exists and is unique.

The current density is

J(t) := τD∂
∗
E ,W ρ(t)

so that the average current density is QτD ,β(γ) :=
∫ 1

0 J(t)dt.
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Current generation on graphs

Theorem (Chernyak, Klein, Sinistyn)
For sufficiently generic γ,

lim
τD→∞

QτD ,β(γ) =
∫ 1

0
K (ρ̇B)dt .

lim
β→∞

lim
τD→∞

QτD ,β(γ) ∈ H1(X ;Z) ⊂ H1(X ;R)

• K gives the solution to Kirchhoff’s network problem and ρB is
the Boltzmann distribution.

• K is written as a sum over spanning trees and ρB as a sum
over vertices.
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The network problem

Definition
The network problem for X is to construct an orthogonal splitting

0 // Zd (X ;R) // Cd (X ;R) −∂ // Bd−1(X ;R)

K
ww

// 0

with respect to the modified inner product 〈−,−〉W .
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Spanning trees

Definition
A d-spanning tree for X is a subcomplex T such that

• Hd (T ;Z) = 0,
• βd−1(T ) = βd−1(X ),
• X (d−1) ⊂ T .

Let θT denote the order of the torsion subgroup of Hd−1(T ;Z)
and define the weight of T to be the positive real number

wT := θ2
T

∏
α∈Td

e−βW (α) .
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Spanning trees

Definition
For a spanning tree T of X, define a linear transformation

K T : Bd−1(X ;Q)→ Cd (T ;Q)→ Cd (X ;Q) ,

by setting K T (b) to be the unique d-chain in T so that
−∂K T (b) = b.

Theorem (C, Chernyak, Klein)
The orthogonal projection Bd−1(X ;R)→ Cd (X ;R) is given by

K = 1
∆

∑
T

wT K T ,

where the sum is over all spanning trees, and ∆ =
∑

T wT .
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The Boltzmann distribution

Definition
The combinatorial Hodge problem for X is to construct an
orthogonal splitting

0 // Bd−1(X ;R) // Zd−1(X ;R) // Hd−1(X ;R)

ρB

vv
// 0 ,

with respect to the modified inner product 〈−,−〉E .

This is equivalent to constructing a cycle representative that is
co-closed, i.e., harmonic.
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Spanning co-trees

Definition
A spanning co-tree for X is a subcomplex L such that

• i∗ : Hd−1(L;Q) ∼= Hd−1(X ;Q) ,
• i∗ : Hd−2(L;Q) ∼= Hd−2(X ;Q) ,
• X (d−2) ⊂ L ⊂ X (d−1).

By definition we have

Hd−1(L)
∼=Q // Hd−1(X ) // Hd−1(X , L) // Hd−2(L)

∼=Q // Hd−2(X ) .

Define the weight of a spanning co-tree to be

τL := |Hd−1(X , L)|2
∏

b∈Td−1

e−βE(b)
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Spanning co-trees

For a spanning co-tree L of X , define ψL by the following diagram

Hd−1(X ;Q) i−1
∗ //

ψL ++

Hd−1(L;Q) = // Zd−1(L;Q)

iL
��

Zd−1(X ;Q)

Theorem (C, Chernyak, Klein)
The splitting Hd−1(X ;R)→ Zd−1(X ;R) is given by

ρB = 1
τ

∑
L
τLψL

where the sum is over all spanning co-trees, and τ =
∑

L τL.
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Quantization

In the low temperature, adiabatic limit, we have the following:

Theorem (Chernyak, Klein, Sinitsyn)
For a connected graph X , the image of Q : LMX → H1(X ;R) is
contained the integral lattice H1(X ;Z) ⊂ H1(X ;R).

Theorem (C, Chernyak, Klein)
Let X be a d-dimensional connected CW complex.

1. Q(γ) =
∫ 1

0
K (ρ̇B)dt.

2. Q : LMX → Hd (X ;R) is contained in Hd (X ;Z[ 1
D ]), where D

is determined by topological data.
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Trees & co-trees

T

(a) Three distinct spanning trees of T , out of the 32 total.

(b) Three distinct 1-spanning co-trees of T , out of the 20 total. 23



The Boltzmann distribution on graphs

Definition
The higher Boltzmann distribution is the real (d − 1)-cycle

ρB := 1
τ

∑
L
τLψL ∈ Zd−1(X ;R) .

When X is a simple graph, the spanning co-trees are given by the
vertices, and φL is an integral isomorphism so that |H0(X , L)| = 1.
The weight of a vertex L is then τL = e−βEj and

ρB =
∑

j e−βEj j∑
j e−βEj

.
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