Exciton Scattering for Topologists

Michael J. Catanzaro

University of Florida

March 21, 2017

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1 The Exciton Scattering Problem
- 2 CW structure of U(n)
- 3 The Index Theorem Global Intersection theory Local Intersection theory
- 4 Relation to Actual Excitations

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 The Exciton Scattering Problem

2 CW structure of U(n)

- 3 The Index Theorem Global Intersection theory Local Intersection theory
- 4 Relation to Actual Excitations

Mathematical Overview

- We're interested in an intersection problem inside the unitary group U(n).
- We want to count intersections of f : S¹ → U(n) with a stratified space D_jU(n) ⊂ U(n).
- Intersections are weighted with multiplicity instead of a usual $\pm 1.$
- We do so by using an index theorem, relating these multiplicities to local indices, which are much easier to compute.

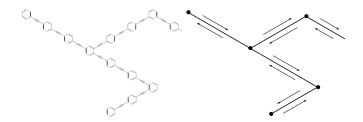
Excitons

< ロト < 団ト < 三ト < 三ト < 三 ・ つへぐ

- In organic semiconductors and insulators, excited electrons form bound states, comprised of the excited electron and the 'hole' it leaves behind.
- These *excitons* behave like actual particles, moving along the linear segments and getting scattered near the vertices.
- Excitons posess a momentum like quantity known as quasi-momentum k.

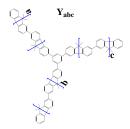
Molecules under study

- We're interested in branched, conjugated molecules.
- These posess discrete, 1-dimensional translational symmetry, which is only broken near the vertices (k ∈ S¹).



 We formulate the problem on a metric graph, whose edges are weighted by integers known as *repeat units*.

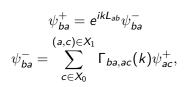
- Away from the vertices, excitons are described by a superposition of two plane waves.
- The scattering at a degree n vertex a is described by an n × n unitary matrix, referred to as the scattering matrix, dependent upon k: Γ^a(k).
- The calculation of Γ(k) is done via quantum chemistry calculations, and we treat these matrices as known.
- $\Gamma(k)$ is an analytic function of k.

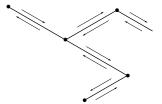


ション ふゆ マ キャット ビー シンクション

ES equations

Let X_1 denote the edges on our graph, so that a solution to the ES equations lies in $\mathbb{C}[X_1]$. Letting *ab* denote the oriented edge $b \to a$, and writing ψ_{ab}^+ for the wave function incoming to *a* from the edge *ab*:





ション ふゆ マ キャット ビー シンクション

To simplify the analysis:

- introduce $\sigma: X_1 \rightarrow X_1$, sending $ab \mapsto ba$,
- define $\hat{L}: X_1 \to X_1$, sending $ab \mapsto L_{ab}ab$, and
- combine the scattering data

$$\Gamma_0(k) = \bigoplus_{a \in X_0} \Gamma^a(k).$$

イロト 不得 トイヨ トイヨ ト つくぐ

Finally, define

$$\Gamma(k) = e^{ik\hat{L}}\sigma\Gamma_0(k).$$

To simplify the analysis:

- introduce $\sigma: X_1 \rightarrow X_1$, sending $ab \mapsto ba$,
- define $\hat{L}: X_1 \to X_1$, sending $ab \mapsto L_{ab}ab$, and
- combine the scattering data

$$\Gamma_0(k) = \bigoplus_{a \in X_0} \Gamma^a(k).$$

Finally, define

$$\Gamma(k) = e^{ik\hat{L}}\sigma\Gamma_0(k).$$

Now the ES equations read

$$\Gamma(k)\psi=\psi$$

イロト 不得 トイヨ トイヨ ト つくぐ

Solutions

 A solution to the ES equations corresponds to k ∈ S¹ and ψ ∈ C[X₁] so that Γ(k)ψ = ψ.

Solutions

- A solution to the ES equations corresponds to k ∈ S¹ and ψ ∈ C[X₁] so that Γ(k)ψ = ψ.
- $\Gamma: S^1 \to U(n)$ should have at least one unit eigenvalue.
- Let $D_1 U(n)$ denote the set of all such matrices.
- We look for intersections of S¹ (under Γ) with D₁U(n) inside of U(n).

Solutions

- A solution to the ES equations corresponds to k ∈ S¹ and ψ ∈ C[X₁] so that Γ(k)ψ = ψ.
- $\Gamma: S^1 \to U(n)$ should have at least one unit eigenvalue.
- Let $D_1 U(n)$ denote the set of all such matrices.
- We look for intersections of S^1 (under Γ) with $D_1U(n)$ inside of U(n).
- If m_j denotes the multiplicity of a solution k_j , then $m = \sum m_j$ is referred to as the number of solutions to the ES equations.

Outline

▲ロト ▲昼 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = のへで

1 The Exciton Scattering Problem

2 CW structure of U(n)

- 3 The Index Theorem Global Intersection theory Local Intersection theory
- 4 Relation to Actual Excitations

 Milnor proved that every differentiable manifold has the homotopy type of a CW complex by showing f_a : M → ℝ, defined by f_a(x) = ||x - a||² is a Morse function for almost all a ∈ ℝⁿ, using Whitney's embedding theorem.

イロト 不良 アイヨア イヨア ヨー ろくぐ

 Milnor proved that every differentiable manifold has the homotopy type of a CW complex by showing f_a : M → ℝ, defined by f_a(x) = ||x - a||² is a Morse function for almost all a ∈ ℝⁿ, using Whitney's embedding theorem.

$$\frac{\partial f_{\mathsf{a}}}{\partial u_i} = 2 \frac{\partial x}{\partial u_i} (x - \mathsf{a})$$

Thus x_0 is a critical point iff $x_0 - a$ is normal to M at x_0 .

 Milnor proved that every differentiable manifold has the homotopy type of a CW complex by showing f_a : M → ℝ, defined by f_a(x) = ||x - a||² is a Morse function for almost all a ∈ ℝⁿ, using Whitney's embedding theorem.

$$\frac{\partial f_{\mathsf{a}}}{\partial u_{i}} = 2\frac{\partial x}{\partial u_{i}}(x-\mathsf{a})$$

Thus x_0 is a critical point iff $x_0 - a$ is normal to M at x_0 .

Let M = U(n). For fixed x₀ ∈ U(n), M_n(ℂ) admits the decomposition

$$M_n(\mathbb{C}) = \{u | u^* x_0 = -x_0^* u\} \oplus \{u | u^* x_0 = x_0^* u\}$$

 Milnor proved that every differentiable manifold has the homotopy type of a CW complex by showing f_a : M → ℝ, defined by f_a(x) = ||x - a||² is a Morse function for almost all a ∈ ℝⁿ, using Whitney's embedding theorem.

$$\frac{\partial f_{a}}{\partial u_{i}} = 2\frac{\partial x}{\partial u_{i}}(x-a)$$

Thus x_0 is a critical point iff $x_0 - a$ is normal to M at x_0 .

Let M = U(n). For fixed x₀ ∈ U(n), M_n(ℂ) admits the decomposition

$$M_n(\mathbb{C}) = \{u | u^* x_0 = -x_0^* u\} \oplus \{u | u^* x_0 = x_0^* u\}$$

A simple calculation shows

$$T_{x_0}U(n) = \{ u \in M_n(\mathbb{C}) | u^* x_0 = -x_0^* u \}.$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

- The first summand lies in T_{x0}U(n), and therefore the second must be normal to U(n) at x0.
- Therefore, x₀ is a critical point iff (x₀ − a)*x₀ = x₀*(x₀ − a), or equivalently x₀*a = a*x₀.

- The first summand lies in T_{x0}U(n), and therefore the second must be normal to U(n) at x0.
- Therefore, x₀ is a critical point iff (x₀ − a)*x₀ = x₀*(x₀ − a), or equivalently x₀*a = a*x₀.
- Take a to be a diagonal matrix, with distinct real entries. This implies x₀ must be of the form x₀ = diag(±1,±1,...,±1).
- If $I = [i_1, \ldots, i_r]$ denotes the indices corresponding to -1, then

$$\operatorname{ind}(x_l) = \sum_{j=1}^r 2i_j - r$$

- The first summand lies in T_{x0}U(n), and therefore the second must be normal to U(n) at x0.
- Therefore, x₀ is a critical point iff (x₀ − a)*x₀ = x₀*(x₀ − a), or equivalently x₀*a = a*x₀.
- Take a to be a diagonal matrix, with distinct real entries. This implies x₀ must be of the form x₀ = diag(±1,±1,...,±1).
- If $I = [i_1, \ldots, i_r]$ denotes the indices corresponding to -1, then

$$\operatorname{ind}(x_l) = \sum_{j=1}^r 2i_j - r$$

• $D_1 U(n)$ is the $n^2 - 1$ skeleton of U(n) (replacing f_a by $-f_a$).

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1 The Exciton Scattering Problem
- 2 CW structure of U(n)
- 3 The Index Theorem Global Intersection theory Local Intersection theory
- 4 Relation to Actual Excitations

Global Intersection Index

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The aforementioned CW decomposition of U(n) has $D_1U(n)$ as its $(n^2 - 1)$ -skeleton.

- The top cell of $D_1U(n)$ defines a generator $\mu \in H_{n^2-1}D_1U(n)$.
- Let $[S^1]$ be a generator for $H_1(S^1)$.
- Let $j: D_1U(n) \rightarrow U(n)$ be the inclusion.

Definition

The global intersection index of Γ is the integer

$$\alpha_{\Gamma} = j_*(\delta) \cdot \Gamma_*([S^1]) \in H_0U(n) \cong \mathbb{Z}$$
.

Definition

Let $\mathfrak{I}_{\Gamma} = \{(x, y) \in D_1 U(n) \times S^1 | x = \Gamma(y)\}$ denote the set of intersection points.

For $A \subset X$, let $(X|A) = (X, X \setminus A)$.

Definition

Let $\mathfrak{I}_{\Gamma} = \{(x, y) \in D_1 U(n) \times S^1 | x = \Gamma(y)\}$ denote the set of intersection points.

For $A \subset X$, let $(X|A) = (X, X \setminus A)$.

The global intersection index can be phrased in terms of applying homology to the following diagram

Following $(\delta, [S^1])$ around either side and then applying an orientation class of U(n), yields the intersection pairing, or global intersection index.

Winding number

ション ふゆ マ キャット ビー シンクション

Proposition

The global intersection index equals the winding number of Γ ,

$$\alpha_{\Gamma} = w(\Gamma) = 2 \sum_{(a,b)\in X_1} L_{ab} + \sum_{a\in X_0} w(\Gamma^{(a)})$$

where $w(\Gamma^{(a)})$ is the winding number of the vertex a.

Proof.

Show $(\det \Gamma)_*[S^1] = \det_* \Gamma_*[S^1] = \alpha_{\Gamma}[S^1]$ and compute.

Local Intersection theory

Definition

The multiplicity m_p of $p \in \mathfrak{I}_{\Gamma}$ is defined to be the dimension of the (+1)-eigenspace of the matrix corresponding to p.

In general, the computation of m_p can be difficult. What is much easier to compute is the local intersection index for a point $p \in \mathfrak{I}_{\Gamma}$. While this is only an approximation, its calculable, and when the lengths in the graph are long enough, this approximation becomes exact.

Local Intersection Index

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let k_p ∈ S¹ correspond to a solution of the ES equations of mulitplicity m_p.
- The analyticity of $\Gamma \Rightarrow$ solutions occur in isolated points.

Local Intersection Index

- Let k_p ∈ S¹ correspond to a solution of the ES equations of mulitplicity m_p.
- The analyticity of $\Gamma \Rightarrow$ solutions occur in isolated points.
- There exists some small Δk > 0 so that [k_p Δk, k_p + Δk] only contains the solution at k_p.
- If we perturb k slightly all m_p eigenvalues will no longer be 1.
- Define m[±]_p to be the number of eigenvalues with positive imaginary parts for k ∈ (k_p, k_p ± Δk]

Local Intersection Index

- Let k_p ∈ S¹ correspond to a solution of the ES equations of mulitplicity m_p.
- The analyticity of $\Gamma \Rightarrow$ solutions occur in isolated points.
- There exists some small Δk > 0 so that [k_p Δk, k_p + Δk] only contains the solution at k_p.
- If we perturb k slightly all m_p eigenvalues will no longer be 1.
- Define m[±]_p to be the number of eigenvalues with positive imaginary parts for k ∈ (k_p, k_p ± Δk]

Definition

The local intersection index at $p \in \mathfrak{I}_{\Gamma}$ is $q_p := m_p^+ - m_p^-$. The local intersection index is defined to be the sum of q_p taken over all $p \in \mathfrak{I}_{\Gamma}$.

Obviously, $|q_p| \leq m_p$.

For
$$A \subset X$$
, let $H_*(X|A) = H_*(X, X \setminus A)$.

Proposition

The multiplicity of $p \in \mathfrak{I}_{\Gamma}$ is realized in homology. That is,

 $H_{n^2}(D_1 \times S^1 | \{p\}) \cong \mathbb{Z}^{m_p}.$

For $A \subset X$, let $H_*(X|A) = H_*(X, X \setminus A)$.

Proposition

The multiplicity of $p \in \mathfrak{I}_{\Gamma}$ is realized in homology. That is,

 $H_{n^2}(D_1 \times S^1 | \{p\}) \cong \mathbb{Z}^{m_p}.$

Proposition

The map in homology

 $H_{n^2}(D_1U(n)\times S^1|\{p\})\to H_{n^2}(U(n)\times U(n)|\{p\})$

after evaluating on an orientation class for U(n) yields the local intersection index q_p .

Proof.

- The map in question is $j \times \Gamma$, restricted to this pair of spaces.
- The codomain of this map (in n²-dimensional homology) is Z, so we'll obtain an integer.
- Working locally with excisive neighborhoods,

$$\overline{(\delta_i, [S^1])} \mapsto (j \times \Gamma)_*(\overline{\delta_i, [S^1]}).$$

ション ふゆ マ キャット ビー シンクション

 Evaluating on an orientation class α, yields
 α(Γ(k_j + Δk) − Γ(k_j − Δk)), which is precisely the local
 intersection index at p.

Index theorem

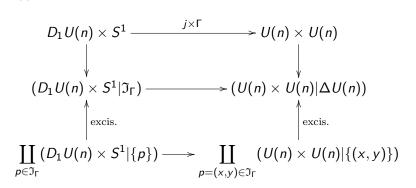
Theorem (Index theorem)

The global intersection index is equal to the sum of all the local intersection indices. That is,

$$\alpha_{\Gamma} = \sum_{p} q_{p}.$$

Proof of Index theorem

Proof.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

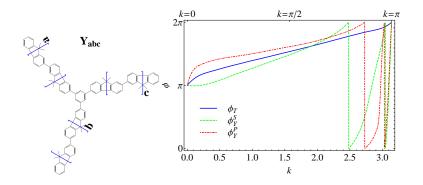
- 1 The Exciton Scattering Problem
- 2 CW structure of U(n)
- 3 The Index Theorem Global Intersection theory Local Intersection theory
- 4 Relation to Actual Excitations

- Solutions come in pairs due to time reversal symmetry (ψ⁺ is a solution k_j ≠ 0, π, then Γ(−k_j)ψ is also a solution).
- These two solutions correspond to the same standing wave, i.e. exciton.

- Solutions come in pairs due to time reversal symmetry (ψ⁺ is a solution k_j ≠ 0, π, then Γ(−k_j)ψ is also a solution).
- These two solutions correspond to the same standing wave, i.e. exciton.
- The k = 0, π case requires more care (since k = -k, incoming/outgoing waves are the same). Let d[±]_k denote the number of independent solutions to Γ(k)ψ = ±ψ for k = 0, π.
- Thus

$$N=rac{1}{2}(m+(d_0^+-d_0^-)+(d_\pi^+-d_\pi^-)).$$

• In generic cases, $d_{0/\pi}^- = n/2$ and $d_{0/\pi}^+ = 0$.



$$w(\Gamma) = 2(j + m + n) + 3w(\Gamma_T) + w(\Gamma_Y)$$

= 2(j + m + n) + 18
$$N = (w(\Gamma) - 6)/2 = j + m + n - 6$$