Stochastic Dynamics on CW complexes

Michael J. Catanzaro
Applied Topology in Bedlewo
June 26, 2017
University of Florida

Outline

Motivation

A stochastic process of cycles

Spanning tree \& co-trees

Quantization

Langevin dynamics

- We're interested in stochastic processes on CW complexes. These are motivated by Langevin dynamics on smooth manifolds.

Langevin dynamics

- We're interested in stochastic processes on CW complexes. These are motivated by Langevin dynamics on smooth manifolds.
- Fix a smooth, compact, Riemannian manifold (M, g), a Morse function $f: M \rightarrow \mathbb{R}$, and a Markovian, Gaussian, stochastic vector field ξ on M, depending on $\beta=\frac{1}{k_{B} T}$.
- A particle on M will undergo motion governed by the Langevin equation

$$
\dot{x}=u(x)+\xi(x, t)
$$

where locally, $u(x)=-\nabla f(x)$.

Solution

- A solution to this equation is a stochastic trajectory or process represented by $\eta:[0, \tau] \rightarrow M$.

Solution

- A solution to this equation is a stochastic trajectory or process represented by $\eta:[0, \tau] \rightarrow M$.
- For long times τ, we may assume the trajectory is closed $\eta: S^{1} \rightarrow M$, giving rise to

$$
Q_{\tau, \beta}(u)=\frac{1}{\tau}[\eta] \in H_{1}(M ; \mathbb{R})
$$

known as the average empirical current density.

Classical currents

- Consider an electrical circuit, represented by a circular wire $\left(M=S^{1} \times D^{2}\right)$ attached to a battery.
- The current at α is the number of charged particle crossings at an oriented cross-section α of the wire, per unit time.

Classical currents

- Consider an electrical circuit, represented by a circular wire $\left(M=S^{1} \times D^{2}\right)$ attached to a battery.
- The current at α is the number of charged particle crossings at an oriented cross-section α of the wire, per unit time.
- For a single electron, the contribution to the current is $Q_{\alpha}=\frac{1}{t} N$, where $N=N_{+}-N_{-}$. If $\eta: S^{1} \rightarrow M$ is the trajectory, then $Q=[\eta] t^{-1} \in H_{1}(M ; \mathbb{R})$.

On manifolds

- Consider a closed $(d-1)$-cycle $\eta_{0}: N \rightarrow M$. The process consists of the following two phenomena.
- Initially the cycle will evolve deterministically according to $-\nabla f$, and tend to a neighborhood of $M^{(d-1)}$.
- On longer time scales, ξ can push a segment of η_{t} against the gradient flow and up to a critical point of dimension d.
- The average current associated to η_{0} is

$$
Q_{\tau_{D}, \beta}(u)=\frac{1}{\tau}\left[\eta_{\tau}\right] \in H_{d}(M ; \mathbb{R})
$$

On CW complexes

- Consider a closed $(d-1)$-cycle $\hat{x} \in Z_{d-1}(X ; \mathbb{Z})$. The process consists of the following two phenomena.
- Initially the cycle will evolve deterministically according to \mathcal{M}_{X}, and evolve within a neighborhood of $X^{(d-1)}$.
- On longer time scales, ξ can push a segment of \hat{x} out of the ($d-1$)-skeleton and across a cell of dimension d.
- The average current associated to \hat{x} is

$$
Q_{\tau_{D}, \beta}(\gamma)=\frac{1}{\tau}\left[\hat{x}_{\tau}\right] \in H_{d}(X ; \mathbb{R})
$$

On CW complexes

On CW complexes

On CW complexes

On CW complexes

Evolution on CW complexes: the state space

Fix a $(d-1)$-cycle $\hat{x}_{0} \in Z_{d-1}(X ; \mathbb{Z})$:

1. The state space is $Z_{d-1}^{[\hat{]}]}(X ; \mathbb{R})$, which consists of all real $(d-1)$-cycles homologous to \hat{x}_{0}.
2. A transition $z \rightarrow z^{\prime}$ requires a d-cell α and a $(d-1)$-cell i such that

$$
z^{\prime}=z-\langle i, z\rangle\langle\partial \alpha, i,\rangle \partial \alpha
$$

Evolution on CW complexes

(movie)

Parameters

- The space of parameters is the real vector space

$$
\mathcal{M}_{X}=\left\{(E, W) \mid E: X_{d-1} \rightarrow \mathbb{R}, W: X_{d} \rightarrow \mathbb{R}\right\}
$$

Parameters

- The space of parameters is the real vector space

$$
\mathcal{M}_{X}=\left\{(E, W) \mid E: X_{d-1} \rightarrow \mathbb{R}, W: X_{d} \rightarrow \mathbb{R}\right\}
$$

- We're interested in periodic families of parameters.
- A periodic driving protocol is a smooth path

$$
\gamma: \mathbb{R} \rightarrow \mathcal{M}_{X}
$$

such that $\gamma(0)=\gamma\left(\tau_{D}\right)$. Equivalently, it is a smooth Moore loop $\left(\tau_{D}, \gamma\right)$, where $\gamma: S^{1} \rightarrow \mathcal{M}_{X}$ and τ_{D} is the period.

Parameters

Extend these to the chain complex:

$$
\begin{array}{cc}
e^{\beta E}: C_{d-1}(X ; \mathbb{R}) \rightarrow C_{d-1}(X ; \mathbb{R}) & e^{\beta W}: C_{d}(X ; \mathbb{R}) \rightarrow C_{d}(X ; \mathbb{R}) \\
x \mapsto e^{\beta E_{x}} \cdot x & \alpha \mapsto e^{\beta W_{\alpha}} \cdot \alpha .
\end{array}
$$

This allows us to define modified inner products on $C_{d}(X ; \mathbb{R})$ and $C_{d-1}(X ; \mathbb{R})$

$$
\langle x, y\rangle_{E}:=e^{\beta E_{x}}\langle x, y\rangle \quad\langle\alpha, \gamma\rangle w:=e^{\beta W_{\alpha}}\langle\alpha, \gamma\rangle .
$$

Define the adjoint of ∂ with respect to these modified inner products

$$
\partial_{E, W}^{*}=e^{-\beta W} \partial^{*} e^{\beta E}
$$

The dynamical equation

The dynamical operator $\mathcal{H}(t): C_{d-1}(X ; \mathbb{R}) \rightarrow C_{d-1}(X ; \mathbb{R})$ is

$$
\mathcal{H}(t):=\mathcal{H}\left(\tau_{D}, \beta, \gamma\right)(t)=-\partial e^{-\beta W(t)} \partial^{*} e^{\beta E(t)}
$$

Definition

Fix an initial cycle $\hat{x} \in Z_{d-1}(X ; \mathbb{Z})$, a periodic driving protocol (τ_{D}, γ), and $\beta>0$. The dynamical equation for \hat{x} is

$$
\frac{d \rho(t)}{d t}=\tau_{D} \mathcal{H}(t) \rho(t) \quad \rho(0)=\hat{x}
$$

where $\rho:[0, \tau] \rightarrow C_{d-1}(X ; \mathbb{R})$.

The Adiabatic Theorem

Theorem (C, Chernyak, Klein)

Let $\left(\tau_{D}, \gamma\right)$ be a periodic driving protocol and fix $\hat{x} \in Z_{d-1}(X ; \mathbb{Z})$. There exists τ_{0} such that for all $\tau_{D}>\tau_{0}$, a periodic solution ρ of the dynamical equation for \hat{x} exists and is unique.

The Adiabatic Theorem

Theorem (C, Chernyak, Klein)

Let $\left(\tau_{D}, \gamma\right)$ be a periodic driving protocol and fix $\hat{x} \in Z_{d-1}(X ; \mathbb{Z})$. There exists τ_{0} such that for all $\tau_{D}>\tau_{0}$, a periodic solution ρ of the dynamical equation for \hat{x} exists and is unique.

The current density is

$$
\mathbf{J}(t):=\tau_{D} \partial_{E, W}^{*} \rho(t)
$$

so that the average current density is $Q_{\tau_{D}, \beta}(\gamma):=\int_{0}^{1} \mathbf{J}(t) d t$.

Current generation on graphs

Theorem (Chernyak, Klein, Sinistyn)

For sufficiently generic γ,

$$
\begin{gathered}
\lim _{\tau_{D} \rightarrow \infty} Q_{\tau_{D}, \beta}(\gamma)=\int_{0}^{1} K\left(\dot{\rho}^{B}\right) d t \\
\lim _{\beta \rightarrow \infty} \lim _{\tau_{D} \rightarrow \infty} Q_{\tau_{D}, \beta}(\gamma) \in H_{1}(X ; \mathbb{Z}) \subset H_{1}(X ; \mathbb{R})
\end{gathered}
$$

Current generation on graphs

Theorem (Chernyak, Klein, Sinistyn)

For sufficiently generic γ,

$$
\begin{gathered}
\lim _{\tau_{D} \rightarrow \infty} Q_{\tau_{D}, \beta}(\gamma)=\int_{0}^{1} K\left(\dot{\rho}^{B}\right) d t \\
\lim _{\beta \rightarrow \infty} \lim _{D_{D} \rightarrow \infty} Q_{\tau_{D}, \beta}(\gamma) \in H_{1}(X ; \mathbb{Z}) \subset H_{1}(X ; \mathbb{R})
\end{gathered}
$$

- K gives the solution to Kirchhoff's network problem and ρ^{B} is the Boltzmann distribution.
- K is written as a sum over spanning trees and ρ^{B} as a sum over vertices.

The network problem

Definition

The network problem for X is to construct an orthogonal splitting

$$
0 \longrightarrow Z_{d}(X ; \mathbb{R}) \longrightarrow C_{d}(X ; \mathbb{R}) \xrightarrow{\frac{K}{-\partial}} B_{d-1}(X ; \mathbb{R}) \longrightarrow 0
$$

with respect to the modified inner product $\langle-,-\rangle w$.

Spanning trees

Definition

A d-spanning tree for X is a subcomplex T such that

- $H_{d}(T ; \mathbb{Z})=0$,
- $\beta_{d-1}(T)=\beta_{d-1}(X)$,
- $X^{(d-1)} \subset T$.

Spanning trees

Definition

Ad-spanning tree for X is a subcomplex T such that

- $H_{d}(T ; \mathbb{Z})=0$,
- $\beta_{d-1}(T)=\beta_{d-1}(X)$,
- $X^{(d-1)} \subset T$.

Let θ_{T} denote the order of the torsion subgroup of $H_{d-1}(T ; \mathbb{Z})$ and define the weight of T to be the positive real number

$$
w_{T}:=\theta_{T}^{2} \prod_{\alpha \in T_{d}} e^{-\beta W(\alpha)}
$$

Spanning trees

Definition

For a spanning tree T of X, define a linear transformation

$$
K^{T}: B_{d-1}(X ; \mathbb{Q}) \rightarrow C_{d}(T ; \mathbb{Q}) \rightarrow C_{d}(X ; \mathbb{Q}),
$$

by setting $K^{T}(b)$ to be the unique d-chain in T so that $-\partial K^{\top}(b)=b$.

Spanning trees

Definition

For a spanning tree T of X, define a linear transformation

$$
K^{T}: B_{d-1}(X ; \mathbb{Q}) \rightarrow C_{d}(T ; \mathbb{Q}) \rightarrow C_{d}(X ; \mathbb{Q}),
$$

by setting $K^{T}(b)$ to be the unique d-chain in T so that
$-\partial K^{T}(b)=b$.

Theorem (C, Chernyak, Klein)

The orthogonal projection $B_{d-1}(X ; \mathbb{R}) \rightarrow C_{d}(X ; \mathbb{R})$ is given by

$$
K=\frac{1}{\Delta} \sum_{T} w_{T} K^{T},
$$

where the sum is over all spanning trees, and $\Delta=\sum_{T} w_{T}$.

The Boltzmann distribution

Definition

The combinatorial Hodge problem for X is to construct an orthogonal splitting

$$
0 \longrightarrow B_{d-1}(X ; \mathbb{R}) \longrightarrow Z_{d-1}(X ; \mathbb{R}) \longrightarrow H_{d-1}(X ; \mathbb{R}) \longrightarrow 0
$$

with respect to the modified inner product $\langle-,-\rangle_{E}$.

This is equivalent to constructing a cycle representative that is co-closed, i.e., harmonic.

Spanning co-trees

Definition

A spanning co-tree for X is a subcomplex L such that

- $i_{*}: H_{d-1}(L ; \mathbb{Q}) \cong H_{d-1}(X ; \mathbb{Q})$,
- $i_{*}: H_{d-2}(L ; \mathbb{Q}) \cong H_{d-2}(X ; \mathbb{Q})$,
- $X^{(d-2)} \subset L \subset X^{(d-1)}$.

Spanning co-trees

Definition

A spanning co-tree for X is a subcomplex L such that

- $i_{*}: H_{d-1}(L ; \mathbb{Q}) \cong H_{d-1}(X ; \mathbb{Q})$,
- $i_{*}: H_{d-2}(L ; \mathbb{Q}) \cong H_{d-2}(X ; \mathbb{Q})$,
- $X^{(d-2)} \subset L \subset X^{(d-1)}$.

By definition we have

$$
H_{d-1}(L) \xrightarrow{\cong_{\mathbb{Q}}} H_{d-1}(X) \longrightarrow H_{d-1}(X, L) \longrightarrow H_{d-2}(L) \xrightarrow{\cong_{\mathbb{Q}}} H_{d-2}(X)
$$

Define the weight of a spanning co-tree to be

$$
\tau_{L}:=\left|H_{d-1}(X, L)\right|^{2} \prod_{b \in T_{d-1}} e^{-\beta E(b)}
$$

Spanning co-trees

For a spanning co-tree L of X, define ψ_{L} by the following diagram

$$
H_{d-1}(X ; \mathbb{Q}) \underbrace{\stackrel{i_{*}^{-1}}{\longrightarrow} H_{d-1}(L ; \mathbb{Q}) \xrightarrow{=} Z_{d-1}(L ; \mathbb{Q})}_{\psi_{L}} \underset{\substack{i_{L} \\ Z_{d-1}(X ; \mathbb{Q})}}{ }
$$

Spanning co-trees

For a spanning co-tree L of X, define ψ_{L} by the following diagram

$$
H_{d-1}(X ; \mathbb{Q}) \underbrace{\stackrel{i_{*}^{-1}}{\longrightarrow} H_{d-1}(L ; \mathbb{Q}) \xrightarrow{=} Z_{d-1}(L ; \mathbb{Q})}_{\psi_{L}} \underset{\substack{i_{L} \\ Z_{d-1}(X ; \mathbb{Q})}}{ }
$$

Theorem (C, Chernyak, Klein)

The splitting $H_{d-1}(X ; \mathbb{R}) \rightarrow Z_{d-1}(X ; \mathbb{R})$ is given by

$$
\rho^{B}=\frac{1}{\tau} \sum_{L} \tau_{L} \psi_{L}
$$

where the sum is over all spanning co-trees, and $\tau=\sum_{L} \tau_{L}$.

Quantization

In the low temperature, adiabatic limit, we have the following:

Theorem (Chernyak, Klein, Sinitsyn)

For a connected graph X, the image of $Q: L \mathcal{M}_{X} \rightarrow H_{1}(X ; \mathbb{R})$ is contained the integral lattice $H_{1}(X ; \mathbb{Z}) \subset H_{1}(X ; \mathbb{R})$.

Quantization

In the low temperature, adiabatic limit, we have the following:

Theorem (Chernyak, Klein, Sinitsyn)

For a connected graph X, the image of $Q: L \mathcal{M}_{X} \rightarrow H_{1}(X ; \mathbb{R})$ is contained the integral lattice $H_{1}(X ; \mathbb{Z}) \subset H_{1}(X ; \mathbb{R})$.

Theorem (C, Chernyak, Klein)

Let X be a d-dimensional connected CW complex.

1. $Q(\gamma)=\int_{0}^{1} K\left(\dot{\rho}^{B}\right) d t$.
2. $Q: L \mathcal{M}_{X} \rightarrow H_{d}(X ; \mathbb{R})$ is contained in $H_{d}\left(X ; \mathbb{Z}\left[\frac{1}{D}\right]\right)$, where D is determined by topological data.

Trees \& co-trees

(a) Three distinct spanning trees of T, out of the 32 total.

(b) Three distinct 1-spanning co-trees of T, out of the 20 total.

The Boltzmann distribution on graphs

Definition

The higher Boltzmann distribution is the real $(d-1)$-cycle

$$
\rho^{B}:=\frac{1}{\tau} \sum_{L} \tau_{L} \psi_{L} \in Z_{d-1}(X ; \mathbb{R}) .
$$

The Boltzmann distribution on graphs

Definition

The higher Boltzmann distribution is the real $(d-1)$-cycle

$$
\rho^{B}:=\frac{1}{\tau} \sum_{L} \tau_{L} \psi_{L} \in Z_{d-1}(X ; \mathbb{R}) .
$$

When X is a simple graph, the spanning co-trees are given by the vertices, and ϕ_{L} is an integral isomorphism so that $\left|H_{0}(X, L)\right|=1$. The weight of a vertex L is then $\tau_{L}=e^{-\beta E_{j}}$ and

$$
\rho^{B}=\frac{\sum_{j} e^{-\beta E_{j}}}{\sum_{j} e^{-\beta E_{j}}} .
$$

