MAA 4102, MAA 5104 Homework 3 Due: Friday, January 27, 2017

Solve all problems and be sure to show all work. Answers with no supporting work will be given no credit.

- 1. Use mathematical induction to prove the following statements.
 - (a) (p.29 1.3.2 (d))

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

(b) (p. 29, 1.3.2 (n)) If x_1, x_2, \ldots, x_n are n real numbers in the interval [a, b], then

$$a \le \frac{x_1 + x_2 + \dots + x_n}{n} \le b$$

for all $n \in \mathbb{N}$.

(c) (p. 29, 1.3.2 (u)) For $n \ge 2$,

$$\sum_{k=1}^{n} \frac{1}{k^2} \le \frac{7}{4} - \frac{1}{n} \,.$$

(d) Suppose $a_1 = 1$, $a_2 = 8$, and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Prove that

$$a_n = 3 \cdot 2^{n-1} + 2 \cdot (-1)^n$$

- 2. Prove that if q^2 is divisible by 5, then q is divisible by 5, for any $q \in \mathbb{Z}$.
- 3. Negate the following statements.
 - (a) There exists $c \in \mathbb{R}$ such that $f(x) \leq c$ for every $x \in A$.
 - (b) If a > 1, then $a^n \ge a$ for every $n \in \mathbb{N}$.
 - (c) For every $\varepsilon > 0$, there exists a positive integer n^* such that $|a_n A| < \varepsilon$ for all $n \ge n^*$.
- 4. Prove the following: for every $x \in [0, \pi/2]$, $\sin(x) + \cos(x) \ge 1$.