MAA 4102, MAA 5104 Homework 2 Due: Monday, January 20, 2017

Solve all problems and be sure to show all work. Answers with no supporting work will be given no credit.

- 1. Determine whether the given function is an injection, surjection, bijection, or none of these. Clearly explain your answers.
 - (a) $f: (0, \infty) \to \mathbb{R}$, given by $f(x) = \frac{1}{x}$.
 - (b) $g : \mathbb{R} \to (0, \infty)$, given by $g(x) = e^x$.
 - (c) $h : \mathbb{R} \to \mathbb{R}$, given by $h(x) = x^2 + x + 1$.
- 2. Determine whether the given function is (strictly) increasing, (strictly) decreasing, bounded, bounded above, or bounded below. Also find the supremum, infimum, maximum, and minimum, if they exist.
 - (a) $f: [0, \infty) \to \mathbb{R}$, given by $f(x) = 2|x| x^2$.
 - (b) $g : \mathbb{R} \to \mathbb{R}$, given by $g(x) = \sqrt[3]{x} x$.
 - (c) $h : \mathbb{N} \to \mathbb{R}$, given by $h(n) = \frac{1}{n}$.
 - (d) $j: (0, \infty) \to \mathbb{R}$, given by $j(x) = \sin x \cos x$.
- 3. (p. 19, 1.2.13) Prove the following.
 - (a) If both functions $f : A \to B$ and $g : B \to C$ are one-to-one, prove that the composition $g \circ f : A \to C$ is one-to-one.
 - (b) If both functions $f: A \to B$ and $g: B \to C$ are onto, prove that the composition $g \circ f: A \to C$ is onto.
- 4. (p.20, 1.2.20) Suppose that $f: X \to Y$, with $A, B \subset Y$. Prove the following.
 - (a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$
 - (b) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 5. (p. 20, 1.2.21) Suppose that $f: X \to Y$ with $A \subset X$ and $B \subset Y$. Prove the following.
 - (a) $A \subset f^{-1}(f(A))$.
 - (b) $f(f^{-1}(B)) \subset B$.