1. Solve (explicitly) the separable Differential Equation
$\frac{d y}{d x}=\frac{y^{2}+1}{y(x+1)}$ with $y(0)=2$.
2. Solve (implicitly) the Exact Differential Equation
$\left(2 x+y^{3} \sec ^{2} x\right) d x+\left(1+3 y^{2} \tan x\right) d y=0$.
3. Use Euler's method with $h=.2$, for 3 steps, to find an approximate value $y(1.6)$ for the solution to the initial value problem $d y / d x=y-x$ with $y(1)=3$.
4. Solve the equation $y^{\prime}=y^{2}(y-2)(y-5)$ graphically.
(a) Find the critical values c such that $y=c$ is a solution.
(b) Find the sign of y^{\prime} and the limiting value L on each interval.
(c) Sketch solutions with $y(0)=-1, y(0)=1, y(0)=3$, and $y(0)=6$.
5. A packet dropped from a height of 400 meters with initial velocity 0 and air resistance $.7 m v$, so that the velocity $v(t)$ is subject to the differential equation $v^{\prime}=-.7 v-9.8$.

Solve for the velocity $v(t)$ and for the height $y(t)$, then find the approximate time of impact and the limiting velocity.
6. Solve (implicitly) the homogeneous differential equation $y^{\prime}=\frac{2 y^{2}}{x y-x^{2}}$. Simplify your answer.

Hint: You may want to use partial fractions.
7. A brine solution of salt with concentration $.2 \mathrm{~kg} / \mathrm{L}$ flows at a constant rate of $4 \mathrm{~L} / \mathrm{min}$ into a tank that initially held 20 L of brine solution containing 5 kg of salt. The well-stirred solution flows out of the tank at the rate of $3 \mathrm{~L} / \mathrm{min}$. Find the mass $x(t)$ of salt in the tank at time t and also the concentration $y(t)$ and the limiting value of the concentration.

