Solve the following problems. Be sure to show all work and prove all statements.

1. Let ξ and η be two vector bundles over a paracompact base space X. Explicitly prove that the space of bundle morphisms $\text{hom}(\xi, \eta)$ has the structure of a bundle over X.

2. (MS 4a) Prove
\[w_k(\xi \times \eta) = \sum_{i=0}^{k} w_i(\xi) \cup w_{k-i}(\eta). \]

3. Prove that $\mathbb{R}P^2 \times \mathbb{R}P^2$ is not cobordant to $\mathbb{R}P^4$.

4. Prove that the standard torus T is cobordant to S^2.

5. Suppose $k_1 \neq k_2$ and $k_1 + j_1 = k_2 + j_2$ for some j_1 and j_2. Prove $S^{k_1} \times S^{j_1}$ is cobordant to $S^{k_2} \times S^{j_2}$.

6. Two real vector bundles ξ and η over X are stably isomorphic if there exists an n such that $\xi \oplus \varepsilon^n \cong \eta \oplus \varepsilon^n$, where $\varepsilon^n = X \times \mathbb{R}^n$ is the trivial n-plane bundle over X. If ξ and η are stably isomorphic, prove $w_i(\xi) = w_i(\eta)$ for every i.

7. Prove that the orthogonal group $O(n + k)$ acts transitively on $G_n(\mathbb{R}^{n+k})$. Identify the stabilizer of the n-plane $\mathbb{R}^n \oplus 0 \subset \mathbb{R}^n \times \mathbb{R}^k$ under this action; call it S. Show $G_n(\mathbb{R}^{n+k}) \cong O(n + k)/S$.
