Solve the following problems. Be sure to show all work and prove all statements.

Part I. Do any three problems from this section.

1. Let \(M \) and \(N \) be two smooth, non-empty manifolds of the same dimension, such that \(N \) is compact and \(M \) is connected.

 (a) If \(g : N \to M \) is a submersion, then show \(g \) is surjective.

 (b) If \(f : N \to M \) is an embedding, then show \(f \) is a diffeomorphism.

2. (a) Let \(e_k^a \subset \mathbb{R}^k \) be the open ball
 \[
 e_k^a = \{ x \in \mathbb{R}^k \mid |x|^2 < a \}.
 \]
 Show \(e_k^a \) is homeomorphic to \(\mathbb{R}^k \).

 (b) If \(M \) is a \(k \)-dimensional manifold, show that every point of \(M \) has a neighborhood homeomorphic to all of \(\mathbb{R}^k \). Therefore, charts can always be chosen with all of Euclidean space as their co-domains.

 (c) Suppose \(N \) is a non-empty, \(n \)-dimensional manifold, with \(k \leq n \). Show there exists an embedding of \(\mathbb{R}^k \) into \(N \).

3. Prove that a finite dimensional real vector space is a smooth manifold.

4. Show the inclusion \(\mathbb{R}^{n+1} \subset \mathbb{R}^{n+2} \) induces an embedding \(\mathbb{RP}^n \subset \mathbb{RP}^{n+1} \). Show
 \[
 \mathbb{RP}^{n+1} \setminus \mathbb{RP}^n \cong \mathbb{R}^{n+1}.
 \]

Part II. Do any two problems from this section.

5. Define complex projective space \(\mathbb{CP}^n \) as follows. On the complex vector space \(\mathbb{C}^{n+1} \), set \(x \sim y \) iff there exists \(\lambda \in \mathbb{C}, \lambda \neq 0 \), such that \(\lambda x = y \). The resulting quotient space is \(\mathbb{CP}^n := (\mathbb{C}^{n+1} \setminus \{0\}) / \sim \). Just as for real projective spaces, denote the class of \(x = (x_0, x_1, \ldots, x_n) \in \mathbb{C}^{n+1} \) under \(\sim \) by \([x] = [x_0, x_1, \ldots, x_n] \).

 (a) Show that \(\mathbb{CP}^n \) is a \(2n \)-dimensional smooth manifold.

 (b) Show that the mapping \(f : \mathbb{CP}^n \times \mathbb{CP}^m \to \mathbb{CP}^{n+m+nm} \), given by
 \[
 (x, y) \mapsto [x_0y_0, x_0y_1, \ldots, x_iy_k, \ldots, x_ny_m],
 \]
 is an embedding.

 (c) Write down the analogous map for real projective spaces and show the same is true.

6. Let \(M_2(\mathbb{R}) \) be the set of all 2 by 2 matrices with real entries.

 (a) Show that \(M_2(\mathbb{R}) \) is a manifold of dimension 4.
(b) Let $SL_2(\mathbb{R}) \subset M_2(\mathbb{R})$ denote those matrices with determinant $+1$. Show $SL_2(\mathbb{R})$ is a submanifold of dimension 3.

(c) Let $R \subset M_2(\mathbb{R})$ denote those matrices of rank 1. Show R is a submanifold of dimension 3.

7. Let ω be an irrational number and let $T = \mathbb{R}^2/\mathbb{Z}^2$ denote the torus. Define $\alpha : \mathbb{R} \to T$ by $\alpha(t) = \pi(t, \omega t)$, where $\pi : \mathbb{R}^2 \to T^2$ is the standard projection.

(a) Show that α is an injective immersion.

(b) Show that the image of α is everywhere dense in T. (Hint: $\mathbb{Z} + \mathbb{Z}\omega \subset \mathbb{R}$ is dense in \mathbb{R}.)

(c) Is α a smooth embedding?

Part III. Do any one problem.

7. For a smooth manifold M, $C^\infty(M)$ is an algebra under pointwise multiplication and addition of functions, as we discussed in class.

(a) For $p \in M$, set $\mathfrak{M}_p = \{ f \in C^\infty(M) \mid f(p) = 0 \}$. Show that \mathfrak{M}_p is a maximal ideal in $C^\infty(M)$.

(b) Set $\overline{\mathfrak{M}}_p = \{ \overline{\varphi} \in \mathcal{F}_p \mid \overline{\varphi}(p) = 0 \} \subset \mathcal{F}_p$, where \mathcal{F}_p consists of germs of real-valued functions on M at p. Show that $\overline{\mathfrak{M}}_p$ is the only maximal ideal of \mathcal{F}_p.

(c) Let $\overline{\mathfrak{M}}^k_p$ denote the k^{th} power of the ideal, consisting of all finite linear combinations of k-fold products of elements of $\overline{\mathfrak{M}}_p$. Prove that

$$T_p M \cong \left(\overline{\mathfrak{M}}_p / \overline{\mathfrak{M}}^2_p \right)^*,$$

where the * denotes vector space dual.

(d) (Specialize the above to \mathbb{R}^n.) If \mathcal{E}_n denotes the function germs at the origin on \mathbb{R}^n, then let \mathfrak{E}_n denote the maximal ideal. Show that \mathfrak{E}_n^k consists of those germs $\overline{\varphi}$ for which all partial derivatives of order less than k vanish at the origin.

8. Suppose that f_1, f_2, \ldots, f_l are smooth, real-valued functions on a manifold M of dimension $k \geq l$, and define $f = (f_1, f_2, \ldots, f_l) : M \to \mathbb{R}^l$. The functions f_1, f_2, \ldots, f_l are said to be independent at x if $T_x(f) : T_x(M) \to \mathbb{R}^l$ is surjective.

(a) Set $X = f^{-1}(0)$. Show that if f_1, f_2, \ldots, f_l are independent on every point of X, then X is a submanifold of M. In this case, X is said to be cut out by the independent functions $\{ f_i \}$. What is the dimension of X?

(b) Suppose that $g : M \to N$ is a smooth map, and $y \in N$ is a regular value. Prove that the submanifold $f^{-1}(y)$ can be cut out by independent functions.

(c) Prove that every submanifold can locally be cut out by independent functions.

(d) Can you construct a submanifold that is not globally cut out by independent functions?

Part IV. Do the following problem.

9. Let $\xi = (E, \pi, B)$ be a vector bundle. A Riemannian metric on ξ is a section of $(E \otimes E)^* \to B$ such that, for every $b \in B$, the bilinear form determined by this section $E_b \times E_b \to \mathbb{R}$ is symmetric and positive definite.
(a) Suppose that E embeds in Euclidean space. Show that E can be equipped with a Riemannian metric.

(b) A bundle η is a sub-bundle of ξ if $F_b(\eta) \subset F_b(\xi)$ for every $b \in B$. If ξ is equipped with a Riemannian metric and η is a sub-bundle of ξ, show there exists a sub-bundle of ξ given by

$$\eta^\perp = \bigcup_{b \in B} F_b^\perp.$$

(c) Let M be a submanifold of N. The tangent bundle TM is a sub-bundle of the restriction $TN|_M$. The normal bundle of M is the orthogonal complement $TM^\perp \subset TN|_M$. Show $TM \oplus \nu \cong TN|_M$.

(d) Let $S^n \subset \mathbb{R}^{n+1}$ be the standard embedding. Show the normal bundle of this embedding of S^n is trivial.

Bonus problems.

10. Prove $T(\mathbb{R}P^n) \cong \text{hom}(\gamma_n^1, (\gamma_n^1)^\perp)$.

11. Prove $T(\mathbb{R}P^n) \oplus \epsilon^1 \cong (\gamma_n^1)^{n+1}$. (Hint: If ξ possesses a Riemannian metric, then $\xi \cong \xi^*$).