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Mathematical Overview

• We’re interested in an intersection problem inside the unitary
group U(n).

• We want to count intersections of f : S1 → U(n) with a
stratified space DjU(n) ⊂ U(n).

• Intersections are weighted with multiplicity instead of a usual
±1.

• We do so by using an index theorem, relating these
multiplicities to local indices, which are much easier to
compute.



Excitons

• In organic semiconductors and insulators, excited electrons
form bound states, comprised of the excited electron and the
’hole’ it leaves behind.

• These excitons behave like actual particles, moving along the
linear segments and getting scattered near the vertices.

• Excitons posess a momentum like quantity known as
quasi-momentum k.



Molecules under study

• We’re interested in branched, conjugated molecules.
• These posess discrete, 1-dimensional translational symmetry,

which is only broken near the vertices (k ∈ S1).

• We formulate the problem on a metric graph, whose edges are
weighted by integers known as repeat units.



• Away from the vertices, excitons are described by a
superposition of two plane waves.

• The scattering at a degree n vertex a is described by an n × n
unitary matrix, referred to as the scattering matrix, dependent
upon k: Γa(k).

• The calculation of Γ(k) is done via quantum chemistry
calculations, and we treat these matrices as known.

• Γ(k) is an analytic function of k.
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ES equations

Let X1 denote the edges on our graph, so that a solution to the ES
equations lies in C[X1]. Letting ab denote the oriented edge
b → a, and writing ψ+

ab for the wave function incoming to a from
the edge ab:

ψ+
ba = eikLabψ−ba

ψ−ba =
(a,c)∈X1∑

c∈X0

Γba,ac(k)ψ+
ac ,



To simplify the analysis:
• introduce σ : X1 → X1, sending ab 7→ ba,
• define L̂ : X1 → X1, sending ab 7→ Labab, and
• combine the scattering data

Γ0(k) =
⊕
a∈X0

Γa(k).

Finally, define
Γ(k) = eikL̂σΓ0(k).

Now the ES equations read

Γ(k)ψ = ψ
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Solutions

• A solution to the ES equations corresponds to k ∈ S1 and
ψ ∈ C[X1] so that Γ(k)ψ = ψ.

• Γ : S1 → U(n) should have at least one unit eigenvalue.
• Let D1U(n) denote the set of all such matrices.
• We look for intersections of S1 (under Γ) with D1U(n) inside

of U(n).
• If mj denotes the multiplicity of a solution kj , then m = ∑

mj
is referred to as the number of solutions to the ES equations.
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Morse theory
• Milnor proved that every differentiable manifold has the

homotopy type of a CW complex by showing fa : M → R,
defined by fa(x) = ||x − a||2 is a Morse function for almost all
a ∈ Rn, using Whitney’s embedding theorem.

∂fa
∂ui

= 2 ∂x
∂ui

(x − a)

Thus x0 is a critical point iff x0 − a is normal to M at x0.
• Let M = U(n). For fixed x0 ∈ U(n), Mn(C) admits the

decomposition

Mn(C) = {u|u∗x0 = −x∗0u} ⊕ {u|u∗x0 = x∗0u}

A simple calculation shows

Tx0U(n) = {u ∈ Mn(C)|u∗x0 = −x∗0u}.
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Morse theory

• The first summand lies in Tx0U(n), and therefore the second
must be normal to U(n) at x0.

• Therefore, x0 is a critical point iff (x0 − a)∗x0 = x∗0 (x0 − a), or
equivalently x∗0 a = a∗x0.

• Take a to be a diagonal matrix, with distinct real entries. This
implies x0 must be of the form x0 = diag(±1,±1, . . . ,±1).

• If I = [i1, . . . , ir ] denotes the indices corresponding to −1, then

ind(xI) =
r∑

j=1
2ij − r

• D1U(n) is the n2 − 1 skeleton of U(n) (replacing fa by −fa).
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Global Intersection Index

The aforementioned CW decomposition of U(n) has D1U(n) as its
(n2 − 1)-skeleton.

• The top cell of D1U(n) defines a generator µ ∈ Hn2−1D1U(n).
• Let [S1] be a generator for H1(S1).
• Let j : D1U(n)→ U(n) be the inclusion.

Definition
The global intersection index of Γ is the integer

αΓ = j∗(δ) · Γ∗([S1]) ∈ H0U(n) ∼= Z .



Definition
Let IΓ = {(x , y) ∈ D1U(n)× S1|x = Γ(y)} denote the set of
intersection points.

For A ⊂ X , let (X |A) = (X ,X \ A).

The global intersection index can be phrased in terms of applying
homology to the following diagram

D1U(n)× S1 j×Γ //

��

U(n)× U(n)

��
(D1U(n)× S1|IΓ) // (U(n)× U(n)|∆U(n))

Following (δ, [S1]) around either side and then applying an
orientation class of U(n), yields the intersection pairing, or global
intersection index.
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Winding number

Proposition
The global intersection index equals the winding number of Γ,

αΓ = w(Γ) = 2
∑

(a,b)∈X1

Lab +
∑

a∈X0

w(Γ(a))

where w(Γ(a)) is the winding number of the vertex a.

Proof.
Show (det Γ)∗[S1] = det∗ Γ∗[S1] = αΓ[S1] and compute.



Local Intersection theory

Definition
The multiplicity mp of p ∈ IΓ is defined to be the dimension of the
(+1)-eigenspace of the matrix corresponding to p.

In general, the computation of mp can be difficult. What is much
easier to compute is the local intersection index for a point p ∈ IΓ.
While this is only an approximation, its calculable, and when the
lengths in the graph are long enough, this approximation becomes
exact.



Local Intersection Index

• Let kp ∈ S1 correspond to a solution of the ES equations of
mulitplicity mp.

• The analyticity of Γ⇒ solutions occur in isolated points.

• There exists some small ∆k > 0 so that [kp −∆k, kp + ∆k]
only contains the solution at kp.

• If we perturb k slightly all mp eigenvalues will no longer be 1.
• Define m±p to be the number of eigenvalues with positive

imaginary parts for k ∈ (kp, kp ±∆k]

Definition
The local intersection index at p ∈ IΓ is qp := m+

p −m−p . The
local intersection index is defined to be the sum of qp taken over
all p ∈ IΓ.

Obviously, |qp| ≤ mp.
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For A ⊂ X , let H∗(X |A) = H∗(X ,X \ A).

Proposition
The multiplicity of p ∈ IΓ is realized in homology. That is,

Hn2(D1 × S1|{p}) ∼= Zmp .

Proposition
The map in homology

Hn2(D1U(n)× S1|{p})→ Hn2(U(n)× U(n)|{p})

after evaluating on an orientation class for U(n) yields the local
intersection index qp.
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Proof.

• The map in question is j × Γ, restricted to this pair of spaces.
• The codomain of this map (in n2-dimensional homology) is Z,

so we’ll obtain an integer.
• Working locally with excisive neighborhoods,

(δi , [S1]) 7→ (j × Γ)∗(δi , [S1]).

• Evaluating on an orientation class α, yields
α(Γ(kj + ∆k)− Γ(kj −∆k)), which is precisely the local
intersection index at p.



Index theorem

Theorem (Index theorem)
The global intersection index is equal to the sum of all the local
intersection indices. That is,

αΓ =
∑

p
qp.



Proof of Index theorem

Proof.

D1U(n)× S1 j×Γ //

��

U(n)× U(n)

��
(D1U(n)× S1|IΓ)

OO

excis.

// (U(n)× U(n)|∆U(n))
OO

excis.∐
p∈IΓ

(D1U(n)× S1|{p}) //
∐

p=(x ,y)∈IΓ

(U(n)× U(n)|{(x , y)})
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• Solutions come in pairs due to time reversal symmetry (ψ+ is
a solution kj 6= 0, π, then Γ(−kj)ψ is also a solution).

• These two solutions correspond to the same standing wave,
i.e. exciton.

• The k = 0, π case requires more care (since k = −k,
incoming/outgoing waves are the same). Let d±k denote the
number of independent solutions to Γ(k)ψ = ±ψ for k = 0, π.

• Thus
N = 1

2(m + (d+
0 − d−0 ) + (d+

π − d−π )).

• In generic cases, d−0/π = n/2 and d+
0/π = 0.
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w(Γ) = 2(j + m + n) + 3w(ΓT ) + w(ΓY )
= 2(j + m + n) + 18

N = (w(Γ)− 6)/2 = j + m + n − 6
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