MTG 7396

Homework 2

Due: Monday, November 20

Solve the following problems. Be sure to show all work and prove all statements.

1. (a) (Milnor-Stasheff problem 4a) Prove

$$
w_{k}(\xi \times \eta)=\sum_{i=0}^{k} w_{i}(\xi) \times w_{k-i}(\eta) .
$$

(b) Prove that $\mathbb{R} \mathrm{P}^{2} \times \mathbb{R} \mathrm{P}^{2}$ is not cobordant to $\mathbb{R} \mathrm{P}^{4}$.
(c) Prove that the torus $T=S^{1} \times S^{1}$ is cobordant to S^{2}.
(d) Suppose $n=k+j$ for some natural numbers n, k, j. Is $S^{k} \times S^{j}$ is cobordant to S^{n} ?
2. (a) Let ξ be an n-plane bundle over a compact base X. Show there exists a vector bundle η over X such that $\xi \oplus \eta$ is a trivial vector bundle.
(b) Show compactness of X is necessary in (a). (Hint: Consider the canonical line bundle over $\mathbb{R}{ }^{\infty}$.)
(c) Two real vector bundles ξ and η over X are stably isomorphic if there exists an n such that $\xi \oplus \varepsilon^{n} \cong \eta \oplus \varepsilon^{n}$, where $\varepsilon^{n}=X \times \mathbb{R}^{n}$ is the trivial n-plane bundle over X. If ξ and η are stably isomorphic, prove $w_{i}(\xi)=w_{i}(\eta)$ for every i.
3. Prove that the orthogonal group $O(n+k)$ acts transitively on $G_{n}\left(\mathbb{R}^{n+k}\right)$. Identify the stabilizer of the n-plane $\mathbb{R}^{n} \oplus 0 \subset \mathbb{R}^{n} \times \mathbb{R}^{k}$ under this action; call it S. Show $G_{n}\left(\mathbb{R}^{n+k}\right) \cong O(n+k) / S$.
4. Let $E=S^{1} \times I / \sim$, where $(z, 0) \sim\left(e^{\pi i} \cdot z, 1\right)$. This is similar to the standard construction of the torus (which is $(z, 0) \sim(z, 1)$), but we rotate one end by π before gluing it to the other end. Let $B=S^{1}$ and let $p: E \rightarrow B$ be given by $p(z, t)=z$.
(a) Show E is not trivial as a $\mathbb{Z} / 2 \mathbb{Z}$-bundle.
(b) Show E is trivial as a G-bundle, where G is the full group of rotations of S^{1}.
(Hint: Consider the transition functions of the bundle.) Notice that we have specified both spaces and the projection map, but yet we can't tell if its a trivial bundle until we specify the group of the bundle!
5. Let vect $\mathbb{R}_{\mathbb{R}}$ denote the category of real vector spaces with morphisms given by vector space isomorphisms. A functor $T:$ vect $_{\mathbb{R}} \times$ vect $_{\mathbb{R}} \rightarrow \operatorname{vect}_{\mathbb{R}}$ assigns a vector space $T\left(V_{1}, V_{2}\right)$ to each pair of vector spaces V_{1}, V_{2}, and to each pair of vector space isomorphisms $f_{1}: V_{1} \rightarrow V_{1}^{\prime}, f_{2}$: $V_{2} \rightarrow V_{2}^{\prime}$, a vector space isomorphism $T\left(f_{1}, f_{2}\right): T\left(V_{1}, V_{2}\right) \rightarrow T\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$. Functors must satisfy $T\left(\mathrm{id}_{V}, \mathrm{id}_{W}\right)=\mathrm{id}_{T(V, W)}$ and $T\left(f_{1} \circ f_{2}, g_{1} \circ g_{2}\right)=T\left(f_{1}, g_{1}\right) \circ T\left(f_{2}, g_{2}\right)$.
Such a functor is continuous if $T(f, g)$ varies continuously on f and g. This notion is welldefined since the set of vector space isomorphisms from one vector space to another has a natural topology.
(a) Describe this topology.
(b) Let T be a continuous functor as above and let ξ_{1} and ξ_{2} be 2 vector bundles over a common base B. Construct a new bundle over B by taking the fiber over $b \in B$ to be

$$
F_{b}=T\left(F_{b}\left(\xi_{1}\right), F_{b}\left(\xi_{2}\right)\right) .
$$

Set the total space E to be the disjoint union of the vector space F_{b}. and define $\pi\left(F_{b}\right)=b$. Prove there is a canonical topology on E so that E is the total space of a vector bundle with projection π and fibers F_{b}. (This is in Milnor-Stasheff, Theorem 3.6. Be sure to fill in all the details if using their proof.)
6. (a) Let P_{n} denote the set of all real $n \times n$ positive definite matrices. Equivalently, these are upper triangular. Prove that P_{n} is contractible.
(b) Extra credit: Prove the QR decomposition: every invertible matrix is the product of a positive-definite matrix and an orthogonal matrix. So $G L_{n}(\mathbb{R}) \cong R_{n} \times O(n)$. In what category is this isomorphism?
(c) Prove that a vector bundle admits a Riemannian metric if and only if its structure group can be reduced to $O(n)$.
(d) Using (a) and (b), show that every vector bundle can be equipped with a Riemannian metric. (This method is the algebraic-topologist's proof.)

