MTG 7396

Homework 1

Due Monday, October 2

Solve the following problems. Be sure to show all work and prove all statements.
Part I. Do any three problems from this section.

1. Let M and N be two smooth, non-empty manifolds of the same dimension, such that N is compact and M is connected.
(a) If $g: N \rightarrow M$ is a submersion, then show g is surjective.
(b) If $f: N \rightarrow M$ is an embedding, then show f is a diffeomorphism.
2. (a) Let $e_{a}^{k} \subset \mathbb{R}^{k}$ be the open ball

$$
e_{a}^{k}=\left\{\left.x \in \mathbb{R}^{k}| | x\right|^{2}<a\right\} .
$$

Show e_{a}^{k} is homeomorphic to \mathbb{R}^{k}.
(b) If M is a k-dimensional manifold, show that every point of M has a neighborhood homeomorphic to all of \mathbb{R}^{k}. Therefore, charts can always be chosen with all of Euclidean space as their co-domains.
(c) Suppose N is a non-empty, n-dimensional manifold, with $k \leq n$. Show there exists an embedding of \mathbb{R}^{k} into N.
3. Prove that a finite dimensional real vector space is a smooth manifold.
4. Show the inclusion $\mathbb{R}^{n+1} \subset \mathbb{R}^{n+2}$ induces an embedding $\mathbb{R P}^{n} \subset \mathbb{R P}^{n+1}$. Show

$$
\mathbb{R P}^{n+1} \backslash \mathbb{R} \mathrm{P}^{n} \cong \mathbb{R}^{n+1}
$$

Part II. Do any two problems from this section.
5. Define complex projective space $\mathbb{C P}^{n}$ as follows. On the complex vector space \mathbb{C}^{n+1}, set $x \sim y$ iff there exists $\lambda \in \mathbb{C}, \lambda \neq 0$, such that $\lambda x=y$. The resulting quotient space is $\mathbb{C P}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim$. Just as for real projective spaces, denote the class of $x=$ $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n+1}$ under \sim by $[x]=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
(a) Show that $\mathbb{C P}^{n}$ is a $2 n$-dimensional smooth manifold.
(b) Show that the mapping $f: \mathbb{C} P^{n} \times \mathbb{C P}^{m} \rightarrow \mathbb{C} P^{n+m+n m}$, given by

$$
(x, y) \mapsto\left[x_{0} y_{0}, x_{0} y_{1}, \ldots, x_{i} y_{k}, \ldots, x_{n} y_{m}\right]
$$

is an embedding.
(c) Write down the analogous map for real projective spaces and show the same is true.
6. Let $M_{2}(\mathbb{R})$ be the set of all 2 by 2 matrices with real entries.
(a) Show that $M_{2}(\mathbb{R})$ is a manifold of dimension 4.
(b) Let $S L_{2}(\mathbb{R}) \subset M_{2}(\mathbb{R})$ denote those matrices with determinant +1 . Show $S L_{2}(\mathbb{R})$ is a submanifold of dimension 3.
(c) Let $R \subset M_{2}(\mathbb{R})$ denote those matrices of rank 1 . Show R is a submanifold of dimension 3.
7. Let ω be an irrational number and let $T=\mathbb{R}^{2} / \mathbb{Z}^{2}$ denote the torus. Define $\alpha: \mathbb{R} \rightarrow T$ by $\alpha(t)=\pi(t, \omega t)$, where $\pi: \mathbb{R}^{2} \rightarrow T^{2}$ is the standard projection.
(a) Show that α is an injective immersion.
(b) Show that the image of α is everywhere dense in T. (Hint: $\mathbb{Z}+\mathbb{Z} \omega \subset \mathbb{R}$ is dense in \mathbb{R}.)
(c) Is α a smooth embedding?

Part III. Do any one problem.
7. For a smooth manifold $M, C^{\infty}(M)$ is an algebra under pointwise multiplication and addition of functions, as we discussed in class.
(a) For $p \in M$, set $\mathfrak{M}_{p}=\left\{f \in C^{\infty}(M) \mid f(p)=0\right\}$. Show that \mathfrak{M}_{p} is a maximal ideal in $C^{\infty}(M)$.
(b) Set $\overline{\mathfrak{M}}_{p}=\left\{\bar{\phi} \in \mathcal{F}_{p} \mid \bar{\phi}(p)=0\right\} \subset \mathcal{F}_{p}$, where \mathcal{F}_{p} consists of germs of real-valued functions on M at p. Show that $\overline{\mathfrak{M}}_{p}$ is the only maximal ideal of \mathcal{F}_{p}.
(c) Let $\overline{\mathfrak{M}}_{p}^{k}$ denote the $k^{\text {th }}$ power of the ideal, consisting of all finite linear combinations of k-fold products of elements of $\overline{\mathfrak{M}}_{p}$. Prove that

$$
T_{p} M \cong\left(\overline{\mathfrak{M}}_{p} / \overline{\mathfrak{M}}_{p}^{2}\right)^{*}
$$

where the $*$ denotes vector space dual.
(d) (Specialize the above to \mathbb{R}^{n}.) If \mathcal{E}_{n} denotes the function germs at the origin on \mathbb{R}^{n}, then let \mathfrak{E}_{n} denote the maximal ideal. Show that \mathfrak{E}_{n}^{k} consists of those germs $\bar{\phi}$ for which all partial derivatives of order less than k vanish at the origin.
8. Suppose that $f_{1}, f_{2}, \ldots, f_{l}$ are smooth, real-valued functions on a manifold M of dimension $k \geq l$, and define $f=\left(f_{1}, f_{2}, \ldots, f_{l}\right): M \rightarrow \mathbb{R}^{l}$. The functions $f_{1}, f_{2}, \ldots, f_{l}$ are said to be independent at x if $T_{x}(f): T_{x}(M) \rightarrow \mathbb{R}^{l}$ is surjective.
(a) Set $X=f^{-1}(0)$. Show that if $f_{1}, f_{2}, \ldots, f_{l}$ are independent on every point of X, then X is a submanifold of M. In this case, X is said to be cut out by the independent functions $\left\{f_{i}\right\}$. What is the dimension of X ?
(b) Suppose that $g: M \rightarrow N$ is a smooth map, and $y \in N$ is a regular value. Prove that the submanifold $f^{-1}(y)$ can be cut out by independent functions.
(c) Prove that every submanifold can locally be cut out by independent functions.
(d) Can you construct a submanifold that is not globally cut out by independent functions?

Part IV. Do the following problem.
9. A Riemannian metric on a bundle $\xi=(\pi: E \rightarrow B)$ is a section of $(E \otimes E)^{*} \rightarrow B$ such that, for every $b \in B$, the bilinear form determined by this section $E_{b} \otimes E_{b} \rightarrow \mathbb{R}$ is symmetric and positive definite. A Riemannian metric on a smooth manifold M is a Riemannian metric on $T M$, the tangent bundle of M.
(a) Suppose that M is a smooth manifold, immersed in Euclidean space. Show that M can be equipped with a Riemannian metric.
(b) A bundle η is a sub-bundle of ξ if $F_{b}(\eta) \subset F_{b}(\xi)$ for every $b \in B$. If ξ is equipped with a Riemannian metric and η is a sub-bundle of ξ, show there exists a sub-bundle of ξ given by

$$
\eta^{\perp}=\bigcup_{b \in B} F_{b}^{\perp} .
$$

(c) Let M be a submanifold of N, and denote the embedding $e: M \subset N$. The tangent bundle $T M$ is a sub-bundle of the restriction $\left.T N\right|_{M}$. The normal bundle of e is the orthogonal complement: $\nu_{e}:=\left.T M^{\perp} \subset T N\right|_{M}$. Show $\left.T M \oplus \nu_{e} \cong T N\right|_{M}$.
(d) Let $S^{n} \subset \mathbb{R}^{n+1}$ be the standard embedding. Show the normal bundle of this embedding of S^{n} is trivial.

Bonus problems.

10. Prove $T\left(\mathbb{R} P^{n}\right) \cong \operatorname{hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp}\right)$.
11. Prove $T\left(\mathbb{R} P^{n}\right) \oplus \varepsilon^{1} \cong\left(\gamma_{n}^{1}\right)^{n+1}$. (Hint: If ξ possesses a Riemannian metric, then $\xi \cong \xi^{*}$).
