1. Solve (explicitly) the separable Differential Equation
$\frac{d y}{d x}=\frac{y^{2}+1}{y(x+1)}$ with $y(0)=2$.
Separate: $\frac{y d y}{y^{2}+1}=\frac{d x}{x+1}$.
Integrate: $\frac{1}{2} \ln \left(y^{2}+1\right)=\ln (x+1)+c$
Simplify: $y^{2}+1=k(x+1)^{2}$.
Initial Value: $5=k(1)$
Final Answer: $y=\sqrt{5(x+1)^{2}-1}$.
2. Solve (implicitly) the Exact Differential Equation
$\left.2 x+y^{3} \sec ^{2} x\right) d x+\left(1+3 y^{2} \tan x\right) d y=0$.
Integrate: $\left[x^{2}+y^{3} \tan x\right] \bigcup\left[y+y^{3} \tan x\right]=c$.
Final Answer: $x^{2}+y^{3} \tan x+y=c$.
3. Use Euler's method with $h=.2$, for 3 steps, to find an approximate value $y(1.6)$ for the solution to the initial value problem $d y / d x=y-x$ with $y(1)=3$.
$x_{0}=1$ and $y_{0}=3$ and $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)=y_{n}+(.2)\left(y_{n}-x_{n}\right)$.
$x_{1}=1.2$ and $y_{1}=3+(.2)(3-1)=3.4$.
$x_{2}=1.4$ and $y_{2}=3.4+(.2)(3.4-1.2)=3.84$.
$x_{3}=1.6$ and $y_{3}=3.84+(.2)(3.84-1.4)=4.33$.
Final Answer: $y(1.6) \sim 4.33$.
4. Solve the equation $y^{\prime}=y^{2}(y-2)(y-5)$ graphically.
(a) Find the critical values c such that $y=c$ is a solution.
(b) Find the sign of y^{\prime} and the limiting value L on each interval.
(c) Sketch solutions with $y(0)=-1, y(0)=1$ and $y(0)=6$.
(a) $y=0, y=2$, and $y=5$.
(b) $y^{\prime}>0$ on $(-\infty, 0),(0,2)$ and $(5, \infty) ; y^{\prime}<0$ on $(2,5)$.

The limiting value is $+\infty$ on $(5, \infty)$.
The limiting value is 2 on $(0,5)$.
The limiting value is 0 on $(-\infty, 0]$.
5. A packet dropped from a height of 400 meters with initial velocity 0 and air resistance $.7 m v$, so that the velocity $v(t)$ is subject to the differential equation $v^{\prime}=-.7 v-9.8$.

Find the approximate time of impact and the limiting velocity.
$L=\frac{-b}{a}=-\frac{9.8}{7}=-14$.
This should be the approximate limiting velocity.
$v=-14+14 e^{-.7 t}$.
Integrating, $y=-14 t-20 e^{-.7 t}+420$
Assuming that $20 e^{-.7 t}$ is negligible,
$y=0$ when t is approximately $420 / 14=30$ seconds.
6. Solve (implicitly) the homogeneous differential equation $y^{\prime}=\frac{2 y^{2}}{x y-x^{2}}$. Simplify your answer.

Hint: You may want to use partial fractions.
Let $v=y / x$ so that $y=v x$ and $y^{\prime}=v+x v^{\prime}$
Substituting, we get the separable equation
$v+x v^{\prime}=\frac{2 v^{2}}{v-1}$.
Separating, we get
$d x / x=\frac{v-1}{v^{2}+v}$
Using partial fractions,
$\frac{v-1}{v(v+1}=\frac{A}{v}+\frac{B}{v+1}$
$v-1=A(v+1)+B v$, so substituting $v=-1$ and $v=0$:
$A=-1$ and $B=2$.
Integrating
$\ln x=2 \ln (v+1)-\ln v+c$
Exponentiating,
$x=C \frac{(v+1)^{2}}{v}$
Substituting $v=y / x$ and multiplying by x^{2} / x^{2} :
$x=C \frac{(x+y)^{2}}{x y}$
Simplifying: $x^{2} y=C(x+y)^{2}$.
7. A brine solution of salt with concentration $.2 \mathrm{~kg} / \mathrm{L}$ flows at a constant rate of $4 \mathrm{~L} / \mathrm{min}$ into a tank that initially held 20 L of brine solution containing 5 kg of salt. The well-stirred solution flows out of the tank at the rate of $3 \mathrm{~L} / \mathrm{min}$. Find the mass $x(t)$ of salt in the tank at time t and also the concentration $y(t)$ and the limiting value of the concentration.

The volume in the tank at time t is $t+20, .8 \mathrm{~kg}$ per minute of salt is flowing into the tank and $\frac{3 x}{t+20} \mathrm{~kg}$ is flowing out. So the differential equation is $d x / d t+\frac{3 x}{t+20}=.8$ This is a linear equation with $P=\frac{3}{t+20}$ and $Q=.8$.
$\int \frac{3}{t+20}=3 \ln (t+20)$, so the integrating factor $\mu=e^{3 \ln (t+20)}=(t+20)^{3}$. Then
$x=(t+20)^{-3} \int .8(t+20)^{3}=(t+20)^{-3}\left[.2(t+20)^{4}+C\right]=.2(t+20)+C(t+20)^{-3}$.
$x(0)=5=.2(20)+C(20)^{-3}=4+C / 8000$, so $C=8000$.
Thus $x=.2(t+20)+8000 /(t+20)^{3}$
The concentration $y(t)=x /(t+20)=.2+8000(t+20)^{-4}$
which has limiting value .2 .

