MAA 4102, MAA 5104 Homework 8 Due: Friday, March 3, 2017

Solve all problems and be sure to show all work. Answers with no supporting work will be given no credit.

1. Without using any theorems, prove that $\{a_n\}$, with

$$a_n = \frac{2n+3}{n^3+1} \,,$$

converges to 0.

2. Let $f : \mathbb{N} \to \mathbb{R}$ be any function. Determine whether the following limit exists and find its value.

$$\lim_{n \to \infty} \frac{\cos(f(n))}{n^p} \,,$$

where p > 0 is a constant.

3. Without using any theorems, prove that $\{a_n\}$, with

$$a_n = \frac{n^3 - 2n + 7}{3n + 2}$$

diverges to $+\infty$.

- 4. Determine the limiting value of each sequence, provided it exists. Prove your conclusions.
 - (a) $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2a_n}$ for all $n \in \mathbb{N}$
 - (b) $b_1 = 1$ and $b_{n+1} = 3b_n 1$ for all $n \in \mathbb{N}$.