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Preface

Effectively closed sets have been a central theme in computability theory, al-
gorithmic randomness and applications to computability and effectiveness in
mathematics. This book is intended to be a self-contained introduction to the
theory and applications of effectively closed sets, or Π0

1 classes. It may be used
for a graduate-level course and also as reference for researchers in computability
theory and related areas.

Part A begins with some basic facts from computability theory which will
be needed. The members of a Π0

1 class are real numbers, often represented by
infinite strings of natural numbers, or by sets of natural numbers. Background is
taken from the classic book of Soare [181] on computably enumerable (c.e.) sets
and degrees. The fundamental problem, going back to work of Kleene [97] in the
period 1940-1960, is to determine the complexity of the members of a Π0

1 class,
as measured by the Turing degree, or by the definition in the hyperarithmetic
hierarchy, or by the amount of resources in time and space required. The Kleene
basis theorem showed that every Π0

1 class contains a member which is recursive
in some Σ1

1 set and the Kreisel-Shoenfield basis theorem [173], which showed
that every c. b. Π0

1 class contains a member of degree < 0′. Two fundamental
papers in this area are [91, 90] by Jockusch and Soare. They show, among other
things, that there is a Π0

1 class with no recursive members and such that any
two members have mutually incomparable Turing degree.

The Cantor-Bendixson derivative which reduces a closed set to its perfect
kernel, plays an important role here going back to the 1959 paper of Kreisel
[105], who first noticed that the degree of a member x of a Π0

1 class is related
to the Cantor-Bendixson rank of x in P and that any countable class has a
computable member. Countable Π0

1 classes were closely examined by Soare and
others [19, 42] in the 1980’s. Π0

1 classes are given an enumeration as P0, P1, . . .
and index sets for families of Π0

1 classes are then studied in the manner that
index sets for c.e. sets are studied in [181]. These can measure the complexity of
certain properties of Π0

1 classes, related in particular to cardinality and measure.
Π0

1 classes may be defined as sets of infinite paths through computable trees.
Part B presents some applications of Π0

1 classes in logic, mathematics and
theoretical computer science. The solution sets of many mathematical problems
may be represented by Π0

1 classes and the complexity of the problem can then
be determined. The more difficult representation problem is to show that every
Π0

1 class (or every bounded or c. b. Π0
1 class) can represent the solution set of a

vii
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certain problem. For example, in 1960, Shoenfield [174] showed that the family
of complete consistent extensions of an axiomatizable theory is a c. b. Π0

1 class
and Ehrenfeucht [63] showed that any c. b. Π0

1 class can represent such a family.
The family of complete consistent extensions of an axiomatizable theory is

of course closely related to the Lindenbaum algebra of the theory and Boolean
algebras are an important topic for Π0

1 classes. A number of articles in the
area use the notion of a computably enumerable ideal of the computable dense
Boolean algebra as an equivalent notion to that of a Π0

1 class. This concept will
be discussed in detail in the section on Boolean algebras.

Non-monotonic logic [122] is a general form of reasoning where certain “de-
fault” assumptions are made and may later be rescinded. The set of stable
models of a logic program is a non-monotonic generalization of the (unique)
closure under consequence of a set of axioms and rules. Different versions of
a logic program may be used to represent c. b., bounded and unbounded Π0

1

classes. Another area of theoretical computer science where Π0
1 classes have

application is the study of ω-languages. This refers to a sets of infinite words
which is accepted, in some fashion, by a program.

The surjective matching problem of Philip and Marshall Hall [76] was ana-
lyzed by Manaster and Rosenstein, who showed that the set of bijective match-
ings in a symmetrically highly recursive society is always a c. b. Π0

1 class, and
can represent an arbitrary c. b. Π0

1 class. Bean [7] showed in 1976 that the fam-
ily of k-colorings of a highly computable graph is a c. b. Π0

1 class and Remmel
[161] showed that any c. b. Π0

1 class can represent, up to a permutation of the
colors, such a family.

The reason that Π0
1 classes arise so naturally in the study of recursive combi-

natorics is that many combinatorial theorems about finite graphs and partially
ordered sets (posets) can be extended to countably infinite graphs and posets
by applying König’s Lemma, which states that every infinite finitely branching
tree T has an infinite path through it. Now König’ Lemma, and also the so-
called Weak König’s Lemma play an important role in the Reverse Mathematics
program of Friedman and Simpson [176]. Thus the study of Π0

1 classes can be
related to the study of König’s Lemma. For example, Simpson [176] showed
that Lindenbaum’s lemma (that every countable consistent set of sentences has
a complete consistent extension) and Gödel’s completeness theorem are both
equivalent to Weak König’s Lemma over a certain subsystem (RCA0) of second
order arithmetic. For another example, Hirst [81] showed that a version of Hall’s
symmetric matching theorem is equivalent to König’s Lemma over RCA0.

The role of Π0
1 classes in computable algebra and computable analysis is also

presented.
Part C examines recent results on the family of Π0

1 classes. One very im-
portant topic is the connection between effectively closed sets and algorithmic
randomness, as developed by many researchers from Kucera [106, 107, 108] to
Lewis [1, 6, 5] and surveyed in the books of Downey-Hirschfeldt [58] and Nies
[150]. The lattice EΠ of Π0

1 classes under inclusion is compared and contrasted
with the lattice E of c.e. sets under inclusion. This includes results of Downey
and others [22, 46, 45] on thin classes and automorphisms and work of Cenzer
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and Nies [28, 29] on intervals and on definability in EΠ. The degree of difficulty
of a class was defined by Medvedev [136] and refers to the difficulty of finding a
member of the class. The Medvedev lattice of degrees of difficulty was studied
later by Sorbi [183] and then the study of the Medvedev and also the related
Muchnik degrees of Π0

1 classes was developed further by Simpson [177] and oth-
ers. Here we also examine Π0

1 classes which arise from trees with a specified
complexity, such as polynomial time computable.
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Chapter 1

Background

This chapter contains some of the definitions and notations needed for the study
of effectively closed sets. We begin with objects under study: numbers, func-
tions, sequences (or strings) and trees.

The set {0, 1, 2, ...} of natural numbers is denoted by N and also by ω when
we view N as an ordered set. Here n = {0, 1, . . . , n − 1} is identified with the
set of smaller natural numbers. Lower-case Latin letters a, b, c, d, e, i, j, k, l,m, n
denote integers; p, q, r, s, t denote rational numbers; u, v, w, x, y, z denote real
numbers. The letters f, g, h (and occasionally other lower-case Latin letters)
denote total functions from Nk to N for k ≥ 1; the Greek letters φ, ψ, θ (and
occasionally other lower-case Greek letters) denote (possibly) partial functions
on Nk (functions whose domain is a subset of Nk for some k). Lower case Greek
letters ρ, σ, τ, ν denote finite sequences of natural numbers; α, β, δ, γ denote or-
dinals. Upper-case Latin letters A,B,C,D,E, I, J,K,L,M denote subsets of N;
S, T denote trees; P,Q,U, V,W,X, Y, Z denote sets of real numbers. Upper-case
Latin letters F,G,H denote total functions of real variables (with domain and
range included in Nm×<n); Upper-case Greek letters Φ,Ψ,Θ (and occasionally
others) denote (possibly) partial functions of real variables. In our usage, a set
usually refers to a set of natural numbers.

The composition of two functions f and g is denoted by f ◦g; fn denotes the
function f composed with itself n times. For a partial function φ, φ(x) ↓ denotes
that φ(x) is defined and φ(x) ↑ denotes that φ(x) is not defined. dom(φ) = {x :
φ(x) ↓} and ran(φ) = {φ(x) : x ∈ dom(φ)} denote the domain and range of
φ, respectively. If F : X → Y , then F [U ] denotes {F (x) : x ∈ U} for U ⊆ X
and F−1[V ] denotes {x : F (x) ∈ V } for V ⊆ Y . χA denotes the characteristic
function of A, which is often identified with A and written simply as A(x). φdm
denotes the restriction of A to x.

For two sets X and Y , X × Y denotes the direct product of X and Y , that
is, the set of ordered pairs (x, y) with x ∈ X and y ∈ Y . The direct product
X1 ×X2 × . . .×Xk of a sequence X1, . . . Xk of sets is similarly defined. Xk is
the product of k copies of X.

The power XY of two sets denotes the set of (total) functions with domain

3



4 CHAPTER 1. BACKGROUND

Y and range a subset of X. In particular, {0, 1}N is the usual Cantor space
and may be identified with the family of subsets of N. NN is the Baire space.
< denotes the space of real numbers. The Cantor space may be identified with
a (compact) subset of < and the Baire space may be identified with the set of
irrational numbers. For us a class refers to a subset of < (or of the Cantor space
or Baire space). A class in the Cantor space may be called a “class of sets”
since its elements are the characteristic functions of sets of natural numbers.

1.1 Trees

Let Σ be a set of symbols (an alphabet), usually an initial segment of N. Then for
a natural number n, Σn denotes the set of strings σ = (σ(0), σ(1), . . . , σ(n− 1))
of n letters from Σ; the length n of σ is denoted by |σ|. The empty string has
length 0 and will be denoted by ∅. Σ∗ (or sometimes Σ<ω) denotes the set
∪n∈ωΣn and Σω denotes the set of infinite sequences. Strings may be coded
by natural numbers in the usual fashion. First let [x, y] denote the standard
pairing function 1

2 (x2 + 2xy + y2 + 3x + y) and in general [x0, x1, . . . , xn] =
[[x0, . . . , xn−1], xn]. Then we can code strings of arbitrary length n > 0 by
〈σ〉 = [n, [σ(0), σ(1), . . . , σ(n− 1)]] and also 〈∅〉 = 1. A string may be identified
with its code, so that functions on N∗ are represented by functions on N. A
constant string σ of length n will be denoted kn. For m < |σ|, σ � m is the
string (σ(0), . . . , σ(m − 1)); σ is an initial segment of τ (written σ ≺ τ) if
σ = τ |m for some m. Initial segments are also referred to as prefixes. Similarly
τ is said to be a suffix of σ if |τ | ≤ |σ| and, for all i < |τ |, σ(|σ|− |τ |+ i) = τ(i).
The concatenation σ_τ (or sometimes σ ∗ τ or just στ) is defined by σ_τ =
(σ(0), σ(1), . . . , σ(m − 1), τ(0), τ(1), . . . , τ(n − 1)), where |σ| = m and |τ | = n;
in particular we write σ_a for σ_(a) and a_σ for (a)_σ. Thus we may also
say that σ is a prefix of τ if and only if τ = σ_ρ for some ρ and that τ is a
suffix of σ if and only if σ = ρ_τ for some ρ.

For any x ∈ Σ∗ and any finite n, the initial segment xdn of x is (x(0), . . . , x(n−
1)). We write σ � x if σ = xdn for some n. For any σ ∈ Σn and any x ∈ Σ∗,
we have σ_x = (σ(0), . . . , σ(n− 1), x(0), x(1), . . . ).

For a sequence a0 < a1 < · · · < an, we denote by ba0, . . . , anc the string
σ ∈ {0, 1}an such that σ(k) = 1 if and only if k = ai for some i < n. Thus
ba0, a1, . . . , anc = 0a010a1−a0−11 · · · 0an−1−an−2−110an−an−1−1.

For any x, y ∈ NN, the join x⊕ y = z, where z(2n) = x(n) and z(2n+ 1) =
y(n). For two classes P and Q, the product P ⊗ Q = {x ⊕ y : x ∈ P & y ∈
Q}. An infinite sequence x0, x1, . . . may be coded as 〈x0, x1, . . .〉 = y, where
y(〈m,n〉) = xm(n). For an infinite family {Pi : i ∈ ω} of sets, the product may
then be defined as {〈x0, x1, . . .〉 : (∀i)xi ∈ Pi}. We can also define the disjoint
union P ⊕Q = {0_x : x ∈ P} ∪ {1_y : y ∈ Q}.

A tree T over Σ is a set of finite strings from Σ∗ which is closed under initial
segments. The set Σ is sometimes called an alphabet. We say that τ ∈ T is an
immediate successor of a string σ ∈ T if τ = σ_a for some a ∈ Σ. Since our
alphabet will always be countable and effective, we may assume that T ⊆ N∗.
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For any tree T and any σ, T (σ) = {τ : σ � τ or τ � σ}.
A tree T is said to be a shift if it is also closed under suffixes.

Example 1.1.1. Define T ⊂ {0, 1}∗ so that σ ∈ T if and only if σ does not have
3 consecutive 0’s, that is, if σ has no consecutive substring of the form (000).
Clearly if σ does not have 3 consecutive 0’s then no initial segment of σ can
have 3 consecutive 0’s either. Furthermore, if σ has no consecutive substring
(000), then no suffix of σ can have a consecutive substring (000). Thus T is a
shift.

We say that a tree T is finite-branching if for every σ ∈ T , there are only
finitely many immediate successors of σ in T . Certainly any tree T over a finite
alphabet is finite-branching.

Example 1.1.2. Define the tree T ⊂ N∗ so that for strings σ of length n,
σ ∈ T ⇐⇒ σ(n − 1) ≤ 1 + σ(0) + σ(1) + . . . σ(n − 2). Then for any σ ∈ T ,
σ(0) ≤ 1, σ(1) ≤ 2, and by induction σ(n) ≤ 2n; it follows that σ can have at
most 2n immediate successors.

We will see later that a tree T is finite-branching if and only if there is a
function f such that for all strings σ ∈ T of length n, σ has at most f(n)
immediate successors. The problem of computing the function f will be a very
important one. More generally, we will look at the problems of computing list
of these successors, or an upper bound on the size of the successors, or an upper
bound on the number of successors.

1.2 Topology and Measure

The topology of the real line has a basis of open intervals (x, y) = {u : x < u <
y} where x = −∞ and y = ∞ are allowed; [x, y] denotes the closed interval
{u : x ≤ u ≤ y}; [x, y) and (x, y] are similarly defined. The topology on the
spaces ΣN, where Σ is either a finite alphabet or equals N, is determined by a
basis of intervals I(σ) = {x : σ ≺ x} and has a sub-basis of sets of the form
{x : x(m) = n} for fixed m,n. Notice that each interval is also a closed set and
is therefore said to be clopen and that the clopen subsets of the Cantor space
{0, 1}N are just the finite unions of intervals.

For a tree T ⊆ Σ∗, we define the set [T ] of infinite paths through T by letting

x ∈ [T ] ⇐⇒ (∀n)x � n ∈ T.

A subset P of NN is closed if and only if P = [T ] for some tree T . This
justifies the description of a Π0

1 class as an effectively closed subset of NN. A
function F : X → Y is continuous if F−1[V ] is open for every open set V ⊆ Y .
Then a function F : NN → NN is continuous if, for all m,n, {x : F (x)(m) = n}
is open.

Let X be either <, NN or {0, 1}N. A subset Y of X is dense in an interval I
if it meets every subinterval of I; Y is nowhere dense if it is dense in no interval.
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Y is meager (first category) if it is a countable union of nowhere dense sets; Y
is non-meager (second category) if it is not meager. Y is comeager (residual) if
Y is meager.

An element x ∈ Y is isolated in Y if there exists an open set U such that
Y ∩U = {x}. A closed, non-empty set Y is perfect if it has no isolated elements.
Each of the spaces <, NN and {0, 1}N are perfect.

Definition 1.2.1. The Cantor-Bendixson derivative D(P ) of a compact set P
is the set of nonisolated points in P .

Note that D(P ) is empty if and only if P is finite.

The iterated Cantor-Bendixson derivative Dα(P ) of a closed set P is defined
for all ordinals α by the following transfinite induction.

D0(P ) = P ; Dα+1(P ) = D(Dα(P )) for any α; Dλ(P ) =
⋂
α<λD

α(P ) for
any limit ordinal λ.

The Cantor-Bendixson (C.B.) rank of a closed set P is the least ordinal α
such that Dα+1(P ) = Dα(P ). If α is the C-B rank of P , then Dα(P ) is the
perfect kernel of P and is a perfect closed set. For an element x ∈ P which is
not in the perfect kernel, the Cantor-Bendixson (C.B.) rank of x in P is the
least ordinal α such that x /∈ Dα+1(P ).

The standard Lebesgue measure µ on {0, 1}ω is determined by letting µ(I(σ)) =
2−|σ|. A product measure on NN may be defined (with λ(NN) = 1) by set-
ting the measure of {x : x(m) = n} to be 2−n−1, so that I(σ) has measure
2−(m0+m1+···+mk−1+k).

1.3 Structures

We shall use the logical symbols &, ∨, ¬,→ and ⇐⇒ to denote as usual “and”,
“or”, “not”, “implies” and “if and only if”. The symbols ∃ and ∀ denote the
quantifiers “there exists” and “for all”. In addition, (∃m < p) and (∀m < p)
denote bounded quantifiers where the range of the quantifier is restricted to
numbers less than p, and (∃∞x) denotes “there exist infinitely many x such
that”.

As usual, a first-order language L is given by a set {Ri}i∈S of relation sym-
bols, a set {fj}j∈T of function symbols, and a set {ci}i∈U of constant symbols,
together with functions m(i) and n(i) such that Ri is an m(i)-ary relation sym-
bol and fi is an n(i)-ary function symbol. We assume here that S, T and U
are subsets of ω. The language also includes variables and both existential and
universal quantifiers using these variables. The set of terms of L and the set
Sent(L) of sentences of L are defined as usual by induction. A propositional
language is given by a set of 0-ary relation symbols, or propositional variables.
The reader is referred to Shoenfield [175] for details.

We shall consider structures over an effective first-order language

L = 〈{Rm(i)
i }i∈S , {fn(i)

i }i∈T , {ci}i∈U 〉,
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where S, T and U are initial segments of ω, for all i ∈ U , ci is a constant symbol
and there are partial recursive functions s and t such that, for all i ∈ S, Ri is
an s(i)-ary relation symbol and, for all i ∈ T , fi is a t(i)-ary function symbol.

Let Γ be some complexity class of sets (and functions), such as partial re-
cursive, primitive recursive, exponential time, polynomial time (or p-time). We
say that a set or function is Γ-computable if it is in Γ.

A model or structure, A = (A, {RAi }i∈S , {fAi }i∈T , {cAi }i∈U ), for the language
L is given by a set A together with interpretations of the relation, function and
constant symbols.

Definition 1.3.1. (a) A structure (where the universe A of A is a subset of
Σ∗) is a Γ-structure if

(i) A is a Γ-computable subset of Σ∗

(ii) for each i ∈ S, RAi is a Γ-computable relation on Am(i).

(iii) for each j ∈ T , fAj is a Γ-computable function from An(j) into A.

(iv) If S = ω, then there is a Γ-computable relation R such that, for all i ∈ S
and all (x0, . . . , xm(i)),

RAi (x0, . . . , xm(i)) ⇐⇒ R(i, 〈x0, . . . , xm(i)〉).

(v) If T = ω, then there is a Γ-computable function f such that, for all j ∈ T
and all (x0, . . . , xn(j)),

fAi (x0, . . . , xn(j)) = f(i, 〈x0, . . . , xn(j)〉).

For any complexity class Γ, we say that two structures A and B are Γ-
isomorphic if there is an isomorphism f from A onto B and Γ-computable func-
tions F and G such that f = F dA (the restriction of F to A) and f−1 = GdB.

1.4 Orderings and Ordinals

The results of this book are all theorems of Zermelo-Fraenkel Set Theory with
the Axiom of Choice. The (Generalized) Continuum is not assumed.

Our set-theoretic conventions are standard and we refer the reader to (for ex-
ample) Jech [83] for further background. The inclusion relation X ⊆ Y denotes
(∀x)(x ∈ X → x ∈ Y ) and X ⊂ Y denotes X ⊆ Y and X 6= Y . The symbols
∪, ∩ and \ denote the binary operations of union, intersection and difference;
A denotes the complement of A.

A set X is transitive if (∀y)(y ∈ X → y ⊆ X) and X is an ordinal (number)
if X and all of its elements are transitive. For ordinals α and β, α < β if and
only if α ∈ β. For any ordinal α, α + 1 = α ∪ {α} is the successor ordinal
of α. α is a limit ordinal if it is neither 0 nor a successor, which implies that
(∀β < α)(β+1 < α). For any set X of ordinals, inf X denotes the least element
of X and supX denotes the least ordinal greater than or equal to every element
of X.
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An ordinal α is said to be a recursive ordinal if there is a recursive well-
ordering of ω of order type α. The least non-recursive ordinal is denoted by
ωC−K

1 , and was introduced by Church and Kleene [47].
The natural, or Hessenberg sum, α ⊕ β, of two ordinals α and β, may be

defined as follows. Let α = ωγ1a1 +ωγ2a2 + · · ·+ωγkak and β = ωγ1b1 +ωγ2b2 +
· · · + ωγkbk be the Cantor normal forms of α and β, where we have inserted
ai = 0 and bj = 0 to obtain expressions with the same powers of ω. Then

α⊕ β = ωγ1(a1 + b1) + ωγ2(a2 + b2) + · · ·+ ωγk(ak + bk).
Thus we treat ordinals as polynomials over ω with natural number coef-

ficients. This natural addition is commutative. For any ordinals α and β,
α+ β ≤ α⊕ β. See [110] (p. 253) for details.

An ordinal κ is a cardinal number if there is no one-to-one correspondence
between κ and any α < κ. It follows from the Axiom of Choice that for every
set X, there is a unique cardinal κ and a one-to-one correspondence between X
and κ; κ is the cardinality (Card(X))of X. The natural numbers are exactly
the finite cardinals and ω is the least infinite cardinal. A set X is countable if
Card(X) ≤ ω and countably infinite if Card(X) = ω. The infinite cardinal ω is
also denoted by ℵ0 and the least uncountable cardinal by ℵ1.

For any set X, P(X) denotes the power set of X, the set of all subsets of X
and 2κ denotes Card(P(κ). Since there is a one-to-one correspondence between
P(N) and the continuum <, Card(<) = 2ℵ0 .

A relation R on a set X is a subset of X ×X; the domain of R is dom(R) =
{x : (∃y)(x, y) ∈ R} and the range is ran(R) = {y : (∃x)(x, y) ∈ R}. R(x, y)
and also xRy are sometimes used in place of (x, y) ∈ R. R is reflexive if R(x, x)
for all x and is irreflexive if ¬R(x, x) for all x. R is symmetric if R(x, y) implies
R(y, x) for all x, y and is antisymmetric if R(x, y) & R(y, x) implies y = x for
all x, y. R is transitive if R(x, y) & R(y, z)) implies R(x, z) for all x, y, z. R is
total or connected if R(x, y) ∨ R(y, x) for all x, y. R is an equivalence relation
if it is symmetric, reflexive and transitive.

R is a pre-partial-ordering if it is reflexive and transitive. A pre-partial-
ordering R is a pre-linear-ordering if it is total. A pre-partial-(linear-)ordering
is a partial (linear) ordering if it is antisymmetric.

R is is well-founded if every subset A of X has a minimal element, that
is, some m such that for all x, R(x,m) → R(m,x). Assuming the Axiom of
Dependent Choice (DC), this is equivalent to the following

(∀f ∈ NX)[(∀m)(R(f(m+ 1), f(m))→ (∃m)R(f(m), f(m+ 1)).

A (pre-)linear ordering is a (pre-)well-ordering if it is well-founded.
In this chapter, we present some basic definitions and results from classical

computability theory which are needed for the study of Π0
1 classes. The key

notion here is that of a computable functional, or function with domain a subset
of NN.

We begin with a brief review of computable functions and computably enu-
merable (c. e.) sets. Formal definitions of the set of computable functions have
been given in many different ways. The computable functions are the functions
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mapping natural numbers (or more generally finite strings of symbols taken from
a finite alphabet) which are computable by a Turing machine, register machine,
or other idealized computer. These are the functions which can be computed
by a program in Maple, or Matlab, or some other fixed programming language.
The set of computable functions is the smallest which includes certain basic
functions and is closed under primitive recursion, composition, and unbounded
search.

All of these approaches are known to lead to the same family of functions,
and Church’s Thesis proclaims that any other attempt to formalize the notion
of a computable function will lead to the same family of functions.

We refer the reader to Soare [181] and to Odifreddi [151] for full details on
the basic definitions and results of computability theory.

1.5 Formal definitions of the computable func-
tions

Since index sets will be a central topic in our work, we will give a definition
in the spirit of Kleene [99] and Hinman [80] based on the index or code for
a computable function. We will give the general definition for a computable
function or functional with both natural number inputs and real number inputs
(that is, functions from NN). It is crucial that our functions may be partial, that
is, defined on a proper subset of Nk × (NN)l. The second crucial observation
is that the (partial) computable functions may be enumerated as Φ0,Φ1, . . . so
that the universal function U(e,−→m,−→x ) = Φe(

−→m,−→x ) is itself partial computable.
An index e = 〈i, k, `, . . .〉 for a computable function is the code for a function

Φe of k natural numbers and ` real numbers. Φe is a function on natural numbers
if ` = 0 and will then be denoted also by φe. Here −→m = (m0, . . . ,mk−1) and
−→x = (x0, . . . , x`−1).

The basic indices and functions are the following:

(0) Constant Functions: Φe(
−→m,−→x ) = n when e = 〈0, k, `, n〉.

(1) Projection Functions: Φe(
−→m,−→x ) = mi when e = 〈1, k, `, i〉 and i < k.

(2) Successor Functions: Φe(
−→m,−→x ) = mi + 1 when e = 〈2, k, `, i〉 and i < k.

(3) Application Functions: Φe(
−→m,−→x ) = xj(mi) when e = 〈3, k, `, i, j〉, i < k

and j < `.

The primitive recursive functions are obtained from the basic functions by
closure under composition and primitive recursion, which are defined as follows.

(4) Composition: Φe(
−→m,−→x ) = Φa(Φb1(−→m,−→x ), . . . ,Φbr (

−→m,−→x )) when e = 〈4, k, `, a, b1, . . . , br〉
when (a)1 = r, (a)2 = 0 and, for each t, (bt)1 = k and (bt)2 = `.

(5) Primitive Recursion: Φe(0,
−→m,−→x ) = Φa(−→m,−→x ) and, for each n, Φe(n +

1,−→m,−→x ) = Φb(Φe(n,
−→m,−→x ), n,−→m,−→x )) when e = 〈5, k+1, `, a, b〉, (a)1 = k,

(a)2 = `, (b)1 = k + 2 and (b)2 = `.
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A set A ⊆ Nk is primitive recursive if the characteristic function is primi-
tive recursive. It is worth noting that the set of indices for primitive recursive
functions is itself a primitive recursive set. Thus we may define an enumeration
Πe of the primitive recursive functions by letting Πe(

−→m,−→x ) = Φe(
−→m,−→x ) if e is

a primitive recursive index and otherwise Πe(
−→m,−→x ) = 0.

Lemma 1.5.1. There is a partial recursive function π such that for each e,
Πe = Φπ(e).

Details are left to the exercises.
The computable functions are obtained from the basic functions by closure

under composition, primitive recursion and search, which is defined as follows.
Here we let “(least p)R(p)” denote the least p such that R(p).

(6) Search: Φe(
−→m,−→x ) = (least p)Φa(p,−→m,−→x ) = 0 when e = 〈6, k, `, a〉, where

this means as usual that Φe(
−→m,−→x ) = q if Φa(q,−→m,−→x ) = 0 and for all

p < q, Φa(p,−→m,−→x ) is defined and not equal to zero.

If Φe(
−→m,−→x ) is defined by the above, we say that Φe(

−→m,−→x ) converges and
write Φe(

−→m,−→x ) ↓. If Φe(
−→m,−→x ) is not determined by this definition, then

Φe(
−→m,−→x ) is undefined. We say that Φe(

−→m,−→x ) diverges and write Φe(
−→m,−→x ) ↑.

If e is not an index of a computable function, then of course Φe(
−→m,−→x ) ↑ for all

−→m,−→x , so that Φe is the empty function.
If we replace the real variables xj with finite sequences σj , then the definition

of Φe(
−→x ,−→σ ) is obtained as above when we begin with Φe(

−→m,−→σ ) = σj(mi)
provided that mi < |σj |.

Then the computation of Φe(
−→m,−→x ) = q is coded by c = 〈e,−→m,−→σ , q〉, where

σj is the shortest initial segment of xj needed.
We will next define the notions of a computation tree and a derivation for a

computation.
For the constant, projection and successor functions, the computation tree

of Φe(
−→m,−→x ) = n has a single node 〈e,−→m,

−→
∅ , n〉 and this is also the derivation.

For the application function, the computation tree for Φe(
−→m,−→x ) = xi(mj) =

n also has a single node 〈e,−→m,
−→
∅ , (xi(0), . . . , xi(mj)),

−→
∅ , n〉 and this is the

derivation.
The other cases are more complicated.

(4) Composition:
The computation tree for Φe(

−→m,−→x ) = Φa(Φb0(−→m,−→x ), . . . ,Φbr−1
(−→m,−→x )) =

q has a top node c = 〈e,−→m,−→σ , q〉 and has immediate predecessors c0, . . . , cr−1, c
′,

where ct is the top node of the computation tree for Φbt(
−→m,−→x ) for t < r, and c′

is the top node of the computation tree for Φa(Φb0(−→m,−→x ), . . . ,Φbr−1(−→m,−→x )).
For each j, σj is the union of the initial segments of xj used in ct. The derivation
is 〈d1, . . . , dr−1, d, c〉 where dt is the derivation of Φbt(

−→m,−→x ) for t < r and d is
the derivation of Φa(Φb0(−→m,−→x ), . . . ,Φbr−1

(−→m,−→x )).

(5) Primitive Recursion:
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The computation tree for Φe(0,
−→m,−→x ) = Φa(−→m,−→x ) = q0 has top node d0 =

〈e, 0,−→m,−→σ , q0〉 with a single immediate predecessor c0 = 〈a,−→m,−→σ , q0〉. The
derivation is 〈c0, d0〉.

The computation tree for Φe(n + 1,−→m,−→x ) = Φb(Φe(n,
−→m,−→x ), n,−→m,−→x )) =

qn+1 has top node dn+1 = 〈e, n+ 1,−→m,−→σ , qn+1〉 with two immediate predeces-
sors, the top node dn of the computation tree for Φe(n,

−→m,−→x ) and the top node
cn of the computation tree for Φb(qn, n,

−→m,−→x )). For each j, σj is the union of
the initial segments of xj used in cn and in dn. The derivation is 〈dn, cn, dn+1〉.

(6) Search:
The computation tree for q = Φe(

−→m,−→x ) = (least p)Φa(p,−→m,−→x ) = 0 has top
node d = 〈e,−→m,−→σ , q〉 with immediate predecessors c0, . . . , cp where ct is the top
node of the computation tree for Φa(t,−→m,−→x ) for t ≤ p. For each j, σj is the
union of the initial segments of xj used in ct for some t ≤ p. The derivation is
〈c0, . . . , cp, d〉.

We will often write Φye(−→m,−→x ) for Φe(
−→m,−→x , y) and refer to the function Φye

as being computable from the oracle y.

Lemma 1.5.2. The set of derivations is primitive recursive and, furthermore,
the relation T (e, 〈−→m,−→σ 〉, d) which indicates that d is the derivation of Φe(

−→m,−→σ )
is also primitive recursive.

Sketch. The set of derivations may be defined by course-of-values recursion using
coding and decoding of finite sequences, all of which is primitive recursive. Then
the values of e, −→m, −→σ and Φe(

−→m,−→σ ) can be obtained from the last entry of the
finite sequence coded by the derivation d. See Chapter II of Hinman [80] for
details.

1.5.1 Turing machines

The classic Turing machine, defined by Alan Turing, provides a very useful ap-
proach to computable functions. It has a simple elegant format but nevertheless
has a strength equal to any other model of computing.

Our model of the Turing machine will be as follows. Let Σ0 be a finite
alphabet, let B denote the blank symbol (not included in Σ0), and let Σ =
Σ0 ∪ {B}. A Turing machine tape consists of a potentially infinite sequence of
squares, on which symbols from the alphabet Σ may be stored, and possibly
erased or written over during a computation.

Each tape comes equipped with a pointer or reading head, which will be
pointing at one of the entries during any step of a Turing machine computation.
The entries on a tape are ordered as a0, a1, . . . beginning with a leftmost square.
Initially each reading head points at the leftmost square of its tape. Turing
machine computations are based on two fundamental operations, the following.
Say that the pointer on a tape is located over ai. The Turing machine can replace
the symbol ai with any other symbol. Then it can move from the current square
to ai+1 or to ai−1 (if i > 0) or remain at the current square.

A Turing machine M which defines a function ϕM : Σk0 → Σ for some finite
k will have k input tapes, an output tape, and a fixed finite number m of work
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or scratch tapes. The inputs σ0, . . . , σk−1 are written on the input tapes at
the start of the computation and the other tapes are initially empty. We will
assume that the input tapes are read-only, that is, M does not ever write over
any symbol on the input tapes and does not write any new symbols onto the
empty squares of an input tape. The output tape is assumed to be write-only,
that is, once a symbol is written onto the output tape, it cannot be changed.

The instructions for a Turing machine M to compute the function ϕM are
given by a finite set Q of states, including some initial state s and a halting
state h, together with a transition function

δM : Q× Σk+m+1 → Q× Σm+2 × {←,→,`}k+m+1.

The state of the machine together with the symbols on the scanned squares,
are used via the transition function to determine the operation of the machine
as follows. Let the tapes be numbered so that tapes 0 through k − 1 are the
input tapes, tapes k through k + m − 1 are the scratch tapes, and tape k + m
is the output tape. Suppose that M is in state q and that, for each i < k +
m, pointer on tape i is scanning the symbol ai. Let δM (s, a0, . . . , ak+m) =
(q′, b0, . . . , bk+m, X0, . . . , Xk+m), where each Xi ∈ {←,→,`}. Here we assume
that, for i < k, bi = ai and that, if ak+m+1 6= B, then bk+m+1 = ak+m+1. We
also assume that if bk+m 6= B, then Xk+m =→ and otherwise Xk+m =`. Then
the symbol ai is replaced on tape i by the symbol bi. The pointer on tape i
moves right if X =→, moves left if X =← and it is not the leftmost square
which is being scanned, and otherwise remains pointing at the same square.
Finally, the machine transitions into state q′. If q′ = h, then the computation
is finished and the output ϕM (σ0, . . . , σk−1) is the sequence of entries on the
output tape. The length of the computation is the number of steps until the
halting state is reached, if any, and also represents the amount of time used in
the computation for the purpose of complexity theory. The amount of space
used is the total number of squares on the work tapes which were ever written
on during the computation.

Example 1.5.3. Natural numbers are usually represented in reverse binary
form, so that 6 is represented as 011. (This is due to having a leftmost square
on each tape.) The function ϕ(x) = x + 1 may be computed by the following
Turing machine M . M has three states, s, q and h and just two tapes, the input
tape and the output tape. The transition function has the following values.

δ(s, 0, B) = (q, 0, 1,→)

δ(s, 1, B) = (s, 1, 0,→)

δ(s,B,B) = (h,B,B,`)

δ(r, 0, B) = (r, 0, B,→)

δ(r, 1, B) = (r, 1, B,→)

δ(r,B,B) = (h,B,B,`)

Here we omit any transition where the output tape is not scanning a blank
square, since that situation cannot occur.
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The computation ϕ(101) = 011 (that is, 5+1 = 6) takes three steps, remain-
ing in state s after the first step, moving to state r after the second step and
finishing in the halting state h after scanning the blank at the third step.

Frequently, we use computations to test whether a given input σ meets
certain criteria, that is, belongs to some set A. Then our Turing machine M
might output Yes or No if the input does or does not meet the criteria, or M
might halt if σ meets the criteria and not halt otherwise. In the first case,
M demonstrates that the set A is computable, and in the second case, M
demonstrates that A is computably enumerable.

Example 1.5.4. Let A = {σ ∈ {0, 1}∗ : (∃n)σ(n) = 0 = σ(n + 1)}. We can
show that A is computably enumerable with the following simple Turing machine.
Here we do not need any work tapes or even an output tape.

δ(s, 0) = (q,→)

δ(s, 1) = (s,→)

δ(s,B) = (s,→)

δ(q, 0) = (h,`)

δ(q, 1) = (s,→)

δ(q,B) = (s,→)

If the input string σ is in A and n is the least such that σ(n) = σ(n+1) = 0,
then the Turing machine takes n+ 1 steps to read through the first n+ 1 entries
of σ and then halts. If σ is not in A, then the machine take |σ| + 1 steps to
read through σ (without finding 00 and find the blank at the end of σ. Then it
simply continues to read blanks and thus never halts.

Example 1.5.5. Let A = {0n1n : n ∈ N}. We will give an informal description
of a Turing machine M which outputs Y if σ ∈ A and otherwise outputs N . The
machine M has one work tape where it copies the 0s from the input tape until
either a 1 or a B is read. The reading head on the work tape will be pointing to
the final 0. When a 1 is read on the input tape, M transitions to a new state
and begins erasing the 0s from the work tape. When a B is now read in the
input tape, M checks to see whether there is a B or a 0 on the work tape. If it
is a B, then σ is accepted by writing Y on the output tape. If it is a 0, then σ
is rejected by writing N on the output tape (in this case there are not enough 1s
to match the initial sequence of 0s). If M finds a 0 after some sequence of 1s,
then again σ is rejected. For the remaining case, if B is read on the input tape
after a sequence of 0s but before any 1s are read, then σ is also rejected.

Exercises

1.5.1. Show that the set of primitive recursive indices is itself a primitive re-
cursive set. (You may assume here that the coding functions mapping
(a0, a1, . . . , an) to a = 〈a0, a1, . . . , an〉 and the decoding functions (a)i = ai
are primitive recursive.)
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1.5.2. Prove Lemma 1.5.1.

1.5.3. Show that the universal sequence {Πe}e∈ω is not uniformly primitive re-
cursive, that is, the function f defined by f(e,m) = Πe(m), is not itself
primitive recursive.

1.6 Basic results

In this section, we state a number of results about computable functions which
will be needed later. Most proofs are omitted; the reader is referred to Hinman
[80] and Soare [181]. For simplicity of expression, we will generally write φe(m)
for a function of k variables rather than φe(m1, . . . ,mk) or φe(

−→m). Thus the
results given here apply to functions taking any number of variables.

Lemma 1.6.1 (Padding Lemma). Each partial computable function φe has an
infinite set of indices, and furthermore, there is a primitive recursive, one-to-one
function f such that, for all e and n, f(e, n) is an index for φe.

Sketch. Let f(e, n) be an index for the function which first computes φe(m),
then adds n to the output, and finally subtracts n from the output.

Theorem 1.6.2 (Normal Form Theorem). (Kleene) There is a primitive re-
cursive predicate T1(e,−→m,−→σ , q) and a primitive recursive function U such that

Φe(
−→m,−→x ) = U((least q) T1(e,−→m,−→x dq, q))

Sketch. Let the T predicate be given by Lemma 1.5.2 and define the predicate
T1 so that, for any e,−→m,−→σ , q, T1(e,−→m,−→σ , q) if and only if there exists initial
segments τj of each σj such that T (e, 〈−→m,−→τ 〉, q) and U outputs Φe(

−→m,−→σ ) from
the derivation q.

Theorem 1.6.3 (Enumeration Theorem). For any k, ` < ω, there is a partial
computable function Φ such that, for all e, −→m and −→x , Φ(e,−→m,−→x ) = Φe(

−→m,−→x ).

Proof. Just let Φ(e,−→m,−→x ) = U(least q) T1(e,−→m,−→x dq, q)), where T1 and U are
given by Theorem 1.6.2.

The finite approximation Φe,s at stage s of a partial computable function
Φe is defined as follows.

Definition 1.6.4. (i) Φe,s(
−→m,−→x ) = p if and only if

(∃q < s)[T1(e,−→m,−→x dq, q) & U(q) = p].

(ii) Φe,s(
−→m,−→x ) converges (written Φe,s(

−→m,−→x ) ↓) if Φe,s(
−→m,−→x ) = p for some

p and otherwise Φe,s(
−→m,−→x ) diverges ( Φe,s(

−→m,−→x ) ↑). Similar definitions
apply for Φe,s(

−→m,−→σ ).

(iii) Φe(
−→m,−→σ ) = Φe,s(

−→m,−→σ ), where s = |−→σ |.
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The following results are immediate from the definitions and the Normal
Form Theorem above. For simplicity of expression, the results are written only
for a function of one real variable but applies to functions of several variables
as well.

Theorem 1.6.5 (Master Enumeration Theorem). {〈e,−→m,σ, s〉 : Φe,s(
−→m,σ) ↓}

and {〈e,−→m,σ, p, s〉 : Φe,s(
−→m,σ) = p} are both primitive recursive sets.

Theorem 1.6.6. (Use Principle)

(a) Φe(
−→m,x) = n =⇒ (∃s)(∃σ ⊂ x)Φe,s(

−→m,σ) = n.

(b) Φe,s(
−→m,σ) = n =⇒ (∀t ≥ s)(∀τ ⊃ σ)Φe,t(

−→m, τ) = n.

(c) Φe,s(
−→m,σ) = n→ (∀x ⊃ σ)Φe(

−→m,x) = n.

Theorem 1.6.7 (s-m-n Theorem). For every m,n ≥ 1, there exists a one-to-
one primitive recursive function Smn such that, for all e, i1, . . . , im, j1, . . . , jn,

ΦSmn (e,i1,...,im)(j1, . . . , jn,
−→x ) = Φe(i1, . . . , im, j1, . . . , jn,

−→x )

Proof. For m = 1, we want S1
1(e, i) to be the index for the function φ such

that φ(j1, . . . , jn,
−→x ) = φe(i, j1, . . . , jn,

−→x ). Let u be given by the Enumeration
Theorem so that φu(e, i, j1, . . . , jn,

−→x ) = φe(i, j1, . . . , jn,
−→x ). Let Ck denote

the constant function Ck(−→m,−→x ) = k and let Pi denote the projection function
Pi(
−→m,−→x ) = mi, both with n number and ` real variables. Then

φ(j1, . . . , jn,
−→x ) = φu(e, i, j1, . . . , jn,

−→x )

= φu(Ce(
−→
j ,−→x ), Ci(

−→
j ,−→x ), P0(

−→
j ,−→x ), . . . , Pn−1(

−→
j ,−→x )),

so that

S1
1(e, i) = 〈4, n+ 1, `, u, 〈0, n, `, e〉, 〈0, n, `, i〉, 〈1, n, `, 0〉, . . . , 〈1, n, `, n− 1〉〉.

Then Sm+1
n may be defined recursively by

Sm+1
n (e, i0, . . . , im) = Smn (S1

m+n(e, i0), i1, . . . , im).

This result is very useful. Here is an example.

Proposition 1.6.8. There is a primitive recursive function g such that, for all
a and b, Wg(a,b) = Wa ∪Wb.

Proof. Let φ(a, b,m) = U((least q)[T1(a,m, q)∨T1(b,m, q)]) and let φ have index
e. Then let g(a, b) = S2

1(e, a, b).

More importantly, we will need the following.

Theorem 1.6.9 (Substitution Theorem). There is a primitive recursive func-
tion f such that, for all e,m,A such that ΦAb is total, Φe(m,Φ

A
b ) = Φf(b,e)(m,A).
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Proof. Let R(e, b,m, σ) if Φe(m,σ) ↓; R is primitive recursive by the Master
Enumeration Theorem. Now let g(e, b,m,A) = (least s)R(e, b,m,Ads) and

Φc(e, b,m,A) = Adg(e, b,m,A),

where we identify a finite sequence with its code. Then

Φe(m,Φ
A
b ) = Φe(m,Φc(e, b,m,A)) = Φd(e, b,m,A),

where
d = 〈4, 3, 1, 〈1, 3, 1, 2〉, c〉.

Now apply the s-m-n Theorem to get f(b, e) = S2
1(d, e, b).

Theorem 1.6.10 (Recursion Theorem). For any partial computable function
Φ, there exists an index e such that, for all −→m, Φe(

−→m,−→x ) = Φ(e,−→m,−→x ). Fur-
thermore, there is a primitive recursive function g such that if Φ = Φi, then
e = g(i).

Proof. Given Φ, let Φb(a,
−→m,−→x ) = Φ(Sk+1

1 (a, a),−→m,−→x ) and let e = Sk+1
1 (b, b).

Then

Φe(
−→m,−→x ) = Φb(b,

−→m,−→x ) = Φ(Sk+1(b, b),−→m,−→x ) = Φ(e,−→m,−→x ).

This leads to the following.

Theorem 1.6.11 (Fixed Point Theorem). For any computable function f , there
exists an index e such that Φe = Φf(e). Furthermore, there is a primitive
recursive function h such that if f = Φi, then e = h(i).

Proof. Let Φ(a,−→m,−→x ) = Φf(a)(
−→m,−→x ) and let e be given by the Recursion

Theorem such that φe(
−→m,−→x ) = φ(e,−→m,−→x ).

Corollary 1.6.12. For any computable function f , there exists an index e such
that We = Wf(e). Furthermore, there is a primitive recursive function h such
that if f = φi, then e = h(i).

Definition 1.6.13. A function F : (NN)` → NN is (partial) computable (or
computably continuous) if there is a (partial) computable functional Φ such
that, for all −→x and n, Φ(n,−→x ) = F (−→x )(n).

Theorem 1.6.14. Let F : (NN)` → NN be total. Then F is continuous if and
only if F is computable in some oracle A ⊆ N.

Proof. (←−). We give the proof for ` = 1. Let A be the given oracle and
suppose that F (x)(m) = Φ(m,x,A). It suffices to show that, for any m and
n, {x ∈ NN : F (x)(m) = n} is an open set. Suppose that F (x)(m) = n. By
the Use Principle (Theorem 1.6.6) there is some s and some finite σ ⊂ x and
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finite τ ⊂ χA such that Φe,s(m,σ, τ) = n. It follows that for all x ∈ I(σ),
Φe,s(m,x, τ) = n and hence I(σ) ⊆ F−1({y : y(m) = n}).

(−→): Let F : NN → NN be continuous. Then for each m and n, Um,n =
{x : F (x)(m) = n} is open and thus for each x ∈ Um,n, there exists a finite
σ ≺ x such that I(σ) ⊆ Um,n. Let

A = {〈m,n, σ〉 : I(σ) ⊆ Um,n}.

To compute F (x)(m) from x simply fix m and search for the least 〈m,n, σ〉 ∈ A
such that σ ≺ x; then F (x)(m) = n.

Exercises

1.6.1. Use induction to prove Theorem 1.6.6 (a).

1.6.2. Use the Recursion Theorem to show that the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . .
is computable.

1.7 Computably enumerable sets

Definition 1.7.1. (i) A subset A of N is computably enumerable ( c. e.) if
A is the domain of some partial computable function.

(ii) The c. e. sets can be enumerated in the form

We = {m : φe(m) ↓} = {m : (∃q)T (e,m, q)}.

(iii) We,s = {m : φe,s(m) ↓}.

The following lemma is immediate from Theorem 1.6.5.

Lemma 1.7.2. {〈e,m, s〉 : m ∈We,s} is primitive recursive.

There are several equivalent definitions.

Definition 1.7.3. A set A ⊆ Nk is Σ0
1 (resp. ΣB1 ) if there is a computable rela-

tion R (resp. computable in B) such that, for all −→m, −→m ∈ A ⇐⇒ (∃p)R(p,−→m).

Theorem 1.7.4 (Normal Form Theorem for c. e. sets). A set A is c. e. if and
only if it is Σ0

1.

The proof is left as an exercise. Observe that any computable set is trivially
Σ0

1 and hence also is computably enumerable.

Theorem 1.7.5 (Quantifier Contraction Theorem). If W is a c. e. set, then
{m : (∃p)〈p,m〉 ∈W} is a c. e. set.

Proof. Let V = {m : (∃p)〈m, p〉 ∈ W}. Then m ∈ V ⇐⇒ (∃q)〈m, (q)0〉 ∈
We,(q)1 . Thus V is c. e. by the Normal Form Theorem for c. e. sets.
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The intended meaning of the term “computably enumerable set” is that
there is an effective listing a0, a1, . . . of the set.

Theorem 1.7.6 (Listing Theorem). A set A is c. e. if and only if either A = ∅
or A is the range of a total computable function.

Proof. (⇐=): If A = ∅, then A is c. e. If A = {φe(m) : m ∈ N} where φ is a
total computable function, then

n ∈ A ⇐⇒ (∃n)(∃s)φe,s(p) = n.

Thus A is c. e. by Theorem 1.6.5 and the Quantifier Contraction Theorem.
(=⇒): Let A = We 6= ∅ and choose a ∈ A. Then A is the range of the

following computable function.

f(〈m, s〉) =

{
m, if m ∈We,s+1 \We,s;

a, otherwise.

Theorem 1.7.7 (Complementation Theorem). A set A is computable if and
only if both A and N \A are c. e.

Proof. (⇐=): If A is computable, then N\A is also computable and hence both
sets are c. e..

(=⇒): Suppose that A = Wa and N \A = Wb and let φ(m) = (least s)[m ∈
Wa,s ∨ m ∈ Wb,s]. Then φ is a total computable function and m ∈ A ⇐⇒
m ∈Wa,φ(m), so that A is computable.

There are natural noncomputable c. e. sets.

Definition 1.7.8. (a) K = {e : e ∈We};

(b) K0 = {〈m, e〉 : m ∈We}.

Proposition 1.7.9. K and K0 are noncomputable c. e. sets.

Proof. It follows from Lemma 1.7.2 that K0 and K are c. e. sets. Suppose
now that K were computable, so that N \K is c. e., by the Complementation
Theorem, and choose a such that N \K = Wa. Then, for any m,

m ∈Wm ⇐⇒ m ∈ K ⇐⇒ m /∈Wa

and when m = a we obtain the contradiction

a ∈Wa ⇐⇒ a ∈ K ⇐⇒ a /∈Wa.

Now a ∈ K ⇐⇒ 〈a, a〉 ∈ K0, so that K would be computable if K0 were
computable.
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Exercises

1.7.1. Prove lemma 1.7.2 and the Normal Form Theorem for c.e. sets. Hint: Use
the corresponding results for partial computable functions.

1.7.2. Show that a partial function is partial computable function if and only if
the graph is Σ0

1.

1.7.3. Use the s-m-n Theorem to obtain a primitive recursive function such that
for any e, {m : (∃p)〈m, p〉 ∈We} = Wf(e).

1.7.4. Show that if A is a Σ0
1 relation and B = {〈m, p〉 : (∀n < p)〈m,n〉 ∈ A},

then B is also Σ0
1.

1.8 Computability of real numbers

Any set A of natural numbers represents a real number rA ∈ [0, 1] where rA =∑
n∈A 2−n−1. For every real r in [0, 1], there exists A ⊆ N such that r = rA

and r has a unique representation except for dyadic rationals r, which have
exactly two such representations. The real rA is said to be computable if A is a
computable set. For an arbitrary real x, we have x = i+ r, where i is an integer
and r ∈ [0, 1], so we will say that x is computable if and only if r is computable.

The unit interval [0, 1] ⊂ R has a natural linear ordering and this corresponds
to the lexicographic ordering on {0, 1}N.

Definition 1.8.1. For x, y ∈ NN, x <lex y if x(n) < y(n) where n is the least
such that x(n) 6= y(n).

It is easy to see that <lex is a linear ordering on NN. We sometimes say
that “x is left of y” if x <lex y, since this fits the picture of the tree N∗. For
x, y ∈ {0, 1}N, if rx 6= ry, then rx < ry ⇐⇒ x <lex y. If r is a dyadic rational,
then there are two representations x 6= y such that rx = ry = r and these are
successors under <lex.

Another useful way of determining the complexity of a real number is by
means of Dedekind cuts of rationals. Rational numbers may be represented as
quotients of integers and thereby as finite sequences of natural numbers. Thus
we may view the set Q of rational numbers as a computable structure equipped
with a computable ordering and computable operations of addition, subtraction,
multiplication and division. The Dedekind cut L(r) of a real number is defined
by

L(r) = {q ∈ Q : q ≤ r}.

It turns out that the complexity of the Dedekind cut is quite useful in com-
putable analysis.

Proposition 1.8.2. For any real r, r is computable if and only if L(r) is
computable.
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Proof. It suffices to consider r ∈ [0, 1], so let r = rx for some x ∈ {0, 1}N. If
r is rational, then both r and L(r) are computable. So let r be irrational and
suppose first that r is computable. Then, for any rational q,

q < r ⇐⇒ (∃n)q <

n∑
i=0

x(i)2−i−1

and

q > r ⇐⇒ (∃n)q > 2−n−1 + r ⇐⇒ (∃n)q > 2−n−1 +

n−1∑
i=0

x(i)2−i−1.

Next suppose that L(r) is computable. Then we can recursively define x so that
r = rx as follows. Let x(0) = 0, if r < 1

2 and x(0) = 1 otherwise. Given x(n),
let

x(n+ 1) =

{
0, if r < 2−n−2 +

∑
i=0n x(i)2−i−1,

1, otherwise.

There is a nice characterization for Σ0
1 and Π0

1 Dedekind cuts.

Proposition 1.8.3. (a) L(r) is Σ0
1 if and only if r = limn qn, where {qn}n∈ω

is a computable, increasing sequence of rationals.

(b) L(r) is Π0
1 if and only if r = limn qn, where {qn}n∈ω is a computable,

decreasing sequence of rationals.

Proof. (a) Suppose first that r = limnqn where {qn}n∈ω is a computable, in-
creasing sequence of rationals. Then, for any rational q, q < r ⇐⇒ (∃n)q < qn.

Suppose now that L(r) is Σ0
1 and let L(r) have a computable enumeration

as p0, p1, . . . . Then we can define a computable nondecreasing sequence qn of
rationals with limit r by

qn = max{p0, p1, . . . , pn}.

It is routine to convert this into an increasing sequence.
(b) If L(r) is Π0

1, then L(1− r) is Σ0
1, since q < 1− r ⇐⇒ r < 1− q. Thus

1−r = limnpn where {pn}n∈ω is a computable, increasing sequence of rationals.
It follows that r = limn(1−pn) is the limit of a computable, decreasing sequence.
Conversely, if r = limnqn where {qn}n∈ω is a computable, increasing sequence
of rationals, then 1− r is the limit of a decreasing sequence so that L(1− r) is
Σ0

1 and hence L(r) is Π0
1.

The following notions are important in computable analysis.

Definition 1.8.4. Let r be a real number. Then

(a) r is lower semicomputable if it is the limit of an increasing computable
sequence of rationals;
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(b) r is upper semicomputable if it is the limit of a decreasing computable
sequence of rationals;

(c) r is weakly computable if it is either lower semicomputable or upper semi-
computable.

It would be natural to say that rx is Σ0
1 if the set with characteristic func-

tion x is Σ0
1, but there is no corresponding equivalence as in Proposition 1.8.2.

One direction only holds. In example 1.9.3 below we will construct a lower
semicomputable real r which is not the characteristic function of a c. e. set.

Proposition 1.8.5. (a) If A is Σ0
1, then L(rA) is Σ0

1;

(b) If A is Π0
1, then L(rA) is Π0

1.

Proof. (a) If A is finite, then of course rA is rational and therefore L(rA) is com-
putable. Suppose therefore that A is Σ0

1 and infinite and let A have computable
enumeration a0, a1, . . . without repetition. Then for any rational q,

q < rA ⇐⇒ (∃n)q <

n∑
i=0

2−ai−1.

(b) If A is Π0
1, then N \A is Σ0

1 and rN\A = 1− rA, so that L(1− rA) is Σ0
1 and

therefore L(rA) is Π0
1.

Exercises

1.8.1. Show that a real number r is computable if and only if there is a com-
putable sequence qn of rationals such that |qn − r| < 2−n for all n.

1.9 Turing, many-one, and truth-table reducibil-
ity

Definition 1.9.1. (i) A is many-one reducible (m-reducible) to B (A ≤m B
if there is a computable function f such that a ∈ A ⇐⇒ f(a) ∈ B

(ii) A is one-one reducible to B (A ≤1 B if there is a one-to-one computable
function f such that a ∈ A ⇐⇒ f(a) ∈ B

(iii) C is m-complete (or Σ0
1 complete) if A ≤m C for all c. e. sets A.

For example, any c. e. set is m-reducible to K0, since m ∈We ⇐⇒ 〈m, e〉 ∈
K0; here the function f is given by f(m) = 〈m, e〉. Thus K0 is m-complete.
The following useful lemma is left as an exercise.

Lemma 1.9.2. If every Σ0
1 (respectively Π0

1) set is m-reducible to A, then A is
not Π0

1 (resp. Σ0
1).
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Example 1.9.3. Let K be a noncomputable c. e. set and let A = {2n : n ∈
K}∪{2n+1 : n /∈ K}. Then A is a difference of c. e. sets and is m-complete for
both Π0

1 and Σ0
1 sets. It follows from Lemma 1.9.2 that A is not Σ0

1, but rA is the
limit of the nondecreasing computable sequence {qs}s∈ω defined as follows. Let
K = ∪sKs where Ks is a uniformly computable finite subset of {0, 1, . . . , s− 1}
and let

qs =
∑
{2−2n−1 : n ∈ Ks}+

∑
{2−2n−2 : n < s & n /∈ Ks}.

Observe that if n ∈ Ks \Ks−1, then 2−2n−1 is added to the first part of qs and
2−2n−2 is subtracted from the second part, so that qs−1 < qs.

Definition 1.9.4. (i) A ≡m B if A ≤m B and B ≤m A.

(ii) A ≡1 B if A ≤1 B and B ≤1 A.

Proposition 1.9.5. Suppose that A ≤m B. If B is c. e., then A is c. e. and if
B is computable, then A is computable.

The proof is left as an exercise.

Definition 1.9.6. A is computably isomorphic to B (written A ≡ B) if there
is a computable permutation π of N such that π[A] = B.

The following is an effective version of the classic Cantor-Schröder-Bernstein
Theorem.

Theorem 1.9.7 (Cantor-Schröder-Bernstein Theorem). Let A and B be sets
and let f and g be injections, f : A → B and g : A → B; then there exists an
isomorphism h : A→ B.

Banach’s version of the Cantor-Schröder-Bernstein Theorem adds the re-
quirement that, for all a ∈ A, either h(a) = f(a) or h(a) = g−1(a).

Theorem 1.9.8 (Myhill Isomorphism Theorem). A ≡ B ⇐⇒ A ≡1 B.

Proof. The direction (=⇒) is trivial. Suppose therefore that A ≤1 B via f and
B ≤1 A via g. We will define π in stages πs = {〈m0, n0〉, . . . , 〈m2s−1, n2s−1〉}
so that for all m < s, m ∈ Dom(πs) and m ∈ Ran(πs) and such that

mi ∈ A ⇐⇒ ni ∈ B.

We begin with π0 = ∅.
Stage s + 1: Let πs be given as above and let m = m2s be the least

m /∈ Dom(πs). π(m) is computed as follows. First compute b0 = f(m) and
check if b0 ∈ Ran(πs). If not, then b0 = πs+1(m). If so, then compute b1 =
f(π−1

s (b0)) and again check whether b1 ∈ Ran(πs) and let b1 = πs+1(m) if
not and b2 = f(π−1

s (b0)) if so. Observe that after we reach b2s−1, Ran(πs) =
{b0, b1, . . . , b2s−1} is exhausted, so that b2s = πs+1(m).

Next let n = n2s+1 be the least not in Ran(πs) ∪ {πs+1(m)} and similarly
define a0 = g(n), a1 = g(πs(a0)), and so on to obtain π−1

s+1(n).
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We now show that, in the setting of m-reduciblity, Banach’s version of the
Cantor-Schröder-Bernstein Theorem is not effective,

Theorem 1.9.9. There exist computable injections f : N → N and g : N → N
such that, for any computable permutation h of N, there is some i such that
h(i) 6= f(i) and h(i) 6= g−1(i).

Proof. Let K be a noncomputable c. e. set and let ψ be a one-one computable
function with range K. We define injections f and g as follows.

(1) f(2m(2n+ 1)) =


2n+ 1, if ψ(m− 2) = n,

2m(2n+ 1), if (∃j < m− 2)ψ(j) = n,

2m+1(2n+ 1), otherwise.

(2) g(2m(2n+ 1) =

{
2m+1(2n+ 1), if (∃j ≤ m− 2)ψ(j) = n,

2m(2n+ 1) otherwise.

Now by way of contradiction, let h be a computable permutation such that,
for all i, either h(i) = f(i) or h(i) = g−1(i). We claim that

n /∈ K ⇐⇒ h(2n+ 1) = 2n+ 1.

This would contradict the assumption that K is not computable. It remains to
verify the claim. Suppose first that n /∈ K. Then g(2n+ 1) = 2n+ 1 and 2n+ 1
is not in the range of f , so that h(2n+1) = g−1(2n+1) = 2n+1. Next suppose
that n ∈ K and let n = ψ(m). Then 2m+2(2n + 1) is not in the range of g, so
h(2m+2(2n+ 1)) = f(2m+2(2n+ 1) = 2n+ 1, so that h(2n+ 1) 6= 2n+ 1.

Let Sent be the set of propositional sentences on variables a0, a1, . . . . There
is a an effective enumeration ψ0, ψ1, . . . of these sentences, so that we may
identify the sentence ψn with n in context. For any set B ⊆ N and any sentence
ψ ∈ Sent, we say that B |= ψ if ψ is true under the truth assignment which
makes ai true if and only if i ∈ B. Let Btt denote the set of ψ ∈ Sent such that
B |= ψ. Then we say that A is truth-table reducible to B (A ≤tt B) if A ≤m Btt.
Equivalently, A ≤tt B if and only if there exists a computable relation R and a
computable function f such that for any n, n ∈ A ⇐⇒ R(〈B � f(n)〉). It is
immediate that many-one reducibility implies truth-table reducibility.

Theorem 1.9.10. (Trakhtenbrot-Nerode [194, 143]) A ≤tt B if and only if
there is a total, computable function Φ : {0, 1}N → {0, 1}N such that Φ(B) = A.

Proof. Suppose first that there is a total computable function Φ such that
Φ(B) = A. We will define a function f : N → Sent such that a ∈ A ⇐⇒
B |= f(a). Given a, use the Master Enumeration Theorem 1.6.5 to compute the
least n such that Φ(a, σ) ↓ for all σ ∈ {0, 1}n. For each σ such that Φ(a, σ) = 1,

let ϕσ be the conjunction
∧n−1
i=0 bi, where bi = ai if σ(i) = 1 and bi = ¬ai if
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σ(i) = 0. Thus B |= ϕσ if and only if, for all i < n, σ(i) = 1 ⇐⇒ i ∈ B.
Finally, let ϕ be the disjunction of {ϕσ : Φ(a, σ) = 1}. Then

a ∈ A ⇐⇒ Φ(a,B) = 1 ⇐⇒ B |= ϕ.

Next suppose that A ≤tt B and let f be given so that a ∈ A ⇐⇒ B |= f(a).
Then in general, define Φ so that

Φ(c,X) = 1 ⇐⇒ X |= f(c)

Here we can compute for each propositional variable ai occuring in f(c), whether
X |= ai immediately from X and then use truth tables to check whether X |=
f(c).

This leads naturally to Turing reducibility, where we allow partial com-
putable functions.

Definition 1.9.11. (i) A is Turing reducible to B (written A ≤T B) if there
is a functional Φ such that, for all m, A(m) = Φ(m,B).

(ii) A is Turing equivalent to B if both A ≤T B and B ≤T A.

(iii) The Turing degree a of A is the equivalence class of A under Turing equiv-
alence.

Informally, this means that A ≤T B if A can be computed using B as an
oracle. It follows from Theorem 1.9.10 that truth-table reducibity implies Turing
reducibility. It is easy to see that ≡T is an equivalence relation. The Turing
degrees are partially ordered by ≤T with least element 0, which is the Turing
degree of a recursive set.

It is possible that A ≤T B but A is not truth-table reducible to B. (See
the exercises below.) However, there is a family of sets B for which the two
reducibilities are equivalent.

Definition 1.9.12. A function g ∈ NN is almost computable (or hyperimmune-
free) if for all f ≤T g, there exists a computable function h such that f(n) ≤ h(n)
for all n.

Theorem 1.9.13. Suppose g is almost computable. Then for all f , if f ≤T g,
then f ≤tt g.

Proof. Suppose that y is almost computable and that f(n) = Φ(n, g) where Φ
is computable. Define u(n) to be the least k such that Φ(n, gdk) ↓. Then u is
computable from g and hence there is a computable function h such that g(n) ≤
h(n) for all n. It follows that f(n) = Φ(n, gdh(n)) for all n, so that Φ can be
extended to a total function Ψ by letting Ψ(n, x) = 0 whenever Φ(n, xdh(n)) ↑.
Hence f is truth-table reducible to g, as desired.

Exercises
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1.9.1. Prove Lemma 1.9.2 and show that A is Σ0
1 complete if and only if K ≤m A.

1.9.2. Prove Proposition 1.9.5.

1.9.3. Show that ≤m and ≤T is transitive.

1.9.4. Show that the two definitions of truth-table reducibility are equivalent.

1.9.5. Give an example to show that A ≤T B but not A ≤tt B. (Hint: let A be
the set of e such that Φe defines a total functional Fe, where y = Fe(x)
means that y(m) = Φe(m,x). Then let e ∈ B ⇐⇒ (e ∈ A & Φe(e,A) =
0).

1.10 The jump and the arithmetical hierarchy

Definition 1.10.1. 1. WA
e = {m : Φe(m,A) ↓}.

2. B is c. e. in A if B = WA
e for some e.

3. The jump of A is KA
0 = {〈e,m〉 : m ∈WA

e } and is denoted by A′.

4. A(n) is the nth jump of A, that is, A(0) = A and A(n+1) = (A(n))′.

The following two theorems generalize from results of Section 1.7 and 1.9.

Theorem 1.10.2. The following are equivalent:

(a) B is c. e. in A;

(b) B = ∅ or B = Ran(φAe ) for some e;

(c) B is ΣA1 .

Theorem 1.10.3. B ≤T A if and only if B and N \B are both c. e. in A.

Theorem 1.10.4 (Jump Theorem). (a) A′ �T A.

(b) B is c. e. in A if and only if B ≤1 A
′.

(c) B ≤T A if and only if B′ ≤1 A
′.

Proof. Parts (a) and (b) relativize from results of sections 1.7 and 1.9. For
part (c), suppose first that B ≤T A and let B(n) = Φb(n,A). Then for any
e, Φe(m,B) = Φe(m,Φ

A
b ) and by Theorem 1.6.9, there is a primitive recursive

function such that Φe(m,B) = Φf(e)(m,A). Thus 〈e,m〉 ∈ B′ ⇐⇒ 〈f(e),m〉 ∈
A′. For the other direction, suppose that B′ ≤1 A

′. Then B and N\B are both
c. e. in A and therefore B ≤T A by Theorem 1.10.3.

In particular, there is an infinite hierarchy of degrees 0(n) = deg(∅(n)).
The arithmetical hierarchy of sets of natural numbers may be defined as

follows.
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Definition 1.10.5. Let R ⊆ Nk × (NN)` and let n > 0 be a natural number.

1. R is Σ0
0 if it is computable.

2. R is Π0
n if Nk × (NN)` \R is Σ0

n.

3. R is Σ0
n+1 if it is the projection of a Π0

n set, that is, if there exists a Π0
n

relation B such that, for all −→m and −→x :

R(−→m,−→x ) ⇐⇒ (∃j)B(j,−→m,−→x ).

4. R is ∆0
n if it is both Σ0

n and Π0
n.

Note of course that the Σ0
1 sets are just the computably enumerable sets.

These definitions can be relativized to any oracle C to define the Σ0
n[C], Π0

n[C]
and ∆0

n[C] sets and relations.
Here are some basic facts about the arithmetical hierarchy. Part (e) refers

to bounded quantification. See [181] for proofs.

Theorem 1.10.6. (a) A ∈ Σ0
n ∪Π0

n and m > n implies A ∈ ∆0
m;

(b) A,B ∈ Σ0
n(Π0

n) =⇒ A ∩B,A ∪B ∈ Σ0
n(Π0

n);

(c) If R ∈ Σ0
n for n > 0 and A = {m : (∃p)R(m, p)}, then R is Σ0

n;

(d) If B ≤m A and A ∈ Σ0
n, then B ∈ Σ0

n;

(e) If R ∈ Σ0
n and A = {〈m, p〉 : (∀i < p)R(i,m, p)}, then A ∈ Σ0

n.

An important result is the following.

Theorem 1.10.7 (Post’s Theorem). For any subset A of N:

(a) A is Σ0
n+1 if and only if it is c. e. in ∅(n).

(b) A is ∆0
n+1 ⇐⇒ A ≤T ∅(n).

Proof. The proofs are by induction on n. For n = 0, both parts are immediate.
Now suppose by induction that (a) and (b) are true for n and for all subsets of
N.

First we show that ∅(n+1) is Σ0
n+1. That is, by induction assume that ∅(n)

is Σ0
n. Then

〈e,m〉 ∈ ∅(n+1) ⇐⇒ (∃s)(∃σ)[σ ⊂ ∅(n) & Φe(m,σ) ↓].

But in general, σ ⊂ C if and only if (∀i < |σ|)[σ(i) = 1 ⇐⇒ i ∈ C], so that for
C = ∅(n), this condition is a disjunction of Σ0

n and Π0
n clauses. It follows that

the quantified condition is ∆0
n+1 and hence ∅(n+1) is Σ0

n+1 by Theorem 1.10.6.

Now suppose that A is c. e. in ∅(n). Then A ≤1 ∅(n+1) and therefore A is
Σ0
n+1.
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Conversely, suppose that A is Σ0
n+1 and let R be Π0

n such that m ∈ A ⇐⇒
(∃p)R(m, p). Then N\R is Σ0

n and hence c. e. in ∅(n−1) by induction. It follows
from the Jump Theorem that N \ R ≤1 ∅(n) and therefore R ≤T ∅(n). Since A
is c. e. in R, it follows that A is also c. e. in ∅(n).

For part (b), A is ∆0
n+1 if and only if both A and N \A are Σ0

n+1, which is

if and only if A and N \ A are c. e. in ∅(n) (by (a)). But this is if and only if
A ≤T ∅(n) by the Jump Theorem.

Definition 1.10.8. A is said to be Σ0
n (Π0

n) complete if A is Σ0
n (Π0

n) and
every Σ0

n (Π0
n) set is m-reducible to A.

It follows from Post’s Theorem that ∅(n) is Σ0
n complete for all n > 0.

∆0
2 sets and functions will be of particular interest.

Definition 1.10.9. Let {fs}s∈ω be a sequence of total functions from NN.

(i) lims fs = f means that, for all m, there exists s such that f(m) = ft(m)
for all t ≥ s;

(ii) h is a modulus of convergence for {fs}s∈ω, if, for all m and all s ≥ h(m),
fs(m) = f(m).

Given a uniformly computable sequence {fs}s∈ω of functions with limit f
and modulus of convergence h, f is always computable in h.

Lemma 1.10.10 (Modulus Lemma). If A is c. e. and f ≤T A, then there is a
uniformly computable sequence {fs}s∈ω such that lims fs = f and a modulus of
convergence h ≤T A.

Proof. Let A = Wi be c. e., let σs = Wi,sds and let f = ΦAe . Now let

fs(m) =

{
Φe,s(m,σs), if convergent,

0, otherwise.

and
h(m) = (least s)(∃z ≤ s)[Φe,s(m,σsdz) ↓ & σsdz = Adz].

Then {fs}s∈ω is a computable sequence with limit f and h is a modulus of
convergence which is computable from A.

In particular, this implies that any ∆0
2 function is the limit of a computable

sequence.

Lemma 1.10.11 (Limit Lemma). f ≤T A′ if and only if there exists an A-
computable sequence {fs}s∈ω such that f = lims fs.

Proof. (=⇒): This follows from the Modulus Lemma relativized to A, since
f ≤T A′ if and only if f is c. e. in A.

(⇐=): Let f = lims fs and let h(m) = (least s)[(∀t ≥ s)ft(m) = fs(m)].
Since {fs}s∈ω is computable in A, it follows that h ≤T A′, so that f ≤T A′ as
well.
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For real numbers, we say that rx is computably approximable if x is ∆0
2, so

that r is computably approximable if and only if it is the limit of a computable
sequence of rationals.

For any ∆0
2 set A, it follows from the Jump Theorem that ∅′ ≤T A′ ≤T ∅′′.

Definition 1.10.12. Let A ≤T ∅′; A is low if A′ = ∅′; A is high if A′ = ∅′′.

Clearly any computable set is low, whereas ∅′ is high. A c.e., noncomputable
low set is constructed in Soare [181] (p. 111).

Exercises

1.10.1. The difference B \ C of two c. e. sets is said to be a d. r. e. set. More
generally, a set C is n-r.e. if there is a computable sequence {As}s∈N
such that A = limsAs and such that (i) A0 = ∅ and (ii) for each m,
card({s : As+1(m) 6= As(m)}) ≤ n. Show that for each n, there is an
(n+ 1)-r.e. set which is not n-r.e.

1.11 The lattice of c. e. sets

The lattice E of c. e. sets is ordered by inclusion and has the natural operations
of union and intersection. The lattice E∗ is the quotient of E under equality
modulo finite difference.

In this section, we consider properties of c. e. sets related to the lattice.

Definition 1.11.1. (i) A set is immune if it is infinite but contains no infi-
nite c. e. set;

(ii) A c. e. set A is simple if N \A is immune.

Simple sets were first constructed by Post [155] as a partial solution to Post’s
Problem, which was to find natural intermediate c. e. degrees. It is easy to see
that simple sets are neither computable nor m-complete.

Definition 1.11.2. Let R be a property of c. e. sets, that is R ⊆ E.

(i) R is lattice-theoretic or invariant in E (E∗) if it is invariant under all
automorphisms of E (E∗).

(ii) R is elementary lattice-theoretic or definable in E (respectively, E∗) if
there is a first-order formula ϕ with one free variable in the language
{≤,∨,∧, 0, 1} of lattice theory such that R(A) if and only if E |= ϕ(A)
(resp. E∗ |= ϕ(A)).

Clearly any definable property is also invariant.

Lemma 1.11.3. The properties of computability and of finiteness are both de-
finable in E.
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Proof. A is computable if and only if

E |= (∃y)[A ∨ y = 1 & A ∧ y = 0].

A is finite if and only if

E |= (∀y)[y ⊆ A −→ A is computable].

In the lattice E∗, A is simple if, for all B 6= 0, A∩B 6= 0. Thus, the property
of being simple is elementary lattice-theoretic in E∗. The following lemma will
imply that simplicity is also definable in E .

Lemma 1.11.4. If a property R is preserved under finite differences, then R is
definable in E if and only if R is definable in E∗.

Proof. Let R be preserved under finite differences. If R is definable in E by a
formula ϕ, then the same formula works in E∗. Suppose next that R is definable
in E∗. Since finiteness is definable in E , the relation =∗ of equality modulo finite
difference is also definable in E . Thus the definition from E∗ may be rewritten
in E∗ by replacing all occurrences of = with =∗.

Definition 1.11.5. (i) If e =
∑k
i=0 ei2

i, then De = {i ≤ k : ei = 1}. (Thus
D0, D1, . . . effectively enumerates the finite sets of natural numbers.)

(ii) A sequence {Fn}n∈N of finite sets is a strong (weak) array if there is a
computable function f such that Fn = Df(n) (Fn = Wf(n)).

(iii) An infinite set B is hyperimmune (h-immune) (respectively, hyperhyper-
immune (hh-immune)) if for any pairwise disjoint strong (respectively,
weak) array, Fn ∩B = ∅ for some n.

(iv) A c. e. set A is hypersimple (h-simple) (respectively, hyperhypersimple
(hh-simple)) if N \A is h-immune (respectively, hh-immune).

It is easy to see that hh-simple implies h-simple and that h-simple implies
simple.

Definition 1.11.6. (i) A function f majorizes a function g if f(n) ≥ g(n)
for all n and f dominates g if f(n) ≥ g(n) for all but finitely many n.

(ii) The principal function pA of an infinite set A is defined by pA(n) = an,
where a0 < a1 < · · · enumerates A is increasing order.

The following result is easy to prove.

Theorem 1.11.7. An infinite set A is hyperimmune if and only if no com-
putable function majorizes pA.
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Dekker used this characterization to show that every nonzero c. e. degree
contains a h-simple (hence simple) set.

A degree a is said to be hyperimmune-free if it does not contain any hyper-
immune sets. A set A is sometimes said to be almost recursive if its degree is
hyperimmune-free, that is, any function computable in A is dominated by some
recursive function.

We will need the following result from Soare [181] (p. 85) in our study of
Π0

1 classes.

Theorem 1.11.8. For any noncomputable c. e. set B, there is a simple, non-
hypersimple c. e. set A ≡T B. Furthermore, for any c. e. set C and any infinite
set D ≤T C, if A ∩D = ∅, then B ≤T C.

Proof. (based on [181], p. 85). The requirements are fourfold:

(i) A is simple;

(ii) A ≤T B;

(iii) A is not hypersimple;

(iv) B ≤T A.

Let f be a one-to-one computable function with rangeB and letBs = {f(0), . . . , f(s)}.
A is enumerated in stages As, beginning with A0 = ∅. Let N \As = {as0 < as1 <
. . . }. There are two actions which may be taken at stage s+ 1.

Step 1. Here we take action to satisfy requirements (i) and (ii). For all e ≤ s,
attention is required if We,s ∩As = ∅ and

(∃n)[n > 3e & n ∈We,s & f(s+ 1) < n].

In this case, put into As+1 the least such n corresponding to e. If no such e
exists, do nothing.

Step 2 Here we take action to satisfy requirements (iii) and (iv) by putting
a3f(s+1)+1 into A.

We show that the requirements are satisfied.
(i) Suppose by way of contradiction that We is infinite and We∩A = ∅. Then

here is an algorithm for testing m ∈ B, that is, find s and n > max{m, 3e}
such that n ∈ We,s; then by Step 1, f(t) ≥ n > m for all t > s, so that
m ∈ B ⇐⇒ m ∈ Bs.

(ii) We claim that Bsdn = Bdn implies Asdn = Asdn. To see this, let m < n
and m ∈ At+1 \ At. Then in Step 1, we have m > f(t + 1), and in Step 2,
we have m = as3f(t+1)+1 > f(t + 1), so that in either case f(t + 1) < n and

f(t+ 1) ∈ Bt+1 \Bt. Thus to test m ∈ A, just compute from B a stage s such
that Bsdm+ 1 = Bdm+ 1 and then m ∈ A ⇐⇒ m ∈ As.

(iii) Note that |A ∩ [0, 3e]| ≤ 2e, since at most e elements ≤ 3e are put into
A under Step 1 (one from each Wi, i < e) and at most e elements under Step 2
(one for each i ∈ B, i < e, since a3f(s+1)+1 = a3i+1 > 3i for i = f(s+ 1) ∈ B).
Thus N \A is majorized by the function 3x and A is not h-simple.
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(iv) To test m ∈ B, use A to compute s such that as3m+1 = limt a
t
3m+1; then

m ∈ B ⇐⇒ m ∈ Bs. Thus B ≤T A.
Now let C be a c. e. set and let D be any infinite set such that D ≤T C and

A ∩D = ∅. Let D = {d0 < d1 < . . . }. By the Modulus Lemma, there exists a
uniformly computable double sequence {dsi}i,s∈N such that lims d

s
i = di for all i

with a modulus of convergence computable in C.
Let s(e) = f−1(e) and use the Recursion Theorem to define a computable

function h(e) such that Wh(e) = ∅ if e /∈ B and otherwise

Wh(e) = {ds(e)0 , d
s(e)
1 , . . . , d

s(e)
3(h(e))}.

We may assume without loss of generality that h(e) > e for all e. Use C to

compute a function r(e) such that d
r(e)
i = di for all i ≤ g(h(e)). Let

B̂ = {e ∈ B : e /∈ Br(e)}.

There are two cases.
Case 1. B̂ is finite. Then clearly B ≤T C.
Case 2. B̂ is infinite. Here is the procedure to test whether b ∈ B using the

function r. First find e ∈ B̂ such that 3(h(e)) > b. Since e ∈ B̂, r(e) < s(e)

and therefore d
s(e)
i = di for all i ≤ g(h(e)), so that Wh(e) ⊆ D ⊆ N \ A. It

follows that Wh(e) contains an element u > 3h(e); let sb be a stage such that
u ∈Wh(e),sk . It follows from Step 1 that f(s) ≥ u > b for all s ≥ sk, so that

b ∈ B ⇐⇒ b ∈ Bsb .

Since sb can be computed from C uniformly in b, it follows that B ≤T C.

We will obtain a lattice-theoretic characterization due to Lachlan [111] of
hhsimple using the following two lemmas. For any c. e. set C, let L(C) denote
the lattice (under inclusion) of c. e. supersets of C.

Lemma 1.11.9. (Lachlan) For any c. e. set C, if L(C) is a Boolean algebra,
then C is hh-simple.

Proof. Suppose that C is not hhsimple as witnessed by the disjoint weak array
{Wf(n)}n∈N and let A = C ∪

⋃
n(Wn∩Wf(n)). Suppose by way of contradiction

that Wn is the complement of A in L(C) and choose m ∈ Wf(n) \ C. Since
m /∈ C, it follows that m ∈ A ⇐⇒ m ∈Wn, a contradiction.

Theorem 1.11.10 (Owings Splitting Theorem). Let C ⊆ B be c. e. sets such
that B \C is not co-c. e. Then there exists disjoint c. e. sets A0 and A1 (whose
indices may be obtained uniformly from those of B and C) such that

(i) B = A0 ∪A1;

(ii) Ai \ C is not co-c.e. for i = 0, 1;
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(iii) For any c. e. set W , if C ∪ (W \B) is not c. e., then C ∪ (W \Ai) is not
c. e. for i = 0, 1.

Proof. Let f be a 1:1 computable function with range B and let {Cs}s∈N be
any computable enumeration of C. We try to meet the requirements

Ps : f(s) ∈ A0,s ∪A1,s, s ∈ N

and

R〈e,i〉 : Ai \ C 6= N \We, for i = 0, 1.

Requirement R〈e,i〉 requires attention at stage s + 1 if f(s + 1) ∈ We,s and
f(s+ 1) ≤ g(e, i, s).

Stage s = 0: Put f(0) ∈ A0 and set g(e, i, 0 = 0 for all e, i.

Stage s+ 1:

Step 1: If there exists x ≤ g(e, i, s) such that x ∈ We,s ∩ (Ai,s \ Cs), set
g(e, i, s+ 1) = g(e, i, s). Otherwise g(e, i, s+ 1) = s+ 1.

Step 2: Let y = f(s+ 1) and choose the least 〈e, i〉 such that R〈e,i〉 requires
attention at stage s + 1. Then put y ∈ Ai,s+1. If no such e, i exist, then put
y ∈ A0,s+1.

Let Ai = ∪sAi,s. Clearly B = A0 ∪A1.

To prove (ii), assume that Ai \ C = N \We. We must show that B \ C is
co-c. e. to obtain a contradiction. For 〈e′, i′〉 < 〈e, i〉, there are two possibilities.
Either lims g(e′, i′, s) = ze′,i′ <∞ so that after some stage s, we never put any
y ∈ Ai for the sake of R〈a,i〉, or lims g(e, i, s) =∞. Let z be the maximum of the
ze′,i′ and choose s0 large enough so that for all 〈e, i〉 of the first type, g(e′, i′, s)
has already converged to ze′,i′ and such that f(s) > z for all s ≥ s0. Define the
c. e. set

Ve = {m : (∃s ≥ s0)[m ∈We,s \Bs & m ≤ g(e, i, s)}.

Now Ve \B = We \B since lims g(e, i, s) =∞, so that in fact N \B ⊆ Ve, that
is, if m /∈ B, then also m /∈ Ai, so that by our assumption, m ∈ We and thus
m ∈ Ve \B.

Also Ve ∩ (B \ C) = ∅ (and hence Ve ⊆ C ∪ (N \ B)) by the following. Let
m ∈ Ve ∩ B and take s ≥ s0 such that m ≤ g(e, i, s) and m ∈ We,s \ Bs. Then
m ∈ B \ Bs so that m = f(t) for some t > s0. Now at stage t+ 1, there exists
〈e′, i′〉 ≤ 〈e, i〉 such that limr g(e′, i′, r) =∞ and m is put into Ai′ at stage t+1.
But m cannot be a permanent witness for 〈e′, i′〉, and therefore m ∈ C.

It follows that

N \ (B \ C) = C ∪ (N \B) = C ∪ Ve.

Theorem 1.11.11. (Lachlan) For any c. e. set C, C is hhsimple if and only
if L(C) is a Boolean algebra.
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Proof. The direction (←−) follows from Lemma 1.11.9. For the other direction,
suppose that B is not complemented in L(C), that is B \C is not co-c. e. Apply
Theorem 1.11.10 to obtain A0 and A1. Let Wg(0) = A0 and apply Theorem
1.11.10 to A1 and C ∩A1 to obtain A1

0 and A1
1. Set Wg(1) = A1

0 and continue in
this fashion to obtain a pairwise disjoint sequence of c. e. sets Wg(n) such that
Wg(n) \ C is not co-c. e. and hence is non-empty for all n. Finally, it is easy
to uniformly define finite subsets Wf(n) ⊆ Wg(n) such that Wf(n) \ C 6= ∅ for
each n. That is, given a c. e. set W = Wg(n) such that W \ C 6= ∅, let Wf(n),s

contain i if i ∈ Ws and (∀j < i)[j ∈ Ws → j ∈ Cs]. (Thus if j ∈ Ws \ C, then
no i > j can enter Wf(n) after stage s, so that Wf(n) is finite, as desired. If j is
the least element of W \C, then j will be put into Wf(n) as soon as all elements
i < j of W have come into C.)

Definition 1.11.12. An infinite set C is cohesive if there is no c. e. set W
such that W ∩ C and C \W are both infinite. A c. e. set A is maximal if for
any c. e. set B ⊇ A, either B is cofinite or B \A is finite.

Thus A is maximal if and only if its complement is cohesive.
From the lattice viewpoint, A is maximal if it is as large as possible in E∗

without being trivial. Friedberg first constructed a maximal c. e. set in [64].
The proof is based on the following notion.

Definition 1.11.13. The e-state of a number m is {i ≤ e : m ∈ Wi} and the
e-state at stage s is {i ≤ e : m ∈Wi,s}.

The e-states are ordered lexicographically so that m has a higher e-state
than n if there is some j < e such that m ∈ Wj but n /∈ Wj and for all i < j,
m ∈ Wi ⇐⇒ n ∈ Wi. Note that, for each e, there are exactly 2e+1 possible
e-states.

Theorem 1.11.14 (Friedberg). There exists a maximal c. e. set A.

Proof. Let σ(e,m, s) denote the e-stage of m at stage s. We define the cohesive
set C in stages Cs so that

Cs = {cs0 < cs1 < · · · <}.

Then ci = lims c
s
i and C = {ci : i ∈ N}.

Initially c0i = i for all i. The construction proceeds in stages with the goal
of making σ(e, ci) ≥ σ(e, cj) for all e < i < j.

At stage s + 1, choose the least e such that for some i with e < i ≤ s,
σ(e, csi , s+1) > σ(e, cse, s+1) For this e, choose the least such i and let cs+1

e = csi .
For j < e, cs+1

j = csj and for all j, cs+1
e+j = csi+j . If no such e exists, then cs+1

i = csi
for all i.

Claim 1: For every e, lims c
s
e = ce exists.

Proof of Claim 1: The proof is by induction on e, so we may suppose that
it holds for all i < e and take s0 so that csi = ci for all i < e and all s ≥ s0.
Then for any s > s0, if cs+1

e > cse, it follows that σ(e, cs+1
e , s + 1) > σ(e, ase, s).
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But there are only 2e+1 different e-states, so this can happen at most 2e+1 − 1
times after stage s0, after which the e-state has converged and cse cannot change
again.

It follows from Claim 1 that C is coinfinite. It is clear from the construction
that c ∈ C ⇐⇒ (∀s)c ∈ Cs, so that C is a co-c. e. set.

Claim 2: For all e ≤ i, σ(e, ce) ≤ σ(e, ci).
Proof of Claim 2: Assume by induction that the Claim holds for all d < e.

Fix e < i and let s be large enough so that csj = cj for all j ≤ i. Suppose by way
of contradiction that σ(e, ce) < σ(ec,i) and choose t > s such that σ(e, ce, t) =
σ(e, ce) and σ(e, ci, t) = σ(e, ci). Then at stage t+ 1, the construction will force
ct+1
e 6= cte, a contradiction.

Claim 3: For each e, there is some ke such that for all i, j ≥ ke, ci ∈ We if
and only if cj ∈We.

Proof of Claim 3: Note that since the e-state of any c is an initial segment
of the i-state for any i ≥ e it follows that for e ≤ i < j, σ(e, ci) ≥ σ(e, cj).
Since there are only finitely many e-states, there must be some ke such that
σ(e, ci) = σ(e, cj) for all i, j ≥ ke. Claim 3 now follows.

Claim 4: For all e, either C ∩We is finite are C \We is finite.
Proof of Claim 4: Fix e and suppose that We ∩ C is infinite. Then there

must be some i ≥ ke such that ci ∈ We. It follows from Claim 3 that cj ∈ We

for all j ≥ ke, so that C \We ⊆ {c0, . . . , cj−1} is finite.

Martin proved the following result connecting high degrees and maximal sets
in [130].

Theorem 1.11.15. (Martin) A degree d is high if and only if there exists a
maximal c. e. set A of degree d.

Exercises

1.11.1. Prove Theorem 1.11.7.

1.11.2. Show that any hypersimple set is simple.

1.11.3. Prove that any maximal set must have high degree. Hint: Show that the
principal function pa is dominant, that is, for any computable function f ,
f(m) ≤ pa(m) for almost all m.

1.12 Computable ordinals and the analytical hi-
erarchy

Definition 1.12.1. (i) A relation P is said to be Π1
0 (and also Σ1

0) if P is
arithmetical.

(ii) A relation P is said to be Π1
n+1 if there is a Σ1

n relation R such that

P (−→m,−→x ) ⇐⇒ (∃y)R(−→m,−→x , y).
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(iii) A relation S is Σ1
n if the complement if Π1

n.

(iv) S is ∆1
n if it is both Σ1

n and Π1
n.

The relativized notions of Σ1
n[z] and Π1

n[z] are similarly defined. A relation
is said to be analytic (resp. coanalytic, Borel) if it is Σ1

1[z] (resp. Π1
1[z], ∆1

1[z])
for some z.

In this section, we will focus on Σ1
1 and Π1

1 sets and relations.
We first need to consider normal forms for Σ0

1, Π0
1, Σ1

1 and Π1
1 relations and

their connection with trees.
Recall that a relation S ⊆ Nk×NN` is Σ0

1 provided that there is a computable
relation R such that S(−→m,−→x ) ⇐⇒ (∃n)R(n,−→m,−→x ).

Proposition 1.12.2. A relation S ⊆ Nk × NN` is Σ0
1 provided that there is a

computable relation A such that S(−→m,−→x ) ⇐⇒ (∃n)A(−→m,−→x dn).

Proof. Given the computable relation R from the definition, we know from the
Use Principle (Theorem 1.6.6) that if R(n,−→m,−→x ), then there is some maximum
use u of each −→x so that R(n,−→m,−→x du) and then we can let A(−→m,−→x du) if (∃n <
u)R(−→m,−→x du).

For simplicity, we will now consider Π0
1, and more generally, closed sets of

reals. A Π0
1 subset of NN is also called an effectively closed set.

xxx – put this in an earlier section – xxx
A subset T of N∗ is said to be a tree if it is closed under initial segments.

Proposition 1.12.3. P ⊆ NN is closed if and only if there is a tree T ⊆ N∗
such that P = [T ].

zzzz
xxx

Lemma 1.12.4. For any coanalytic relation S, there is a relation R such that

S(−→m,x) ⇐⇒ (∃y)(∀n)R(ydn,−→m, cdn).

If S is Σ1
1, t hen R may be taken to be computable.

Proof. It is clear that the family of relations expressible in this form includes the
computable relations and it will suffice to show that this family is closed under
number quantification and under existential function quantification. Given S in
this form,

(∃i)S(i,−→m,−→x ) ⇐⇒ (∃z)(∀n)R(z(0), 〈z(1), . . . , z(n)〉,−→m,−→x ).

Also

(∀i)S(i,−→m,−→x ) ⇐⇒ (∃z)(∀n)R(i, 〈z(2i), . . . , z(2i(2n+ 1))〉,−→m,−→x ).

Finally,

(∃u)S(−→m,−→x , u) ⇐⇒ (∃z)(∀n)R(〈z(1), . . . , z(2n− 1)〉,−→m,−→x , (z(0), z(2), . . . )).
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There are two classic examples here.

Example 1.12.5. A set A ⊆ N may code a partial ordering ≤A, where m ≤A
n ⇐⇒ 〈m,n〉 ∈ A. Also, we write m <A n ⇐⇒ m ≤A n & ¬n ≤A m.

WO = {A :≤A is a well-ordering}.

Let LO be the set of linear orderings. It is easy to see that LO is Π0
1. Note for

example that ≤A is transitive if and only if

(∀i)(∀j)(∀k)[(i ≤A j & j ≤A k)→ i ≤A k)],

which is a Π0
1 condition. Now a linear ordering is a well-ordering if and only if

it is well-founded, that is, has no infinite descending chain. Thus WO is a Π1
1

class, since ≤A is well-founded if and only if

(∀x)[(∀m)(x(m+ 1) ≤A x(m))→ (∃m)(x(m) ≤A x(m+ 1))].

We similarly define the Π0
1 class

PWO = {A :≤A is a pre-well-ordering}.

We may also define the following Σ1
1 relation A - (≺)B to mean that ≤B is

a (pre)-linear ordering and ≤A is isomorphic to a (proper) subordering of ≤B.
Here the subordering property can be expressed as

(∃x)(∀p)(∀q)[p ≤A q ⇐⇒ x(p) ≤B x(q)].

For the proper subordering add the following clause

(∃r)(∀p)(x(p) <B r).

Observe that if ≤A and ≤B are linear orderings and B ∈WO and A - B, then
A ∈WO. A similar result holds for pre-orderings.

The order type ‖R‖ of a well-ordering in WO is the unique ordinal ρ such
that (Fld(R),≤R) is isomorphic to the standard ordering (ρ,∈), where Fld(R) =
dom(R) ∪ ran(R). For a pre-well-ordering, the norm ‖R‖ of R is the unique
ordinal α such that there is an order-preserving map from Fld(R) onto α.

In a certain sense, the ordering relation - on WO is ∆1
1. Let ‖A‖ = ℵ1 if

A /∈WO.

Lemma 1.12.6. For any linear orderings A and B, if A /∈WO and B ∈WO,
then ¬A - B.

Proof. Suppose that f were an embedding of A into B and let a0 >A a1 > · · ·
be a descending chain in A. Then f(a0) >B f(a1) >B · · · , so that A /∈WO.

The following are left as exercises.

Lemma 1.12.7. For A,B ∈WO:
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(i) Either A - B ∨B ≺ A;

(ii) A - B if and only if ‖A‖ ≤ ‖B;

1. (iii) A ≺ B if and only if ‖A‖ < ‖B;

Theorem 1.12.8 (Prewellordering Theorem). For all pre-linear orderings A
and B, if either A or B is in WO, then

(i) A - B ∨ B /∈ WO ⇐⇒ [A ∈ WO & ‖A‖ ≤ ‖B‖] ⇐⇒ ¬B - A & B ∈
WO;

(ii) A ≺ B ∨ B /∈ W ⇐⇒ [A ∈ WO & ‖A‖ < ‖B‖] ⇐⇒ ¬B ≺ A & A ∈
WO.

A related example is the following.

Example 1.12.9. T ⊆ N is said to be a tree if {σ ∈ N∗ : 〈σ〉 ∈ T} is closed
under initial segments.

Then the set WF of well-founded trees is Π1
1 since

T ∈WF ⇐⇒ (∀x)(∃n)xdn /∈ T.

An ordinal may be associated with a well-founded tree by means of the Brouwer-
Kleene linear ordering ≤KB on N∗, where

σ ≤KB τ ⇐⇒ (τ � σ) ∨ (∃j)[σ(j) < τ(j) & (∀i < j)σ(i) = τ(i)].

Now given a well-founded tree T , let

F (T ) = {〈〈σ〉, 〈τ〉〉 : σ ∈ T & τ ∈ T & σ ≤KB τ}.

Lemma 1.12.10. T is a well-founded tree if and only if F (T ) is a well-ordering.

Proof. It is easy to see that ≤KB is a linear ordering on N∗ (see the exercises).
If T is not well-founded, then there is an infinite path y through T and {ydn :
n ∈ N} provides an infinite descending ≤KB chain in F (T ). On the other hand,
suppose that F (T ) is not well-founded and let {σi}i∈ω be a descending ≤KB
chain in F (T ). Then we can define by recursion an infinite path through T .
For all i > 0, |σ| > 0 and σi+1(0) ≤ σi(0) since σi+1 ≤KB σi. Thus y(0) =
limi σi(0) exists. Now if σj(0) = y(0), then we have σj+1(1) ≤ σj(1), so that
y(1) = limi σi(1) also exists. Proceeding by recursion we can define a sequence
y(n) = limi σi(n). Now for each n, there is some j such that y(i) = σj(i) for all
i < n, so that ydn � σj and therefore ydn ∈ T for all n.

For a computable well-founded tree, F (T ) is of course a computable ordinal,
since ≤KB is a computable relation.

The well-ordering F (T ) of a well-founded tree T is closely related to the rank
rk(T ), defined inductively as follows.
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Definition 1.12.11. For any non-empty well-founded tree T ⊆ N∗ and any
σ ∈ T , the rank rkT (σ) of σ ∈ T is given by

rkT (σ) = sup{rkT (σ_i) + 1 : σ_i ∈ T}.

Then the rank rkt(T ) = rkT (∅). If T is not well-founded, then ht(T ) =∞.

Lemma 1.12.12. For any non-empty well-founded tree T , rk(T ) ≤ ‖F (T )‖ ≤
ωrk(T ) + 1.

Proof. These inequalities are proved by induction on rk(T ). For the base case,
rk(T ) = 0 if and only if T = {∅}, which is if and only if ‖F (T )‖ = 1. Now for
rk(T ) > 0, the ordering F (T ) consists of ω blocs T ((0)), T ((1)), . . . followed by
the largest element ∅. By induction rk(T ((i))) ≤ ‖F (T ((i))‖ ≤ ωrk(T ((i))) + 1
for each i. The first inequality is immediate. For the second, we have

‖F (T )‖ ≤ (ωrk(T ((0))) + 1 + ωrk(T ((1))) + 1 + . . . ) + 1.

There are two cases.
(Case 1): There is a fixed m such that rk((T ((i))) ≤ rk(T ((m))) for each i,

so that rk(T ) = rk(T ((m))) + 1 = α+ 1. Then ‖F (t((m)))‖ ≤ ωα + 1 for each
m and hence

‖F (T )‖ ≤ ω · ωα + 1 ≤ ωα+1 + 1.

(Case 2): There is no maximum rk(T ((m))). Let rk(T ) = α and, for each m,
let rk(T ((m))) = αm, so that α = sup{αn : n ∈ N}. For each m, there exists
n > m such that αi < αn for all i < n and thus

‖F (T ((0)))‖+‖F (T ((1)))‖+· · ·+‖F (T ((n)))‖ ≤ ωα0+1+· · ·+ωαn = ωαn < ωα,

so that
‖F (T )‖ ≤ ωα + 1 = ωrk(T ) + 1.

The next result follows from the Enumeration Theorem 1.6.5.

Theorem 1.12.13. For each n, there is universal Π1
n+1 and a universal Σ1

n+1

set of numbers.

The sets WO and WF are both many-one complete for Π1
1 sets. To see this,

we first need a normal form for Σ1
1 and Π1

1 relations.

Definition 1.12.14. An ordinal α is computable if there is a computable well-
ordering A such that ‖A‖ = α. W = {e : φe = χA for some A ∈ WO} and
PW = {e : φe = χA for some A ∈ PWO}. The least noncomputable ordinal
is denoted by ωCK1 or just ω1.

Later on, we will need the concept of a system of notations for a computable
ordinal.
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Definition 1.12.15. A system of notations for a computable ordinal α is a map
o from ω \ {0} to κ+ 1 such that each of the following relations is recursive:

(i) o(a) is a limit ordinal;

(ii) o(b) = o(a) + 1;

(iii) o(a) < o(b).

Lemma 1.12.16. Any computable ordinal α possesses a system of notations.

Proof. Note that a computable well-ordering induces a mapping from ω → κ
with property (iii) but not with the other two properties. First observe that the
computable ordinals form an initial segment of the ordinals (See the exercises.)

Now let α be an infinite countable ordinal and let λ be the largest limit
ordinal < α. Let λ = ω · γ and α = λ+ n for some ordinal γ and some finite n.
Let ≤G denote a computable well-ordering of type γ with domain G ⊆ ω and
let a ∈ G such that |a|G = γ. Let

C = {〈g, i〉 : g ∈ G & i ∈ N & (a = λ → i ≤ n)}.

C is an infinite computable set, so computably isomorphic to ω. Thus it suffices
to define the desired map o from C to α by

o(〈g, i〉) = ω · |g|G + i.

To verify that this defines a system of notations, observe that for a = 〈g, i〉 and
b = 〈h, j〉 in C,

(i) o(a) is a limit ordinal if and only if i = 0.

o(b) = o(a) + 1 if and only if g = h and j = i+ 1.

o(a) < o(b) if and only if either g = h and i < j or if g <G h.

Theorem 1.12.17. For all relations P , P is Π1
1 if and only if P ≤m WO,

which is if and only if P ≤m WF . Furthermore, if P ⊆ N, then P is Π1
1 if and

only if P ≤m W .

Proof. It is clear that the Π1
1 relations are closed under ≤m, which gives one

direction. Now let R be Π1
1 and let P be a computable relation so that

P (−→m,−→x ) ⇐⇒ (∀y)(∃n)R(ydn,−→m,−→x ).

We may assume without loss of generality that

R(τ,−→m,−→x ) & σ � τ → R(σ,−→m,−→x ).
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by using bounded quantification if necessary. Then we may define a computable
functional F such that

F (−→m,−→x ) = {σ : ¬R(σ,−→m,−→x )},

and we claim that
P (−→m,−→x ) ⇐⇒ F (−→m,−→x ) ∈WF.

It is clear that a witness y to the fact that ¬P (−→m,−→x ) will also be a witness to
the fact that F (−→m,−→x ) is not well-founded, and vice versa. Thus P ≤m WF .

It remains to check that WF ≤m WO. It follows from Lemma 1.12.10
that T is well-founded if and only if F (T ) is a well-ordering. Now for P ⊆ N,
let F be a computable function such that m ∈ P ⇐⇒ Rm ∈ WO, where
Rm(p) ⇐⇒ F (p,m) = 1 and otherwise F (p,m) = 0. Let f be a computable
function such that φf(m)(p) = F (p,m). Then m ∈ P ⇐⇒ f(m) ∈W .

The proof of this theorem also shows that PWO is also m-complete for Π1
1

sets.

Corollary 1.12.18. None of the sets W , PW , WO, PWO and WF are Σ1
1.

Proof. Since these sets are m-complete, if they were Σ1
1, then all Π1

1 sets would
be Σ1

1. (See exercise 4 below.

Theorem 1.12.19 (Selection Theorem). Any Π1
1 relation R has a partial se-

lection function SelR with a Π1
1 graph such that

(∃n)R(n,−→m,−→x ) ⇐⇒ R(SelR(−→m,−→x ),−→m,−→x ) ⇐⇒ SelR(−→m,−→x ) ↓ .

Proof. Let R be reducible to W by the function F and let

SelR(−→m,−→x ) = b ⇐⇒ R(b,−→m,−→x ) & (∀a)[F (a,−→m,−→x ) � F (b,−→m,−→x )→ b ≤ a].

Theorem 1.12.20 (Boundedness Theorem). (Spector, [184])

(i) If S is a Σ1
1 subset of PWO, then sup{‖A‖ : A ∈ S} < ω1;

(ii) If S is a Σ1
1 subset of PW , then sup{‖φe‖ : e ∈ S} < ω1.

Proof. Suppose that S were a counterexample to (i). Then

e ∈W ⇐⇒ (∃c)[c ∈ S & φe � φc],

contradicting Corollary 1.12.18.
If S were a counterexample to (ii), then {φc : c ∈ S} would be a counterex-

ample to (i).

Let WOα = {R ∈ WO : ‖R‖ < α} and Wα = {c : φc ∈ WOα}. Similarly,
PWOα = {R ∈ PWO : ‖R‖ < α} and PWα = {c : φc ∈ PWOα}
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Theorem 1.12.21. For all R ⊆ Nk × NNl,

(i) R is ∆1
1 if and only if R ≤m WOα for some α < ω1.

(ii) R is ∆1
1 if and only if R ≤m Wα for some α < ω1.

Proof. Let B ∈WO such that ‖B‖ = α. Then

A ∈WOα ⇐⇒ A - B ⇐⇒ (A ∈WO & ¬(B - A).

Thus WOα is ∆1
1.

Now let R ⊆ N be ∆1
1, let F be a computable functional such that R(x) ⇐⇒

F (x) ∈WO and define the Σ1
1 set Q by

Q = {F (x) : R(x)}.

Then Q ⊆WO, so by the Boundedness Theorem, there exists α < ω1 such that
Q ⊆WOα.

The proof of (ii) is similar.

Here is a surprising corollary to the Boundedness Principle.

Theorem 1.12.22. (i) For any Σ1
1 pre-well-ordering relation R, ‖R‖ < ω1;

(ii) There is a Π1
1 well-ordering of order type ω1.

Proof. (i) Let ‖R‖ = α. Then A ∈ Wα+1 ⇐⇒ A - R and it is easy to see
that this is a Σ1

1 definition of Wα+1, implying that α < ω1 by the Boundedness
Principle.

(ii) Define the Π1
1 set W ∗ to contain a unique index c with ‖φc} = α for each

α < ω1. That is,

c ∈W ∗ ⇐⇒ c ∈W & (∀d < c)[¬φc - φd ∨ ¬φd - φc].

Then let
R(c, d) ⇐⇒ c ∈W ∗ & d ∈W ∗ &¬φd - φc.

Exercises

1.12.1. Show that the computable ordinals form an initial segment of the count-
able ordinals.

1.12.2. Show that the property of coding a linear ordering is in fact Π0
1.

1.12.3. Show that the Brouwer-Kleene ordering is a linear ordering.

1.12.4. Prove the Enumeration Theorem 1.12.13 for Π1
1 sets and show that the

universal Π1
1 set cannot be Σ1

1.

1.12.5. Prove Theorem 1.12.8.

1.12.6. The definition of a computable ordinal may be relativized to computability
from a fixed oracle A. Give appropriate definitions for WA and ωA1 and
prove relativized versions of Theorems 1.12.20, 1.12.21 and 1.12.22.
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1.13 Inductive Definability

Inductive definitions play a fundamental role in many areas of mathematics.
We have already seen that the set of computable functions is defined induc-
tively and of course the set of terms and formulas of a given language are also
defined inductively. The formal notion of inductive definability was first given
by Spector [186] and is fully developed by Moschovakis in his book [141].

An operator Γ over a set X is a a function from P(X) to P(X). Γ is said to
be inclusive if Y ⊆ Γ(Y ) for all Y ⊆ X. Γ is said to be monotone if Γ(Y ) ⊆ Γ(Z)
for all Y ⊆ Z ⊆ X. Γ is said to be inductive if it is either inclusive or monotone.
The operator Γ inductively defines a subset Cl(Γ) as follows. A sequence Γα of
subsets of X is defined recursively by Γ0 = ∅, Γα+1 = Γ(Γα) and Γλ =

⋃
β<λ Γβ

for limit ordinals λ. The closure of Γ is Cl(Γ) =
⋃
α Γα. A set Y is said to be a

fixed point of Γ if Γ(Y ) = Y .

Lemma 1.13.1. For any inductive operator Γ,

(i) For any ordinal α, if Γα+1 = Γα, then Γβ = Γα = Cl(Γ) for all β ≥ α.

(ii) There exists α such that Card(α) ≤ Card(X) such that Γα+1 = Γα.

Proof. (i) is easily proved by induction on β.
For (ii), let κ be a cardinal and suppose that Γα+1 \ Γα is non-empty for all

α < κ. Then clearly Card(κ) ≤ Card(Γκ) ≤ Card(X).

Now we can define the closure ordinal |Γ| of Γ to be the least ordinal α such
that Γα+1 = Γα. The following is immediate.

Corollary 1.13.2. For any inductive operator Γ over X, Card(|Γ|) ≤ Card(X)
and Cl(Γ) = Γ|Γ|.

In particular, for X = N, |Γ| < ℵ1.

Example 1.13.3. The Π1
1 set W can be given by a Π0

1 monotone inductive
definition. First define the computable function ν so that φν(c,n) defines a re-
striction of φc to elements below n in the following sense. Recall that i ≤c j
means that φc(i, j) = 1 and i <c j means that i ≤c j but not j ≤c i. Let

φν(c,n)(i, j) =

{
φc(i, j), if j <c n

0, otherwise.

Now let
c ∈ Γ(A) ⇐⇒ Wc = ∅ ∨ (∀n)ν(c, n) ∈ A

It is clear that c ∈ Γ1 if and only if Wc = ∅, which is if and only if c ∈ W
and ‖c‖ = 0. It follows by induction that c ∈ Γm+1 ⇐⇒ ‖c‖ ≤ m and hence
c ∈ Γω ⇐⇒ ‖c‖ < ω and in general, c ∈ Γα ⇐⇒ (c ∈W & ‖c‖ < α).

Thus we see that |Γ| = ω1 and Cl(Γ) = W .

Note that Cl(Γ) is a fixed point of Γ.
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Theorem 1.13.4. For any monotone operator Γ over a set X, Cl(Γ) is the
least fixed point of Γ, that is,

x ∈ Cl(Γ) ⇐⇒ (∀Z)[Γ(Z) = Z → x ∈ Z].

Proof. Let U = {x : (∀Z)[Γ(Z) = Z → x ∈ Z]}. Then x ∈ U implies x ∈ Cl(Γ),
since Z = Γ satisfies Γ(Z) = Z. For the other direction, let Z be any set such
that Γ(Z) = Z. It can be seen by induction that Γα ⊆ Z for all α. That
is, certainly Γ0 = ∅ ⊆ Z. Then supposing Γα ⊆ Z, we have Γα+1 = Γ(Γα ⊆
Γ(Z) = Z. Finally, if Γβ ⊆ Z for all β < λ, then Γλ ⊆ Z. It follows that
Γα ⊆ U for all α and hence Cl(Γ) ⊆ U .

The monotone operator Γ is said to be finitary if for all x and Y , if x ∈ Γ(Y ),
then there is a finite Z ⊆ Y such that x ∈ Γ(Z). For example, the operator
which defines the set of formulas of propositional logic is finitary, since each new
formula is generated by either one or two previously generated formulas.

Lemma 1.13.5. If Γ is a finitary monotone operator on X, then |Γ| ≤ ω.

Proof. Suppose x ∈ Γ(Γω) and let Z ⊆ Γω be a finite set such that x ∈ Γ(Z).
Then there exists n < ω such that Z ⊆ Γn and hence x ∈ Γn+1. Thus Γω+1 =
Γω.

The complexity of an operator Γ on N is given by the complexity of the
relation {〈m,A〉 : m ∈ Γ(A)}. We will also consider operators on N with real
parameters. That is, for example, a family {Γx : x ∈ NN} of operators over N
will be computable if {〈m,x,A} : m ∈ Γx(A)} is a computable relation.

Lemma 1.13.6. Any Σ0
1 operator is finitary.

Proof. Let Γ be a Σ0
1 operator and let R be a computable relation so that

m ∈ Γ(A) ⇐⇒ (∃k)R(m,Adk).

Suppose m ∈ Γ(A) and let k be given as above so that R(m,Adk). Now let
Z = {i : i < k & i ∈ A}. Then R(m,Zdk) so that m ∈ Γ(Z).

Theorem 1.13.7. If Γ is a Σ0
1 monotone operator over N, then |Γ| ≤ ω and

Cl(Γ) is a c. e. set.

Proof. Let Γ be a Σ0
1 operator and let R be a computable relation so that

m ∈ Γ(A) ⇐⇒ (∃k)R(m,Adk).

It follows from lemmas 1.13.5 and 1.13.6 that |Γ| ≤ ω.
For the closure, we have the following
CLAIM: m ∈ Γ(We) ⇐⇒ (∃k, s)R(m,We,sdk).
Proof of Claim: If m ∈ Γ(We), then (∃k)R(m,Wedk) and thus R(m,We,sdk)

where s is large enough so that We,sdk = Wedk. If R(m,We,sdk), then m ∈
Γ(We,s) and since Γ is monotone, m ∈ Γ(We).
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It follows that there is a computable function φ such that Γ(We) = Wφ(e).
Now we can recursively define a function ψ such that Γn = Wψ(n) by letting
ψ(0) = 0 and then ψ(n + 1) = φ(ψ(n)). Finally, we have m ∈ Cl(Γ) ⇐⇒
(∃n)m ∈Wψ(n).

Theorem 1.13.8. For any n > 0 and any Π1
n monotone operator Γ over N,

Cl(Γ) is Π1
n.

Proof. By the improved version of Theorem 1.13.4 (see Exercise 1 below), we
have

m ∈ Cl(Γ) ⇐⇒ (∀Z)[Γ(Z) ⊆ Z → m ∈ Z]

⇐⇒ (∀Z)[(∀m)(m ∈ Γ(Z)→ m ∈ Z)→ m ∈ Z],

which is a Π1
1 definition.

In particular, the closure of any Π0
1 monotone operator is Π1

1. This can be
reversed up to many-one reduction.

Theorem 1.13.9. For any Π1
1 P ⊆ N×NN, there is a uniformly Π0

1 monotone
operator Γx and a computable function f such that

P (m,x) ⇐⇒ f(m) ∈ Cl(Γx).

Proof. Let R be a computable relation such that

P (m,x) ⇐⇒ (∀y)(∃k)R(m, ydk, x).

Let
〈m,σ〉 ∈ Γx(A) ⇐⇒ R(m,σ, x) ∨ (∀n)〈m,σdn〉 ∈ A.

Then it is easy to check that P (m,x) ⇐⇒ 〈m, ∅〉 ∈ Cl(Γx).

Theorem 1.13.10. For any Π0
1 inductive operator Γ, |Γ| ≤ ω1 and Cl(Γ) is

Π1
1.

Proof. Let R be a computable relation so that, for all m and A,

m ∈ Γ(A) ⇐⇒ (∀k)R(m,Adk).

We want to uniformly define the levels Γα of the inductive definition Γ as
follows. Let i <c j denote φc(i, j) = 1 & φc(j, i) = 0, so that if c ∈W and φc is
the characteristic function of the set C, then i <c j means that i <C j; we also
let ‖i‖c = ‖i‖C . Now define

S(c, P ) ⇐⇒ (∀m, i)(P (m, i) ⇐⇒ (∃j)[j <c i & m ∈ Γ({n : P (n, j)})]).

It follows by induction that if c ∈W and S(c, P ), then, for all i ∈ Fld(R),

P (m, i) ⇐⇒ m ∈ Γ‖i‖c .
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Now we have

m ∈ Γω1 ⇐⇒ (∃i, c)[c ∈W & (∀P )(S(c, P ) → P (m, i))].

Thus Γω1 is a Π1
1 set, which we denote as Q. For each c ∈ W , let Qc denote

Γ‖c‖, so that as above, we have a Π1
1 definition

m ∈ Qc ⇐⇒ (∃i)(∀P )[S(c, P ) → P (m, i)],

and we also have a Σ1
1 definition

m ∈ Qc ⇐⇒ (∃i, P )[S(c, P ) & P (m, i)].

We note that this part of the argument applies to any ∆1
1 operator.

It remains to show that Γ(Q) ⊆ Q. Suppose therefore that m ∈ Γ(Q), so
that

(∀k)R(m,Qdk).

and define the Σ1
1 set V by

a ∈ V ⇐⇒ (∃k)(∀c)[(c ∈W & R(m,Qc))→ φa - φc].

It follows that V ⊆ W and hence sup{‖φa‖ : a ∈ V } = α < ω1. Then
(∀k)R(m,Γαdk), so that m ∈ Γα+1 and thus m ∈ Q.

A natural problem in connection with Theorem 1.13.4 is the nature of the
family of fixed points of an inductive operator. Of course we have Γ(N) = N by
the assumption that X ⊆ Γ(X), so that we will not have a unique fixed point.
However, we can refine the previous result to show that

The Boundedness Principle for inductive definability is needed for the analy-
sis of the Cantor-Bendixson derivative in Chapter 4. The following prewellorder-
ing theorem for inductively definable sets is due to Kunen; see [141], p. 27.

The prewellordering associated with any inductive operator Γ is induced by
the following norm:

|x|Γ =

{
(least α)x ∈ Γα+1, if x ∈ Cl(Γ),

∞, otherwise.

The following Stage Comparison Theorem is due independtly to P. Aczel
and K. Kunen; see [141] for a more general result.

Theorem 1.13.11. Let ∆ be a ∆1
1 monotone inductive operator. Then the

following relations are both Π1
1.

R(m,n) ⇐⇒ |m|∆ ≤ |n|∆ & m ∈ Cl(∆);

S(m,n) ⇐⇒ |m|∆ < |n|∆ & m ∈ Cl(∆).
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Proof. Define a ∆1
1 monotone operator Λ by

(0,m, n) ∈ Λ(A) ⇐⇒ m ∈ ∆({i : 1, i, n) ∈ A});
(1,m, n) ∈ Λ(A) ⇐⇒ n /∈ ∆({j : (0,m, j) /∈ A}).

It can be checked that R(m,n) ⇐⇒ (0,m, n) ∈ Cl(Λ) and S(m,n) ⇐⇒
(1,m, n) ∈ Cl(Λ).

Theorem 1.13.12. For any ∆1
1 monotone inductive operator ∆ and any Σ1

1

set A ⊆ Cl(∆), there is a computable ordinal α such that A ⊆ ∆α.

Proof. Let A be a Σ1
1 subset of Cl(∆) as described. Then by Theorem 1.13.11,

the prewellordering RA defined by

RA(m,n) ⇐⇒ |m|∆ ≤ |n|∆ & n ∈ A

is a Σ1
1 prewellordering. It now follows from Theorem 1.12.22(a) that |RA| <

ωCK1 .

Corollary 1.13.13. For any ∆1
1 monotone inductive operator ∆, |∆| ≤ ωC−K1 .

Exercises

1.13.1. Improve Theorem 1.13.4 by showing that Cl(Γ) =
⋂
{Z ⊆ X : Γ(Z) ⊆ Z}.

1.13.2. Show that a non-monotone Σ0
1 operator need not have a Σ0

1 closure and
in particular can have a Π0

n complete closure for any n.

1.13.3. Show that a non-monotone Π0
2 operator may have a closure which is not

Π1
1.

1.13.4. Show that there is a Σ0
1 inductive operator Γ such that the set of true

sentences of arithmetic is many-one reducible to Cl(Γ).

1.13.5. Show that if Γ is a ∆1
1 inductive operator and A ⊆ Γω1 is Σ1

1, then for
some α < ω1, A ⊆ Γα. Then show that if Γ is Π0

1, then Cl(Γ) is ∆1
1 if and

only if |Γ| < ω1.

1.14 The hyperarithmetical hierarchy

In our study of the Cantor-Bendixson derivative D(P ) of a Π0
1 class P , we will

see that the iterated derivative Dα(P ) for an infinite, computable ordinal α
is a hyperarithmetical, or effectively Borel set. Since index sets for Π0

1 classes
and for hyperarithmetical sets will be important in this work, we will present
a definition of the hyperarithmetical sets based on indices. This approach is
based on that given by Hinman ([80], p. 163).

Informally, a set is Σ0
ω if it is the union of an effective sequence An of

arithmetical sets and more generally a set is Σ0
λ for a computable ordinal λ if
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it is the union of an effective sequence of sets, each of which is Σ0
α for some

α < λ. As for the arithmetical hierarchy, a set is Π0
α if its complement is Σ0

α

and is Σ0
α+1 if it is the union of an effective sequence of Π0

α sets.
The following is an inductive definition of the hyperarithmetic sets He, taken

essentially from Hinman ([80], p. 163).
First we define a set of ordinal notations.

Definition 1.14.1. H is the smallest subset of N such that for all a,

(i) 〈7, a〉 ∈ H;

(ii) if φa(n) ∈ H for all n, then a ∈ H.

We observe that H is the closure of a Π0
1 monotone inductive operator ΓH

and thus each a ∈ H is assigned an ordinal α = ‖a‖H so that a ∈ Hα+1 −Hα.
It follows from Theorem 1.13.8 that H is Π1

1 and that each ordinal ‖a‖H is
computable.

Then each a ∈ H is assigned a hyperarithmetic set by the following. (For
a /∈ H, we let Ha = ∅.)

Definition 1.14.2. Let a ∈ H. Then

(i) If a = 〈7, b〉, then Ha = Wb;

(ii) if φa is total, then Ha = ∪nN \Hφa(n).

For example, let B be a Σ0
2 set and let R be a computable relation such that

i ∈ B ⇐⇒ (∃n)(∀m)R(i,m, n). Let An = {(i,m) : ¬(∀m)R(i,m, n) so that
B = ∪nN \ An. Let ψ(i,m) = (least n)¬R(i,m, n) and define φ by the s-m-n
Theorem so that φφ(m)(i) = ψ(i,m). Then An = Wφ(m) for each n, so that if
φa(m) = 〈7, φ(m)〉, then Ha = B.

A subset of N is said to be hyperarithmetical if it equals Ha for some index
a ∈ H. The hyperarithmetical hierarchy is defined as follows.

Definition 1.14.3. For all α and all A ⊆ N,

(i) A is Σ0
α if A = Ha for some a ∈ Hα;

(ii) A is Π0
α if N \A is Σ0

α;

(iii) ∆0
α = Σ0

α ∩Π0
α.

It follows that for limit ordinals λ, A is Σ0
λ if and only if A is Σ0

α for some
α < λ. It is easy to see that this definition agrees with the arithmetic hierarchy
for α < ω. Note that for infinite ordinals α, some authors (e.g. Hinman [80])
denote this hierarchy as the Σ0

(α) sets and let the Σ0
λ sets be effective unions of

Σ0
(λ) sets. The definition we use here is for uniformity of results concerning Π0

1

classes.
There is a natural set PH = {〈a,m〉 : a ∈ H & m ∈ Ha} which is com-

plete for the family of hyperarithmetical sets. However, this set is Π1
1 and not

hyperarithmetical.
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Lemma 1.14.4. Every hyperarithmetical set is ∆1
1.

Proof. We give a monotone Π0
2 inductive definition of the following set:

V = {〈0, a,m〉 : a ∈ H & m ∈ Ha} ∪ {〈1, a,m〉 : a ∈ H & m /∈ Ha}.

That is, let

(0) 〈0, a,m〉 ∈ Γ(X) ⇐⇒ [(a = 〈7, b〉 ∧ m ∈ Wb) ∨ (∃n)(φa(n) ↓
∧ 〈1, φa(n),m〉 ∈ X)].

(1) 〈1, a,m〉 ∈ Γ(X) ⇐⇒ [(a = 〈7, b〉 ∧ m /∈ Wb) ∨ (∀n)(φa(n) ↓
∧ 〈0, φa(n),m〉 ∈ X)].

We then show by induction on α that Γα = V α. For α = 0, both sets are
empty and for α = 1,

Γ1 = V 1 = {〈〈7, b〉, 0,m〉 : m ∈Wb} ∪ {〈〈7, b〉, 1,m〉 : m /∈Wb}.

Now suppose that Γα = V α for all α < β. If β is a limit ordinal, then clearly

Γβ = ∪α<βΓα = ∪α<βV α = V β .

Next suppose that β = α+ 1 for some α.

If 〈a, i,m〉 ∈ Γα+1, then, for all p, (∃j ≤ 1)〈φa(p), j, 〉 ∈ Γα, so that by
induction φa(p) ∈ Hα for all p and hence a ∈ Hα+1. For i = 0, there exists
p such that 〈φa(p), 1,m〉 ∈ Γα and hence by induction m /∈ Hφa(p). It follows
that m ∈ Ha and therefore 〈a, 0,m〉 ∈ V α+1. For i = 1, it follows similarly that
m /∈ Ha.

Now suppose that 〈a, i,m〉 ∈ V α+1. Then a ∈ Hα+1, so that for all p,
φa(p) ∈ Hα. For i = 0, m ∈ Ha and therefore there exists p such that m /∈
Hφa(p) and hence by induction, 〈φa(p), 1,m〉 ∈ Γα. It follows that 〈a, 0,m〉 ∈
Γα+1. The argument for i = 1 is similar.

Since Γ is an arithmetical monotone inductive operator, it follows from The-
orem 1.13.8 that V is a Π1

1 set and hence the hyperarithmetical set Ha is ∆1
1

for each a.

It follows from the proof of Lemma 1.14.4 that the set PH is Π1
1. We can

now prove the Spector-Gandy Theorem, due independently to Spector [185] and

Gandy [71]. We say that a relation R ⊆ Nk ×NN` is Σ1
1
HY P

if and only if there
is an arithmetical relation P such that

R(−→m,−→x ) ⇐⇒ (∃y ∈ ∆1
1[−→x ])P (−→m,−→x , y).

Theorem 1.14.5 (Spector-Gandy Theorem). A relation R ⊆ Nk × NN` is

Σ1
1
HY P

if and only if it is Π1
1.
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Proof. We give the proof without the real parameters −→x and with just one
number variable m. We may assume that the ∃y quantifier ranges over {0, 1}N.
It follows from the proof of Lemma 1.14.4 that we can define a Σ1

1 relation S
such that for any a ∈ H, S(a, y) ⇐⇒ y = Ha. That is,

y = Ha ⇐⇒ (∀n)(∀i < 2)[(a, i, n) ∈ V → y(n) = i].

Now we have

(∃y ∈ ∆1
1)(P (m, y)) ⇐⇒ (∃a)[a ∈ H & (∀y)(y = Ha → P (m, y))].

This demonstrates that any Σ1
1
HY P

relation R is in fact Π1
1.

For the reverse direction, it clearly suffices to show that the Π1
1 complete

relation W is Σ1
1
HY P

.
It follows immediately from the first part of our proof that the set {0, 1}N∩∆1

1

is itself Π1
1. Then by Theorem 1.12.17, there is a computable function F such

that, for all z,
z ∈ ∆1

1 ⇐⇒ F (z) ∈W.

Now ∆1
1∩{0, 1}N cannot be a ∆1

1 set, by the following argument. Choose a0 ∈W
and let

Q(a, y) ⇐⇒ a ∈W & [(y ∈ ∆1
1 & F (y) = a] ∨ (y /∈ ∆1

1 & a = a0)].

Then Q is Π1
1 and therefore has a selector SelQ with Π1

1 graph by Theorem
1.12.19. Since SelQ is total, the graph is actually ∆1

1. Now if ∆1
1 were itself

∆1
1, then the image of ∆1

1 would be a Σ1
1 subset of W and hence bounded by

Theorem 1.12.20.
It follows from Theorem 1.12.21 that the range of F is unbounded in W and

therefore
a ∈W ⇐⇒ (∃z ∈ ∆1

1)φa � F (z).

Before establishing the reverse implication of lemma 1.14.4, we will need
several technical lemmas from [80].

Lemma 1.14.6. For all α, Σ0
α and Π0

α are effectively closed under many-one
reduction, that is, there is a primitive recursive function g such that for all m, e:

m ∈ Hg(a,e) ⇐⇒ φe(m) ∈ Ha.

Proof. Let h be a primitive recursive function such that

g(a, e) = 〈7, b〉, where φb(m) = φ(a)1(φe(m)), if a = 〈7, b〉;

and otherwise define g by the Recursion Theorem so that

φg(a,e)(p) = g(φa(p), e).
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Lemma 1.14.7. For all α > 0, the family of Σ0
α relations is effectively closed

under computably enumerable union and finite intersection; that is, there exists
primitive recursive functions f and g such that

(i) If φa(p) ∈ Hα for all p, then f(a) ∈ Hα and

m ∈ Hf(a) ⇐⇒ (∃p)m ∈ Hφa(p).

(ii) if a, b ∈ Hα, then g(a, b) ∈ Hα and

Hg(a,b) = Ha ∩Hb.

Proof. (i) We will define φf(a)(r) in two cases and then use the s-m-n theorem
to define f(a). In either case,

m ∈ Hf(a) ⇐⇒ (∃r)m /∈ Hf(a)(r).

Let (r)0 = p and (r)1 = q.
Case I: If φa(p) /∈ H1, then

φf(a)(r) = φφa(p)(q).

If there exists such an r with m /∈ Hf(a)(r), then

(∃p)[(∃q)m /∈ φφa(p)(q)],

so that as desired
(∃p)m ∈ Hφa(p).

This argument is clearly reversible for φa(p) /∈ H1.
Case II: If φa(p) = 〈7, b〉, then define h(a, r) so that

Wh(a,r) = N \Wb,q

and let φf(a)(r) = 〈7, h(a, r)〉.
If m /∈ Hφf(a)(r), then m /∈ Wh(a,r), so that m ∈ Wb = Hφa(p) and hence

(∃p)m ∈ Hφa(p) as desired. Again the reverse direction is clear.

(ii) There are four cases.
(1) If a = 〈7, d〉 and b = 〈7, e〉, then g(a, b) = 〈7, c〉, where

φc(n) = φd(n) + φe(n).

(ii) If a = 〈7, d〉 and b /∈ H1, then g(a, b) = c may be defined by part (i) so
that

Hφc(p) = Hφa(p) ∪ (N \Wd).

(iii) The case when a /∈ H1 and b = 〈7, e〉 is similar to (ii).
(iv) If a, b /∈ H1, then g(a, b) is defined by (i) so that

Hφg(a,b)(p) = Hφa(p) ∪Hφb(p).
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Lemma 1.14.8. For all α > 0, the family of Σ0
α relations is effectively closed

under existential number quantification (and thus the family of Π0
α relations

is effectively closed under universal number quantification); that is, there is
a primitive recursive function h such that for all a ∈ Hα, h(a) ∈ Hα and
m ∈ Hh(a) ⇐⇒ (∃p)〈p,m〉 ∈ Ha.

Proof. Let h be a computable function such that φh(p)(m) = 〈p,m〉. Then

(∃p)〈p,m〉 ∈ Ha ⇐⇒ (∃p)φh(p)(m) ∈ Ha.

Then taking g from Lemma 1.14.6, we have

(∃p)〈p,m〉 ∈ Ha ⇐⇒ (∃p)m ∈ Hg(a,h(p)).

Now letting φπ(a)(p) = g(a, h(p)) and taking f from Lemma 1.14.7, we have

(∃p)〈p,m〉 ∈ Ha ⇐⇒ m ∈ Hf(π(a)),

so we let h(a) = f(π(a)).

Theorem 1.14.9. Let Γ be a Π0
k (resp. Σ0

k) inductive operator, let λ be a limit
ordinal and let n < ω. Then Γn is Π0

kn (resp. Σ0
kn), Γλ is Σ0

λ+1 and Γλ+n is
Π0
λ+kn+1 (resp. Σ0

λ+kn+1).

Proof. We give the proof for a Π0
n operator and leave the other case to the

reader. First we show that there is a primitive recursive function g such that
N \ Γ(He) = N \Hg(e) and furthermore if e ∈ Hα, then g(e) ∈ Hα+n. We give
the proof for k = 1 and leave the general result as an exercise. Let R be a
computable relation such that

i ∈ Γ(A) ⇐⇒ (∀j)R(i, Adj).

Then
i /∈ Γ(He) ⇐⇒ (∃j)¬R(i, (N \He)dj).

Now

R(i, (N\He)dj) ⇐⇒ (∃σ ∈ {0, 1}j)[R(i, σ) & (∀t < j)(σ(t) = 0 ⇐⇒ t ∈ He)].

Since the last clause makes both positive and negative reference to He, it follows
that we can define primitive recursive functions fp and fn such that

R(i, (N \He)dj) ⇐⇒ (i ∈ Hfp(e,j) ∧ i /∈ Hfn(e,j)).

Then
i /∈ Γ(He) ⇐⇒ (∃j)(i /∈ Hφfp(e)(j)

) ∨ (∃j)(i ∈ Hφfn(e)(j)).

It follows that
N \ Γ(He) = Hfp(e) ∪Hf(fn(e)),

where f is the function from Lemma 1.14.7. Now the set Hg(e) = Hfp(e) ∪
Hf(fn(e)) is Σ0

α+1 by Lemma 1.14.7 and thus Γ(He) is Π0
α+1 as desired.



52 CHAPTER 1. BACKGROUND

Now fix c ∈ W with ‖c‖ = α and use the Recursion Theorem to define a
primitive recursive function h such that

Γ‖i‖c = N \Hh(i).

(1) If ‖i‖c = 0, then Hh(i) = N;

(2) If ‖j‖c = ‖i‖c + 1, then Hh(j) = Hg(h(i);

(3) If ‖j‖c is a limit, then Hh(j) =
⋂
{Hh(i) : i <c j}.

It follows by induction that if n is finite and λ is a limit, then Γn is Π0
n, that

Γλ is Σ0
λ+1 and that Γλ+n is Π0

λ+n+1.

The next result gives a uniform inductive definition of the hypararithmetic
sets and can be used to define the transfinite jumps 0α.

Theorem 1.14.10. There is a Π0
1 inductive definition Γ such that, for all a

and m, m /∈ Ha ⇐⇒ 〈4, a,m〉 ∈ Cl(Γ) and furthermore, if a ∈ Hα, then
m /∈ Ha ⇐⇒ 〈4, a,m〉 ∈ Γα.

Proof. There are several clauses in the definition. We assume that φ0 is the
empty function and omit the inclusive part of each clause (that i must be in
Γ(A) if it is in A.)

(1) 〈1, a,m〉 ∈ Γ(A) ⇐⇒ m /∈Wa.

(2) 〈2, a〉 ∈ Γ(A) ⇐⇒ 〈1, 0, 0〉 ∈ A & (∀m)〈1, a,m〉 /∈ A.

The result of these two clauses is that φa is total if and only if 〈2, a〉 ∈ Cl(Γ),
which is if and only if 〈2, a〉 ∈ Γ2.

(3a) 〈3, 〈7, a〉〉 ∈ Γ(A)

(3b) 〈3, b ∈ Γ(A) ⇐⇒ 〈2, b〉 ∈ Γ(A) & (∀n)〈3, φa(n)〉 ∈ A.

These two clauses ensure that, for all a and for all ordinals α,

〈3, a〉 ∈ Γα ⇐⇒ a ∈ Hα.

(4a) 〈4, 〈7, a〉,m〉 ∈ Γ(A) ⇐⇒ m /∈Wa.

(4b) 〈4, b,m〉 ∈ Γ(A) ⇐⇒ 〈3, b〉 ∈ Γ(A) & (∀n)〈4, φb(n),m〉 /∈ A.

These final two clauses complete the definition. The theorem follows by
induction on α as follows.

For α = 1, if b = 〈7, a〉 ∈ H1, then 〈3, b〉 ∈ Γ1 by clause (3a) and, by clause
(4a):

m /∈ Hb ⇐⇒ m /∈Wa ⇐⇒ 〈4, b,m〉 ∈ Γ1.

For α ≥ 1 and b ∈ Hα+1 −Hα, φb must be total, so we have 〈2, b〉 ∈ Γα+1 and
then

〈m /∈ Hb ⇐⇒ (∀n)m ∈ Hφb(n) ⇐⇒ (∀n)〈4, φb(n),m〉 ∈ Γα ⇐⇒ 〈4, b,m〉 ∈ Γα+1.
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This theorem has two important corollaries. Note that we have already
defined 0(n) for finite n.

Definition 1.14.11. For any computable ordinal α ≥ ω, let

0(α) = {〈a,m〉 : a ∈ Hα & m ∈ Ha}.

Theorem 1.14.12. For each computable ordinal α ≥ ω,

1. 0(α+1) is Σ0
α+1 complete, and

2. any set A is Σ0
α+1 if and onlyl if it is Σ0

1 in 0(α).

Proof. (1) It follows from Theorems 1.14.9 and 1.14.10 that 0(α+1) is Σ0
α+1. The

completeness is immediate from Theorem 1.14.10.
(2) is left as an exercise.

The Σ0
α and Π0

α sets may be characterized in terms of inductive definability.
The next result follows directly from Theorems 1.14.9 and 1.14.10.

Theorem 1.14.13. For any A ⊆ N and any computable ordinal α, A is Π0
α if

and only if A is m-reducible to Γα for some Π0
1 inductive definition Γ.

Finally, we can characterize the Σ0
α+1 sets as relative c. e. over the jumps.

Theorem 1.14.14. For any computable ordinal α and any A ⊆ N, A is Σ0
α+1

if and only if A is c. e. in 0(α) and A is ∆0
α+1 if and only if A is computable in

0(α).

Proof. Let B = 0(α) = Hb for some b ∈ Hα. Suppose first that A is Σ0
α+1.

Then A = Ha for some a ∈ Hα+1. Thus we have

m ∈ A ⇐⇒ (∃n)m ∈ Hφa(n) ⇐⇒ (∃n)〈φa(n),m〉 ∈ B.

For the other direction, suppose that A is c. e. in B. Then for some e, we have

m ∈ A ⇐⇒ φe(m,B) ↓ ⇐⇒ (∃t)φe(m,Bdt) ↓ ⇐⇒ (∃σ)[σ ≺ B & φe(m,σ) ↓].

By Lemma 1.14.7, it suffice to show that σ ≺ B is Σ0
α+1. But we have

σ ≺ B ⇐⇒ (∀i < |σ|)(σ(i) = 0→ i ∈ B) & (∀i < |σ|)(σ(i) = 1→ i /∈ B).

Now “i ∈ B” is Σ0
α and therefore Σ0

α+1 and i /∈ B is clearly Σ0
α+1, so the result

follows, again by Lemma 1.14.7.

Monotone inductive definitions are frequently used and there is a finer result
for the complexity of the levels.

Theorem 1.14.15. For any ordinal α, any n ∈ N and any monotone Π0
1 in-

ductive operator Γ, Γω·α is Σ0
2α and Γω·α+n+1 is Π0

2α+1.



54 CHAPTER 1. BACKGROUND

Proof. The proof is similar to that of Theorem 1.14.9, with the additional idea
that if A is Π0

β , then Γ(A) is also Π0
β , since by monotonicity,

i ∈ Γ(A) ⇐⇒ (∀j)R(i, Adj) ⇐⇒ (∀j)(∀C ⊆ n)[A ⊆ C → R(i, C)].

It follows that Γn is Π0
1 for all n and that if Γλ is Σ0

β , then Γλ+n is Π0
β+1.

Making use of Lemmas 1.14.6, 1.14.7, 1.14.8 and the Recursion Theorem, the
proof follows as above. Details are left to the reader.

Theorem 1.14.16. (Souslin-Kleene) A subset of Nk × (NN)l is ∆1
1 if and only

if it is hyperarithmetical.

Proof. The direction (←−) is a routine generalization of Lemma 1.14.4. For the
other direction, it suffices by Lemma 1.14.6 and Theorem 1.12.21 to show that
Wα is hyperarithmetical for any computable ordinal α. Recall the Π0

1 monotone
inductive definition Γ of W given in Example 1.13.3 such that such that Wα =
Γα, It now follows from Theorem 1.14.9 each Wα is hyperarithmetic.

The next application of inductive definability is part of a theorem of Chen
[44].

Theorem 1.14.17. Let α > 1 be a computable ordinal and let n ≥ 1 be a natural
number. Then PWω·α is Σ0

2α complete and PWω·α+n is Π0
2α+1 complete.

Proof. We will just demonstrate the upper bound on the complexity. A partial
computable function φc represents the pre-ordering Rc if it is the characteristic
function, that is

Rc(i, j) ⇐⇒ φc(〈i, j〉) = 1

and

¬Rc(i, j) ⇐⇒ φc(〈i, j〉) = 0.

The restriction of Rc to elements below n may be given by

φh(c,n)(i, j) = φc(i, j) · (1− φc(n, j)).

Note that if φc is total, then φh(c,n) is total for all n.
There is a natural Π0

1 monotone inductive definition of PW given by

c ∈ Γ(A) ⇐⇒ (∀n)h(c, n) ∈ A.

Then it is easy to see that for a total function φc which represents a pre-linear-
ordering,

c ∈ PWβ ⇐⇒ c ∈ Tot & c ∈ Γβ .

The condition that φc is total is Π0
2 and the condition that φc is the characteristic

function of a pre-linear-ordering is Π0
1. Thus the upper bound on the complexity

follows from Theorem 1.14.15.
The proof of the other direction is omitted.
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Theorem 1.14.18. Let T be a computable tree and define a prewellordering R
on T so that ‖σ‖R = htT (σ) (where ht(σ) = ∞ if σ /∈ Ext(T ).) Then for any
ordinal α, and any n ∈ N, {σ ∈ T : htT (σ) < ω · α} is Σ0

2α and Γω·α+n+1 is
Π0

2α+1.

Proof. The proof is left as an exercise.

Computable trees with a unique infinite branch were studied by Clote [48].
It is well-known that for every hyperarithmetic set A, there exists a computable
tree with a unique infinite branch x such that A is Turing reducible to x. We
will prove this below in Chapter 4.

Theorem 1.14.19. ([48]) Let T be a computable tree T with a unique infinite
branch x. Then for any σ ∈ T −Ext(T ), htT (σ) < ω1. If htT (σ) < ω ·α for all
σ /∈ Ext(T ), then x is Turing reducible to a Σ0

2α set.

Proof. The first part follows from Lemma 1.12.12. For the second part, note
that the set A = {σ ∈ T : htT (σ) < ω · α} is Σ0

2α by Lemma 1.14.18. Then x
may be computed recursively from A by

x(n+ 1) = (least i)[(x(0), . . . , x(n), i) /∈ A].

Exercises

1.14.1. Show that for finite n, the definition of the hyperarithmetical sets agrees
with the previous definition of the arithmetical sets.

1.14.2. Give an alternate proof of Lemma 1.14.4 using the Prewellordering The-
orem 1.13.11.

1.14.3. Give the following improvement of Theorem 1.14.9. Suppose that Γ is
a Π0

k (respectively, Σ0
k) inductive operator and that Γ1 is ∆0

k for some
m < k. Show that for each n, Γn+1 is Π0

kn+m (resp. Σ0
kn+m).

1.14.4. For computable ordinals α < β, Σ0
α ∪Π0

α ⊂ ∆0
β .

1.14.5. Show that a set A is Σ0
α+1 if and onlyl if it is Σ0

1 in 0(α).

1.14.6. Give the details in the proof of Theorem 1.14.15.

1.14.7. Let T be a computable tree and define a prewellordering R on T so that
‖σ‖R = htT (σ) (where ht(σ) = ∞ if σ /∈ Ext(T ).) Show that for any
ordinal α, and any n ∈ N, {σ ∈ T : htT (σ) < ω · α} is Σ0

2α and Γω·α+n+1

is Π0
2α+1.

1.14.8. Show that PH is Π1
1.
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1.14.9. Show that there can be no universal hyperarithmetical set ( so in partic-
ular PH is not hyperarithmetical.)

1.14.10. For each computable ordinal α, both the Σ0
α and the Π0

α relations are
closed under ≤m reducibility.

1.14.11. The definition of the hyperarithmetical hierarchy is easily extended to
subsets of NN and in general to relations R ⊆ Nk × (NN)`. Give the
details.



Chapter 2

Fundamentals of Π0
1 Classes

This chapter contains the formal definition of a Π0
1 class as well as the set of

infinite paths through a computable tree, well as some equivalent formulations.
In particular, the notation “Π0

1” indicates that a Π0
1 class may be represented

in arithmetic by a formula having one universal quantifier, ranging over natural
numbers. We will explain the connection between these notions. Some notions
of boundedness for trees are examined, including highly computable and finite-
branching trees. This leads to computably bounded and bounded Π0

1 classes.
Decidable Π0

1 classes are defined, corresponding to computable trees with no
dead ends. Products and disjoint unions of trees and classes are studied. The
notion of compactness is examined together with König’s Lemma. The family of
Π0

1 classes is shown to have the dual reduction and separation properties. Strong
Π0
n classes are defined. Computable and continuous functions on NN and {0, 1}N

are studied in connection with Π0
1 classes. Classes of separating sets for a pair of

disjoint c.e. sets are studied and in particular diagonally non-computable sets.
The connection between retraceable and hyperimmune sets and the Π0

1 class of
initial subsets of a co-c.e. set is given. Several notions of reducibility between
various classes are examined. For example, every c. b. class is computably
homeomorphic to a subclass of {0, 1}N, every bounded Π0

1 class is computably
homeomorphic to a strong Π0

2 class of sets and every Π0
2 class can be put in

one-to-one degree-preserving correspondence with a Π0
1 class.

We also introduce the applications of Π0
1 classes by considering the repre-

sentation of logical theories.

2.1 Computable trees and notions of bounded-
ness

Recall that a tree T is a subset of N∗ which is closed under initial segments.
Such a tree is said to be ω-branching, since each node has potentially a countably
infinite number of immediate successors. We identify an element σ of N∗ with

57
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its code 〈σ〉 ∈ N and say that T is computable if the set of codes 〈σ〉 such that
σ ∈ T is a computable set.

Definition 2.1.1. (i) For a given function g : N∗ → N, a tree T ⊆ N∗ is
said to be g-bounded if for every σ ∈ T and every i ∈ ω, if σ_i ∈ T , then
i < g(σ).

(ii) T is finite branching if each node σ of a tree T has finitely many immediate
successors σ_i.

There are other equivalent formulations.

Lemma 2.1.2. For any tree T ⊆ N∗, the following are equivalent:

1. T is finite branching;

2. T is g-bounded for some g.

3. There is a function f : N∗ → N∗ such that, for each σ ∈ T , f(σ) =
(i1, . . . , ik), where i1 < · · · < ik enumerates {i : σ_i ∈ T};

4. There is a function f ′ : N∗ → N such that, for each σ ∈ T , σ has at most
f ′(σ) immediate successors;

5. There is a function h such that σ(i) < h(i) for all σ ∈ T and all i <
|σ|.

The proof of this lemma is left as an exercise.

Definition 2.1.3. (i) A tree T is computably bounded (c. b.) if it is g-
bounded for some computable function g.

(ii) A computable tree T is said to be highly computable if it is also computably
bounded.

(iii) T is highly computable in z if it is computable in z and also g-bounded
by some function g computable in z.

Lemma 2.1.4. For any computable tree T ⊆ N∗, the following are equivalent:

(a) T is highly computable;

(b) There is a computable function h such that σ(i) < h(i) for all σ ∈ T and
all i < |σ|.

(c) There is a computable function f : N∗ → N∗ such that, for each σ ∈ T ,
f(σ) = (i1, . . . , ik), where i1 < · · · < ik enumerates {i : σ_i ∈ T}.

Proof. (a)→ (b): Given the function g, let h(0) = g(∅) and recursively compute
h by h(n+ 1) = max{g(σ) : σ ∈ {0, 1, . . . , h(n)}n ∩ T}.

(b)→ (c): Given the function h, the sequence i1 < · · · < ik can be computed
from σ by testing in turn whether σ_i ∈ T for i < h(|σ|+ 1).

(c) → (a): For a given σ, use the function f to compute i1 < · · · < ik as
indicated and then g(σ) = ik + 1 will be an upper bound for {i : σ_i ∈ T}.
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Note that the argument that (c) implies (a) does not use the computability
of T but the other two arguments do. We leave it as an exercise to define
(noncomputable) trees which possess computable bounding functions of type
(a) but do not possess bounding functions of type (b) and similarly for (b) and
(c).

Observe that we have omitted here the condition from Lemma 2.1.2 that
there is a computable upper bound on the number of successors of σ. It is an
exercise to show that any highly computable tree possesses such a function, but
there exists a computable tree which is not highly computable but possesses
such a bounding function.

Example 2.1.5. Here is an example of a computable tree which is bounded
but not computably bounded. Put 0e_s + 1 ∈ T if and only if φe(e) converges
at stage s. Then each node σ ∈ T has at most two extensions, so that T is
finite branching. Now suppose by way of contradiction that T were computably
bounded by the function g. Then φe(e) ↓ ⇐⇒ φe,g(0e)(e) ↓, which would make
{e : φe(e) ↓} a computable set.

There is a further notion of boundedness.

Definition 2.1.6. 1. T is almost bounded by g if there is some k ∈ N such
that for all σ with |σ| > k and for all i, if σ_i ∈ T , then i < g(σ).

2. T is almost bounded (a. b.) if it is almost bounded by some g.

3. T is almost computably bounded (a. c. b.) if it is almost bounded by some
computable function g.

Note that these notions are not equivalent to the existence of a (computable)
function h and a finite k such that σ(i) < h(i) for all σ ∈ T with |σ| > k and
all i < |σ|.

Example 2.1.7. Let T = {nk : n, k ∈ ω}. Then T is a. c. b. but has, for each
k and n, strings σ = nk+1 ∈ T with σ(k) = n. It is clear that T is not finite
branching.

Two trees may be joined together in various ways.

Definition 2.1.8. For two trees S, T ⊂ N∗

1. S ⊕ T = {0_σ : σ ∈ S} ∪ {1_τ : τ ∈ T}.

2. For strings σ and τ with |σ| = |τ | = n, σ ⊕ τ = (σ(0), τ(0), . . . , σ(n −
1), τ(n−1)); if |σ| = n+1 and |τ | = n, then σ⊕τ = (σ(0), τ(0), . . . , σ(n−
1), τ(n− 1), σ(n)).

3. S ⊗ T = {σ ⊕ τ : σ ∈ S & τ ∈ T}.

Clearly S ⊕ T is bounded if and only if both S and T are bounded and
similarly for the other notions of boundedness.

Exercises
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2.1.1. Prove Lemma 2.1.2.

2.1.2. Find a (non-computable) tree T with a computable function h such that
σ(i) < h(i) for all σ ∈ T and all i < |σ|, such that there is no computable
function f which enumerates the immediate successors of σ ∈ T .

2.1.3. Given a highly computable tree T , find a computable function f such that,
for each σ ∈ T , σ has ≤ f(σ) immediate successors in T .

2.1.4. Show that S ⊕ T and S ⊗ T are trees.

2.2 Definition and basic properties of Π0
1 Classes

In this section, we examine Π0
1 classes with various boundedness conditions. We

begin with some general facts.

Lemma 2.2.1. A subset K of NN is closed if and only if K = [T ] for some tree
T .

Proof. Suppose first that K is closed and let T = {σ ∈ N∗ : K ∩ I[σ] 6= ∅}. We
will verify that K = [T ]. If x ∈ K, then for any n, x ∈ K ∩ I[x � n], so that
x � n ∈ T . It follows that x ∈ [T ]. Conversely, suppose that x /∈ K. Since K
is closed, there must be some basic interval I[x � n] such that K ∩ I[x � n] = ∅.
But then x � n /∈ T and hence x /∈ [T ].

Definition 2.2.2. 1. For any closed set P ⊆ NN, let TP denote the tree
{σ ∈ N∗ : P ∩ I[σ] 6= ∅}.

2. For any tree T , an infinite path through T is a sequence (x(0), x(1), . . . )
such that x � n ∈ T for all n. Let [T ] be the set of infinite paths through
T .

3. A subset P of NN is a Π0
1 class (P is effectively closed if P = [T ] for some

computable tree T .

4. A subset P of NN is a decidable Π0
1 class if TP is a computable set.

It is important to note that for a Π0
1 class P , the set TP need not be com-

putable.

Example 2.2.3. Let A be an arbitrary c.e. set and let P = {0n1ω : n /∈ A}.
Then P is a Π0

1 class but TP is not computable. (Details left as an exercise.)

The notions of boundedness for trees from the previous section carry over
to notions of boundedness for closed sets.

Definition 2.2.4. A subset K of NN is (topologically) bounded if there is a
function h such that, for all x ∈ K and all n, x(n) ≤ h(n).



2.2. DEFINITION AND BASIC PROPERTIES OF Π0
1 CLASSES 61

In the study of Π0
1 classes, the term “bounded” has the effective version

given below, so that we use the modifier “topologically” to distinguish the two
notions.

Definition 2.2.5. 1. A Π0
1 class P is bounded if there is a computable tree

T such that P = [T ] and a function h (not necessarily computable) such
that σ(n) ≤ h(n) for all σ ∈ T .

2. A Π0
1 class P is computably bounded (c. b.) if P = [T ] for some highly

computable tree T .

3. A Π0
1 class P is almost bounded if P = [T ] for some a.b. tree T .

4. A Π0
1 class P is almost computably bounded (a. c. b.) if P = [T ] for

some a. c. b. tree T .

In the next chapter, we will show that for any hyperarithmetical real x ∈ NN,
there exists y ≡T x such that {y} is a Π0

1 class. Here we give the special case
when x is a Σ0

2 set.

Example 2.2.6. Here is an example of a Π0
1 class P which is topologically

bounded, but not bounded. That is, P = {g} for a particular function g and
hence P is bounded by g itself. At the same time, P = [T ] for some computable
tree T . However, the tree T is not itself bounded by g, or even finite branching.

Let A be a Σ0
2 set which is not Π0

2. Let R be a computable relation so that

e ∈ A ⇐⇒ (∃m)(∀n)R(e,m, n).

Define the (non-computable) function f in two cases as follows.

(Case I): If e ∈ A, then f(e, 0) = 1, f(e, 1) is the least m such that
(∀n)R(e,m, n) and f(e, 2) = 〈n0, . . . , nf(e,1)−1〉 where for each i, ni is the least
n such that ¬R(e, i, n).

(Case II): If e /∈ A, then f(e, 0) = 0 and f(e,m+ 1) is the least n such that
¬R(e,m, n).

Then define g by g(2e(2m + 1)) = f(e,m). Observe that for each e, the
values of g(2e(2m+ 1) tell us whether e ∈ A and also verify the answer.

We claim that {g} is a Π0
1 class. That is, {g} = [T ] for the computable tree

T defined as follows.

σ ∈ T if and only if, for all e with 2e < |σ|, one of the following.

(0) σ(2e) = 0 and, for all i with 2e(2i + 1) < |σ|, ¬R(e, i, σ(2e(2i + 1)), and
for all j < σ(2e(2i+ 1)), R(e, i, j).

(1) σ(2e) = 1 and, for all n < |σ|, R(e, σ(3 · 2e), n). For all i > 2, σ(2e(2i +
1)) = 0. Finally, σ(5 · 2e = 〈n0, n1, . . . , nσ(3·2e)−1〉 where for all i <
σ(3 · 2e), ni is the least n such that ¬R(e, i, n).
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Clearly g ∈ [T ]. Now suppose there were some other function h ∈ [T ]. Fix e
and consider two cases as above.

(Case I): h(2e) = 0. Then for each i, ¬R(e, i, h(2e(2i+1)) and hence e /∈ A.
It follows that, for each m, h(2e(2m + 1)) is the least n such that ¬R(e,m, n)
and hence h(2e(2m+ 1)) = f(2e(2m+ 1) for all m.

(Case II): h(2e) = 1. Then for all n, R(e, h(3 · 2e), n) and hence e ∈ A.
Furthermore, for each i < h(3 · 2e), h(5 · 2e) witnesses that ¬(∀n)R(e, i, n), so
that h(3 ·2e) is the least m such that (∀n)R(e,m, n); that is, h(3 ·2e) = f(3 ·2e).
It follows that h(2e(2i + 1) = h(3 · 2e) = f(3 · 2e) = f(2e(2i + 1) for all i > 2.
Finally, h(5·23) must code the sequence of least witnesses n such that ¬R(e, i, n)
for each i < h(3 · 2e) and hence h(5 · 2e) = f(5 · 2e) as well.

It follows that h = f and hence [T ] = {f} as desired.
Now we claim also that this class does not have a ∆0

2 bounding function h.
Suppose by way of contradiction that there were such a function h. Then

e /∈ A ⇐⇒ (∀m < h(2e3))(∃n)¬R(e,m, n).

This would give a Π0
2 definition of A. To see this, let

φ(e) = (least n)(∀m < h(2e3))(∃n′ < n)¬R(e,m, n′).

Then φ is computable in 0′ and N \A = Dom(φ), so that A is a Π0
2 set.

Now the Π0
1 class {g} is certainly topologically bounded, but it follows from

Lemma 2.2.7 that it is not bounded.

Lemma 2.2.7. (a) A closed subset K of NN is (topologically) bounded if and
only if there is a finite-branching tree T such that K = [T ];

(b) A Π0
1 class P is bounded if and only if there is a finite-branching com-

putable tree T such that P = [T ]. Furthermore, the bounding function
may always be taken to be computable in 0′.

(c) A decidable Π0
1 class P is effectively bounded if and only if it is bounded.

Proof. We leave the proof of part (a) to the reader. Let T be a computable tree
such that K = [T ]. Suppose first that K is bounded and let h be a function
such that σ(i) ≤ h(i) for all σ ∈ T and all i < |σ|. It is immediate that T is
finite-branching, since for any σ ∈ T , if σ_j ∈ T , then j ≤ h(|σ|). On the other
hand, if T is finite-branching, then it is easy to see by induction that T ∩Nk is
finite for all k and hence we may define the bounding function h by

h(k) = max{i : (∃σ ∈ T ∩ Nk)σ_i ∈ T}.

It is clear that h is computable in 0′.
(c) Let P = [T ] where T is computable and has no dead ends. If T is finite-

branching, then P is bounded by (a). Now suppose that P is bounded by a
function h. Since T has no dead ends, it follows that T is also bounded by h.
Thus T must be finite-branching.
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Proposition 2.2.8. A Π0
1 class P is computably bounded if and only if there is

a computable function h such that x(n) ≤ h(n) for all x ∈ P .

Proof. Let P = [T ] for the computable tree T . If P is computably bounded,
then there is a computable function h such that σ(n) ≤ h(n) for all σ ∈ T and
all n < |σ| and it follows that x(n) ≤ h(n) for all x ∈ P . For the other direction,
let h be given as described. Then we can define a tree S ⊆ T by having

σ ∈ S ⇐⇒ σ ∈ T & (∀n < |σ|)σ(n) ≤ h(n).

It is clear that [S] = [T ] = P so that P is computably bounded.

Definition 2.2.9. (i) σ is an extendible node of T if I(σ)∩ [T ] 6= ∅, that is,
if σ has an infinite extension which belongs to [T ]; Ext(T ) is the set of
extendible nodes of T .

(ii) A node σ such that σ /∈ T , but all τ ≺ σ are in T , is a dead end of T .

Observe that TP has no dead ends and is the unique tree without dead ends
such that P = [T ]. The following lemma gives an alternate definition of the
notion of a decidable Π0

1 class. The proof is left as an exercise.

Lemma 2.2.10. For any Π0
1 class P , the following are equivalent:

(a) P is decidable;

(b) There is a computable tree T with P = [T ] such that Ext(T ) is computable.

(c) There is a computable tree T with no dead ends such that P = [T ].

It is a fundamental property of the real line that a subset is compact if and
only if it is closed and bounded.

Theorem 2.2.11. (a) A subset K of NN is compact if and only if it is closed
and (topologically) bounded.

(b) A Π0
1 class P is bounded if and only if there exists a computable tree T

with P = [T ] and a function h such that σ(n) ≤ h(n) for all σ ∈ T and
all n < |σ|. Furthermore, h may be taken to be computable in 0′.

Proof. (a) Suppose first that K is compact. Then K is certainly closed. For
each n, K ⊂

⋃
i{x : x(n) = i} and it follows from compactness that there exists

some in such that K ⊆ {x : x(n) ≤ in}. Then the function h(n) = in satisfies
the condition above. Suppose next that K is closed and bounded and let h be
a bounding function for K. Then K ⊆

∏
n∈ω{0, 1, . . . , h(n)} and is therefore

compact since it is a closed subset of a compact space.
(b) If P = ∅, then this is obvious. Thus we let P be a nonempty Π0

1 class
and let T be a computable tree such that P = [T ]. Suppose first that T is
finitely branching. Then we may define the bounding function h by letting h(n)
be the maximum of {σ(m) : σ ∈ T, m‖σ| ≤ n}. It is clear that h is computable
in 0′. Conversely, suppose that P = [T ] and that h is any bounding function
such that σ(n) ≤ h(n) for all σ ∈ T . It is immediate that T must be finitely
branching.
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A crucial result for bounded classes is König’s Lemma, which follows from
the compactness of bounded classes.

Lemma 2.2.12 (König’s Lemma). Any infinite, finite-branching tree has an
infinite path.

Proof. Let T be an infinite, finite-branching tree and let P = [T ]. An infinite
path x through T is defined as follows. Let x(0) be the least i such that T con-
tains infinitely many extensions of (i) and for each n, similarly let x(n+1) be the
least i such that T contains infinitely many extensions of (x(0), x(1), . . . , x(n), i).
Since T is finite-branching, it follows by induction that such an i always ex-
ists.

Notice that the path defined in the proof of König’s Lemma is not necessarily
computable, despite the “recursive” definition. The complexity of this path will
be considered further below in Chapter 3.

We can use König’s Lemma to determine the complexity of Ext(T ) for a
computable tree T .

Theorem 2.2.13. Let T be a computable tree in N∗.

(a) T , Ext(T ) is Σ1
1.

(b) For a finite-branching tree T , Ext(T ) is Π0
2.

(c) For a highly computable tree T , Ext(T ) is Π0
1.

Proof. In general, we have

σ ∈ Ext(T ) ⇐⇒ (∃x)[σ ≺ x & (∀n)x � n ∈ T ].

For a finite branching tree, König’s Lemma implies that

σ ∈ Ext(T ) ⇐⇒ (∀n)(∃τ ∈ N∗)[|τ | = n & σ_τ ∈ T ].

Part (c) is left as an exercise.

We now present the fundamental basis result is due to Kleene.

Theorem 2.2.14 (Kleene). For any tree T such that the Π0
1 class P = [T ] is

nonempty, P contains a member which is computable in Ext(T ).

Proof. The infinite path x through T can be defined recursively by letting x(0)
be the least n such that (n) ∈ Ext(T ) and, for each k, letting x(k + 1) be the
least n such that (x(0), . . . , x(k), n) ∈ Ext(T ).

Combining this with Theorem 2.2.13, we get the following:

Theorem 2.2.15. For any nonempty Π0
1 class P ⊆ NN:

(a) P has a member computable in some Σ1
1 set;
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(b) if P is bounded, then P has a member of Σ0
2 degree (hence computable in

0′′);

(c) if P is c. b., then P has a member of c.e. degree (hence computable in
0′);

(d) if P is decidable, then P has a computable member.

Proof. Part (a) and the parenthetical consequences in parts (b) and (c) are
immediate from Theorems 2.2.13 and 4.2.3. The existence of a member of c.e.
Σ0

2 degree in (b) and of a member of c.e. degree in (c) are left as an exercise.

The following corollary is very useful.

Corollary 2.2.16. Any isolated element of a computably bounded Π0
1 class is

computable.

Proof. Without loss of generality, Let x ∈ NN and let P = {x} be a c.b. Π0
1

class. Let P = [T ] where T is computable and computably bounded and let f
be given so that σ(m) < f(n) for all σ ∈ Nn and all m < n. Then Ext(T ) is
Π0

1 by Theorem 2.2.13. But for any σ ∈ Ext(T ), σ = xd|σ| and is the unique
member of Ext(T ) with length |σ|. Thus we also have

σ ∈ Ext(T ) ⇐⇒ (∀τ ∈ {0, 1, . . . , f(n)}|σ|)[τ ∈ Ext(T ) =⇒ τ = σ]/

This shows that Ext(T ) is also c. e. and is therefore computable, so that x is
computable by Theorem 2.2.15.

Part (a) is the Kleene basis theorem [97] and part (c) is the Kreisel basis
theorem [104].

For two Π0
1 classes P = [S] and Q = [T ], define the amalgamation of P

and Q, P ⊗ Q, by P ⊗ Q = {x ⊕ y : x ∈ P & y ∈ Q}. Then it is clear that
P ⊗Q = [S ⊗ T ]. More generally, define the infinite amalgamation ⊗iSi to be
those strings σ such that for each i, (σ([i, 0]), σ([i, 1]), . . . , σ([i, j])) ∈ Si, where
j is the maximum such that [i, j] < |σ|. Then [⊗iSi] is isomorphic to the direct
product Πi[Si].

We also wish to consider the disjoint union. For two Π0
1 classes P = [S] and

Q = [T ], P ⊕ Q = {0_x : x ∈ P} ∪ {1_y : y ∈ Q}. It is easy to see that
P ⊕Q = [S ⊕ T ].

Another consequence of compactness is the dual reduction property of Π0
1

classes in {0, 1}N. Some definitions are needed.

Definition 2.2.17. A family Γ of subsets of some set X has the Reduction
Property if, for any A and B in Γ, there exist A1 and B1 in Γ such that

(i) A1 ⊆ A and B1 ⊆ B;

(ii) A1 ∪B1 = A ∪B;

(iii) A1 ∩B1 = ∅.
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A standard result from classical computability theory is the following.

Proposition 2.2.18. The family of c.e. subsets of N satisfy the reduction
property.

Proof. Given c.e. sets A and B, let f and g be computable functions which
enumerate A and B, respectively. Then define

A1 = {f(n) : (∀m < n)f(n) 6= g(m)}

and
B1 = {g(m) : (∀n ≤ m)g(m) 6= f(n)}.

That is, i = f(n) is enumerated into A1 as long as it has not already appeared
in B and similarly j = g(m) is enumerated into B1 as long as it does not come
into A by stage m.

We can modify this to show that the Σ0
1 classes in NN also have the reduction

property.

Proposition 2.2.19. The family of Σ0
1 classes in NN has the reduction property.

Proof. Since A and B are the complements of Π0
1 classes, it follows from The-

orem 2.3.2 that there exist computable functions f and g such that A =⋃
n I(σf(n)) and B =

⋃
m I(σg(m)) where σf(n1) and σf(n2) are incompatible

for n1 6= n2 and similarly for g. Now define computable sequences Un and Vn
of clopen sets by

Un = I(σf(n)) \
⋃
m<n

I(σg(m))

and
Vm = I(σg(m)) \

⋃
n≤m

I(σf(n)).

Then let A1 =
⋃
n Un and B1 = ∪mVm.

Definition 2.2.20. A family Γ of subsets of some set X has the Dual Reduction
Property if, for any P and Q in Γ, there exist P1 and Q1 in Γ such that

(i) P ⊆ P1 and Q ⊆ Q1;

(ii) P1 ∩Q1 = P ∩Q;

(iii) P1 ∪Q1 = X.

This is the dual of the usual reduction property and was first studied by
Herrmann. It will be important in the study of the lattice EΠ in Chapter 16. It
is easy to see that a family Γ will satisfy the reduction property if and only if
the family of complements of Γ satisfies the dual reduction property. (See the
exercises.)

Corollary 2.2.21. The family of Π0
1 classes in {0, 1}N has the dual reduction

property.
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Definition 2.2.22. A class Γ of subsets of some set X has the Separation
Property if for any P and Q in Γ, if P ∩Q = ∅, then there exists R such that
both R and X \R are in Γ and P ⊂ R ⊂ X \Q. R is said to separate P and Q.

If Γ is the family of Π0
1 classes in {0, 1}N (or in general, the family of closed

subsets of {0, 1}N), then R and {0, 1}N \ R are both closed if and only if R is
clopen.

The following result is left as an exercise.

Proposition 2.2.23. If Γ has the dual reduction property, then it also has the
separation property.

Corollary 2.2.24. [Separation Property] The family of Π0
1 classes has the sep-

aration property.

It is well-known that the c.e. sets do not satisfy the separation property.
(See section 2.5 below.) This also carries over to the Σ0

1 classes.

Proposition 2.2.25. The family of Σ0
1 classes does not have the separation

property.

Proof. Let A and B be disjoint, computably inseparable c.e. sets and let U =
∪n∈AI(0n1) and V = ∪n∈BI(0n1). Suppose by way of contradiction that G is
a clopen set such that U ⊂ G and V ∩G = ∅. Since G is closed, 0ω ∈ G. Since
G is open, there must be some finite m such that I(0m) ⊂ G. But then there
must be some n ∈ B with n > m, so that 0n1ω ∈ V ∩G.

Exercises

2.2.1. Prove Lemma 2.2.7(a).

2.2.2. Show that TP is the least tree T such that P = [T ], that is, the intersection
of all such trees.

2.2.3. Explain why the computable tree T in Example 2.2.6 cannot be finite-
branching. Where does the infinite branching occur?

2.2.4. Show that P as defined in Example 2.2.3 is a Π0
1 class and that TP is not

computable.

2.2.5. Let P = {0, 1}N. Show that there are infinitely many computable trees in
{0, 1, 2}N such that P = [T ] and continuum many non-computable trees
T in {0, 1, 2, 3}N with P = [T ].

2.2.6. Prove Lemma 2.2.10.

2.2.7. Show that Ext(T ) is a Π0
1 set for a highly computable tree T .

2.2.8. Complete the proof of Theorem 2.2.15. Hint: If T is a computably
bounded tree, then the leftmost infinite path of T is a c.e. real, as defined
in Section 1.8.
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2.2.9. Verify that [S ⊕ T ] = [S]⊕ [T ] and that [S ⊗ T ] = [S]⊗ [T ].

2.2.10. Show that Γ has the reduction property if and only if Γ̃ = {X \S : S ∈ Γ}
has the dual reduction property.

2.2.11. Prove Proposition 2.2.23

2.2.12. Show that the family of all open sets in NN has the reduction property
and hence the class of closed sets has both the dual reduction property
and the separation property.

2.2.13. Improve Proposition 2.2.25 by showing that the Σ0
1 classes defined in the

proof cannot be separated by any decidable Π0
1 class.

2.3 Effectively Closed Sets in the Arithmetic Hi-
erarchy

The following lemma makes the connection between trees and quantified rela-
tions precise.

Proposition 2.3.1. For any class P ⊂ NN, the following are equivalent:

(a) P = [T ] for some computable tree T ⊂ N∗;

(b) P = [T ] for some primitive recursive tree T ;

(c) P = {x : (∀n)R(n, x)}, for some computable relation R;

(d) P = [T ] for some Π0
1 tree T ⊂ ω<ω;

Proof. : [(a) → (b)]: Suppose that P = [T ], where T is a computable tree
and let φe be a total {0, 1}-valued computable function such that σ ∈ T if
and only if φe(σ) = 1. Define the primitive recursive tree S by τ ∈ S ⇐⇒
(∀n < |τ |)¬φe,|τ |(τdn) = 0. Clearly T ⊂ S, so that [T ] ⊂ [S]. Suppose now
that x /∈ [T ]. Then for some n, xdn /∈ T . Thus we have some m such that
φe,m(xdn) = 0. Then for any k > max{m,n}, we clearly have xdk /∈ S. It
follows that x /∈ [S].

[(b) → (c)]: Suppose that P = [T ], where T is a primitive recursive tree.
Define the relation R by R(n, x) ⇐⇒ xdn ∈ T . then we have x ∈ [T ] ⇐⇒
(∀n)xdn ∈ T ⇐⇒ (∀n)R(n, x).

[(c)→ (d)]: Suppose that x ∈ P ⇐⇒ (∀n)R(n, x) where R is a computable
relation, that is, there is a computable functional Φ = Φe such that R(n, x) ⇐⇒
Φ(n, x) = 1 and ¬R(n, x) ⇐⇒ Φ(n, x) = 0. By the Master Enumeration
Theorem II.1.6.5, we have Φ(n, x) = i if and only if Φ(n, xdm) = i for some m.
Define the tree T by

σ ∈ T ⇐⇒ (∀n < |σ|)Φ(n, σ) ↓→ Φ(n, σ) = 1.

It is clear that P = [T ].
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[(d) → (a)]: Suppose that the tree T is a Π0
1 subset of ω<ω, so that there

is a computable relation R such that σ ∈ T ⇐⇒ (∀n)R(n, σ). Define the
computable tree S ⊃ T by σ ∈ S ⇐⇒ (∀m,n ≤ |σ|)R(m,σdn). It is easily
verified that [T ] = [S].

Standard topology tells us that a closed set may be defined as the comple-
ment of an open set, and that an open set in NN is a countable union of intervals
I(σ). Since NN is completely disconnected, this countable union can be made
disjoint. The effective version of this fact is the following. Let σ0, σ1, . . . be
an effective enumeration of N∗. (This can be done in order first by the sum
σ(0) + σ(1) + · · ·+ σ(|σ|) and then lexicographically.)

Theorem 2.3.2. (a) If P ⊆ NN is a Π0
1 class, then there is a computable

set W such that NN \ P =
⋃
n∈W I(σn). Furthermore, the set W may be

chosen so that I(σm) and I(σn) are disjoint for m 6= n.

(b) For any c.e. set W ⊆ N∗, NN \
⋃
n∈W I(σ) is a Π0

1 class.

Proof. (a): Let P be a Π0
1 class and let T be a computable tree such that

P = [T ]. Let W = {n : σn is a dead end of T}. Then in fact W is a computable
set and clearly NN \ P =

⋃
n∈W I(σn). That is, if x ∈ I(σn) for some n ∈ W

and k = |σn|, then x � k = σn /∈ T , so that x /∈ P . On the other hand, if x /∈ P ,
then there is a least k such that x � k /∈ T . Take n so that x � k = σn. Then
n ∈ W and x ∈ I(σn). To check the disjointness condition, suppose that σm
and σn are both dead ends of T . If they were comparable, then without loss of
generality, σm ≺ σn, which contradicts the assumption that both are dead ends.

(b) Given the c.e. set W ⊆ N∗, let P = NN \
⋃
n∈W I(σ) = [T ] and define

the Π0
1 tree T by

τ ∈ T ⇐⇒ (∀σ � τ)σ /∈W.

Then NN \
⋃
n∈W I(σ) = [T ]. It follows from Proposition 2.3.1 that P is a Π0

1

class.

Part (d) of Proposition 2.3.1 may be used to define an enumeration of the
Π0

1 classes. That is, let we could let Pe = NN \
⋃
n∈We

I(σn), where σ0, σ1, . . . is
the standard enumeration of {0, 1}∗ in length-lexicographic order. By applying
Proposition 2.3.1 uniformly, we obtain the following.

Theorem 2.3.3. There is a uniformly primitive recursive sequence 〈Te〉e∈ω of
trees such that 〈[Te]〉e∈ω enumerates the Π0

1 classes.

Proof. Simply let

σ ∈ Te ⇐⇒ (∀n < |σ|)[σn � σ → n /∈We,|σ|.

The official enumeration for the Π0
1 classes will be defined below in Chapter

5 and is based directly on primitive recursive trees.
There is another notion equivalent to being a computably bounded Π0

1 class.
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Proposition 2.3.4. Let P ⊂ NN and h a computable function such that x(n) <
h(n) for all x ∈ P . Then P is a Π0

1 class if and only if TP is a Π0
1 set.

Proof. If TP is a Π0
1 set, then P is a Π0

1 class by Proposition 2.3.1 since P = [TP ].
Now suppose that h is a computable function and x(n) < h(n) for all x ∈ P
and all n. Then by König’s Lemma,

σ ∈ TP ⇐⇒ (∀k > |σ|)(∃τ ∈ h(0)× h(1)× . . . h(k))[τ ∈ T & σ ≺ τ ].

We will also consider in general the families of Π0
n classes and Σ0

n classes.
Analogous to the definition of Π0

n sets, we have the following.

Definition 2.3.5. Let R be a relation on Nk × NN and let n > 0 be a natural
number.

1. R is Π0
0 if it is computable.

2. R is Σ0
n+1 if there is a Π0

n relation Q ⊂ Nk+1 × N such that

R(a1, . . . , ak, x) ⇐⇒ (∃i)Q(i, a1, . . . , ak, x).

3. R is Π0
n+1 if Nk × NN \R is Σ0

n+1.

4. R is ∆0
n+1 if R is both Σ0

n+1 and Π0
n+1.

Note that a computable class in NN is both open and closed. These defi-
nitions can also be relativized to a set oracle C, but the results are not quite
analogous to those for sets.

Definition 2.3.6. (i) A subset of NN is a strong Π0
n+1 class if P = [T ] for

some tree T computable in ∅(n).

(ii) A strong Π0
n+1 class P is highly bounded if P = [T ] for some tree T

computable in ∅(n) and a bounding function f also computable in ∅(n)

such that σ(n) ≤ f(n) for all σ ∈ T .

Proposition 2.3.7. For any class P ⊂ NN, the following are equivalent:

(a) P = [T ] for some tree T computable in 0(n).

(b) P = [T ] for some Π0
n+1 tree T .

(c) P = [T ] for some Σ0
n tree T .

Furthermore, if P ⊂ {0, 1}N, then T ⊂ {0, 1}∗.
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Proof. The equivalence of (a) and (b) follows from a relativization of Proposition
2.3.1. Clearly (c) implies (b). It remains to be shown that (b) implies (c). Let
T be a Π0

n+1 tree such that P = [T ]. Then there is a Σ0
n relation R such that

σ ∈ T ⇐⇒ (∀i)R(i, σ),

so that
x ∈ P ⇐⇒ (∀m)(∀i)R(i, x � m).

Now define the Σ0
n tree S by

σ ∈ S ⇐⇒ (∀m ≤ |σ|)(∀i ≤ |σ|)R(i, σ � m).

It is easy to check that S is a tree and that P = [S].

Exercises

2.3.1. Complete the proof of Proposition 2.3.7 by showing that S is a tree and
that P = [S].

2.4 Graphs of Computable Functions

In classical computability theory, computable functions and computably enu-
merable sets are the two primary objects of study. In this context, the two
are naturally related. For any (partial) computable function, the domain, the
range and the graph are all c.e. sets. Furthermore, every c.e. set is the domain
of a computable function and every nonempty c.e. set is the range of a total
computable function. In addition, any partial function with a c.e. graph is nec-
essarily computable. For our purposes, computably continuous functions and
Π0

1 classes are the primary objects of study. In this section, we explore possible
analogues of the classical results.

Recall from the Master Enumeration Theorem II.1.6.5 that a (partial) com-
putable function Φ : NN → NN may be approximated by maps on sequences. Let
Φ(σ,m) = n if Φ computes output n on input m using only oracle information
from σ and in |σ| or fewer steps; we may assume that n < |σ|. Let Φ(σ) = τ
denote the partial function on strings as before.

Before giving a characterization of a computably continuous function, we
first consider arbitrary continuous functions.

Lemma 2.4.1. A function F : NN → NN (respectively, F : {0, 1}N → {0, 1}N)
is continuous if and only if there is a function f : N∗ → N∗ (resp. f : {0, 1}∗ →
{0, 1}∗) such that

1. for all σ ≺ τ , f(σ) � f(τ);

2. for all x ∈ NN ({0, 1}N), limn→∞ |f(x � n)| =∞;

3. for all x ∈ NN ({0, 1}N), ∪nf(x � n) = F (x).
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Proof. Since F is continuous, it follows that F−1(I(τ)) is open for each τ ∈ N∗.
Define f(σ) to be the unique longest τ such that I(σ) ⊆ F−1(I(τ)) [equivalently,
F (I(σ)) ⊆ I(τ)].

Then f is certainly monotonic.
Fix x ∈ NN and let Y = F (X). For each n, X belongs to the open set

F−1(I(Y � n)) and hence there is some basic open set I(σ) such that X ∈
I(σ) ⊆ F−1(I(Y � n)). It follows that Y � n � f(σ) and of course σ = x � m
for some m. Then for all t > m, |f(x � t)| ≥ n. Thus limt→∞|f(x � t)| =∞, as
desired.

It now follows that ∪nf(x � n) = F (x).

The fundamental notion of computable analysis is the computable version
of Lemma 2.4.1.

Lemma 2.4.2. A function F : NN → NN (respectively, F : {0, 1}N → {0, 1}N) is
computably continuous if and only if there is a computable function f : N∗ → N∗
(resp. f : {0, 1}∗ → {0, 1}∗) such that

1. for all σ ≺ τ , f(σ) � f(τ);

2. for all x ∈ NN ({0, 1}N), limn→∞ |f(x � n)| =∞;

3. for all x ∈ NN ({0, 1}N), ∪nf(x � n) = F (x).

Proof. Given such a representation f for F , compute y(n) for y = F (x) from x
by computing f(x � k) for sufficiently large k.

Given a computable function F , define the representation f as follows. On
input σ of length n, compute the values of τ = f(σ) for each i < n by applying
the algorithm for F for n steps, using oracle σ. The length of τ will be the least
k < n such that τ(k) does not converge in n steps.

Remark : The modulus of convergence function µ of F : NN → NN as de-
fined from the approximation map f : N∗ → N∗ may be defined by µ(x, n) =
(least s)|f(x � n)| > s. For a total computable function F , this modulus func-
tion is also computable. The following lemma will be useful. The proof is left
as an exercise.

Lemma 2.4.3. For any computable function F : {0, 1}N → {0, 1}N, there is a
computable uniform modulus function µ : N → N such that for all x ∈ {0, 1}N,
|f(xdµ(n)| > n.

Theorem 2.4.4. Let Φ : NN → NN be a (partial) computable function. Then
the graph of Φ is a Π0

2 class. Furthermore, if Φ is total, then the graph is a
decidable Π0

1 class.

Proof. Let φ be a representing function for Φ. In general, we have,

Φ(x) = y ⇐⇒ (∀m)(∃k)[φ(x � k)(m) = y(m)].
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For a total function, define the computable tree T with graph(Φ) = [T ] by
putting σ ⊕ τ ∈ T if and only if τ is consistent with Φ(σ), that is, for any m, if
Φ(σ,m) = n, then τ(m) = n. Then Ext(T ) is Σ0

1 and hence computable, since

σ ⊕ τ ∈ Ext(T ) ⇐⇒ (∃ρ)[σ ≺ ρ & τ ≺ Φ(ρ)].

To see this, note that if τ � Φ(ρ) and σ � ρ, then for any x ∈ I(σ), τ ≺
F (x).

Example 2.4.5. The graph of a partial computable function need not be closed.
Define the partial function Φ : NN → NN by Φ(x)(m) = 0 · [(least n)x(n) = 1].
For each n, let xn = 0n_1_0∞, so that limnxn = 0∞. Then, for each n,
F (xn) = 0∞, whereas F (0∞) is undefined.

For total functions on {0, 1}N, there is a converse.

Theorem 2.4.6. A function F : {0, 1}N → {0, 1}N is computably continuous if
and only if the graph is a Π0

1 class.

Proof. One direction follows from Theorem 2.4.4. Next suppose that F : {0, 1}N →
{0, 1}N and let T be a computable tree such that graph(F ) = [T ]. Define
a computable function f on strings by letting f(σ) be the common part of
{τ : σ ⊕ τ ∈ T}.

Theorem 2.4.7. A subset D of NN is a Π0
2 class if and only if D is the domain

of some partial computable function Φ : NN → NN.

Proof. Suppose first that D is the domain of Φ. Then

x ∈ Dom(Φ) ⇐⇒ (∀n)(∃k)[|Φ(x � k)| > k].

Next suppose that D is a Π0
2 class and let R be a computable relation such that

x ∈ D ⇐⇒ (∀n)(∃k)R(n, xdk).

Then D is the domain of the partial computable function Φ defined by

Φ(x)(n) = (leastk)R(n, xdk).

We next examine the complexity of the image of a Π0
1 class under a com-

putably continuous function. The classical results is that the image of any
compact set under a continous function is compact and that the image of a
closed set is an analytic set.

Theorem 2.4.8. Let F be a computably continuous function on a Π0
1 subclass

P of NN and let F [P ] = {F (x) : x ∈ P}. Then

1. F [P ] is a Σ1
1 class;
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2. if P is bounded, then F [P ] is a strong Π0
2 class;

3. if P is computably bounded, then F [P ] is a computably bounded Π0
1 class

and, furthermore, if P is decidable, then F [P ] is decidable.

Proof. (1) We have y ∈ F [P ] ⇐⇒ (∃x)(x ∈ P & x⊕ y ∈ graph(F )).
(2) Suppose that T is a finite branching, computable tree and let S be

a computable tree such that graph(F ) = [S]. Then it follows from König’s
Lemma that F [P ] = [R], for the finite branching Σ0

1 tree R defined by

τ ∈ R ⇐⇒ (∃σ)[σ ∈ T and σ ⊕ τ ∈ S].

(3) Now suppose that T is computably bounded and let F be represented
by the computable function f : N∗ → N∗. Then the definition of R above in (2)
becomes computable since the (∃σ) quantifier becomes bounded.

To find a bound for the possible value of τ(n) for τ ∈ R, compute the least m
such that |f(σ)| > n for all σ ∈ T of length m. Then we compute the maximum
value h(r) of f(σ(n)) for all σ ∈ T of length n. Thus R is seen to be highly
computable.

This result has a converse for {0, 1}N.

Theorem 2.4.9. A Π0
1 subclass P of {0, 1}N is the computably continuous image

of {0, 1}N if and only if it is decidable.

Proof. Let P = T , where T is a computable tree with no dead ends. We
will define the computable map f : {0, 1}∗ → {0, 1}∗ which represents a map
F : {0, 1}N → {0, 1}N such that y = F (x) is some element of P which is nearest
to x. Let f(σ) = σ if σ ∈ T and, if σ /∈ T , let ρ be the longest initial segment
of σ which is in T and let f(σ) be the lexicograpical least extension of ρ which
is in T and has length |σ|.

Exercises

2.4.1. Prove Lemma 2.4.3.

2.4.2. A mapping f from N∗ (or {0, 1}∗) into N∗ is a tree homomorphism if σ ≺ τ
implies f(σ) ≺ f(τ) for all σ and τ . Show that for any tree homomorphism
f , T = {τ : (∃σ) : f(σ) ≺ τ} is a tree and that if f is one-to-one and
computable, then T is a computable tree and [T ] is a perfect Π0

1 class.

2.4.3. Show that for Rx ∈ {0, 1}N, x is computable if and only if {x} is a Π0
1

class.

2.4.4. Show that for any computable x ∈ {0, 1}N and any computable function
F : {0, 1}N → {0, 1}N, F (x) is computable.
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2.5 Computably enumerable sets and Π0
1 Classes

There are numerous connections between computable functions, Π0
1 and c.e.

subsets of N, and Π0
1 classes. We will consider in particular the class S(A,B) of

separating sets for a pair of c.e. sets A,B, and the class I(C) of initial subsets of
a Π0

1 set C. Then we will take a first look at the notion of forbidden words and
sets and their connection with Π0

1 classes and with subshifts. In this section,
the notion of retraceability

2.5.1 Separating classes

The most basic example here is that, for any Π0
1 set C, the power set P(C) is a

Π0
1 class. That is, we have

x ⊂ C ⇐⇒ (∀n)[x(n) = 1→ n ∈ C].

More generally, consider the notion of separating sets.

Definition 2.5.1. Let A and B be infinite disjoint c.e. sets and let C ⊂ N.

1. C is a separating set for A and B if A ⊂ C and B ∩ C = ∅.

2. A and B are said to be computably (or recursively) inseparable if there is
no computable separating set C for A and B.

3. The class of separating sets for A and B is denoted by S(A,B).

4. P is a separating class if P = S(A,B) for some c.e. sets A and B.

Of course, C ∈ S(A,B) if and only if C ∈ P(N \ B) and N \ C ∈ P(N \ A).
The notion of computably inseparable sets was introduced by Kleene in [98].
Shoenfield showed in [174] that every non-computable c. e. degree contains
a pair of computably inseparable sets. Shoenfield observed in [174] that the
class S(A,B) of separating sets for A and B is a c. b. Π0

1 class. We note that
S(A,B) is finite if and only if A∪B is cofinite, in which case A and B are both
computable and every separating set is also computable. Otherwise, S(A,B) is
a perfect set and thus has the cardinality of the continuum. In either case, both
the c. e. set A and the co-c. e. set N \B are of course separating sets for A and
B.

The classic example of a separating class comes from the notion of diagonally
non-computable sets. Here a function f ∈ {0, 1}N is diagonally non-computable
if f(e) 6= φe(e) whenever φe(e) converges. Let Ki = {e : φe(e) = i}. Then in
particular, K0 and K1 are c.e. non-computable sets and any separating set for
K0 and K1 has a diagonally non-computable characteristic function. (See the
exercises.) Separating classes are important for the study of reverse mathematics
and so will be examined further in Chapter 6. The complexity of the members
of separating classes will be studied in Chapter 3.

For σ, τ ∈ {0, 1}∗, let σ ⊆ τ mean that, for all i ≤ min{|σ|, |τ |}, σ(i) = 1
implies τ(i) = 1. Define σ ∪ τ to be the sequence ρ of length max{|σ|, |τ |} such
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that ρ(i) = max{σ(i), τ(i)} and similarly define σ ∩ τ to be the sequence ρ of
length max{|σ|, |τ |} such that ρ(i) = min{σ(i), τ(i)}

Recall that for any closed subset P of NN, TP = {σ ∈ {0, 1}∗ : I(σ)∩P 6= ∅}.

Lemma 2.5.2. Suppose that P is a closed subset of {0, 1}N.

1. P is closed under subsets if and only if for every σ ⊂ τ , if τ ∈ TP , then
σ ∈ TP .

2. P is closed under supersets if and only if for every σ ⊂ τ , if σ ∈ TP , then
τ ∈ TP .

3. P is closed under union if and only if, for every σ and τ in TP , σ∪τ ∈ TP .

4. P is closed under intersection if and only if, for every σ and τ in TP ,
σ ∩ τ ∈ TP .

Proof. We prove (1) and (3) and leave (2) and (4) to the reader.
(1) Suppose P is closed under subsets. Let σ ⊆ τ and τ ∈ TP . Then there

exists B ∈ P such that τ � B. Let C = {i ∈ B : σ(i) = 1}. Then C ⊆ B so
C ∈ P by assumption and clearly σ � C. On the other hand, suppose that TP
is closed under ⊆. Let B ∈ P and C ⊆ B. Then for any n, Cdn ⊆ Bdn and
Bdn ∈ TP , so that C ∈ P .

(3) Suppose P is closed under union and let σ and τ be in TP . Then there
exist A and B in P such that σ ≺ A and τ ≺ B. It follows that σ ∪ τ ≺ A ∪B
and A ∪ B ∈ P by assumption, so that σ ∪ τ ∈ TP . Suppose next that TP is
closed under union and let A,B ∈ P . Fix n and let σ = A � n and τ = B � n.
Then (A ∪B) � n = σ ∪ τ ∈ TP since both σ, τ ∈ TP . Hence A ∪B ∈ P .

Lemma 2.5.3. Let P be a closed subset of {0, 1}N. Then P = P(A) for some
A if and only if P is closed under subsets and P is closed under union.

Proof. If P = P(A), then P is certainly closed under subsets and union. Sup-
pose that P is closed under subsets and union and let A = {i : (∃σ ∈ TP )σ(i) =
1}. Suppose first that B ∈ P . If i ∈ B, then σ(i) = 1 for σ = Bd(i + 1) ∈ TP ,
so that i ∈ A. Hence B ⊆ A. Next suppose that B ⊆ A. Then for each i ∈ B,
there exists σi ∈ TP such that σi(i) = 1. Fix n and define σ ∈ {0, 1}n by
σ = ∪{σi : i < n & i ∈ B}. Then σ ∈ TP by Lemma 2.5.2 since P is closed
under union. Also, Bdn ⊆ σ, so that Bdn ∈ TP again by Lemma 2.5.2, since P
is closed under subsets. It follows that B ∈ P .

Observe that if P is actually a Π0
1 class, then TP is a Π0

1 set and the set
A defined in the proof of Lemma 2.5.3 is in fact a Π0

1 set. Thus we have the
following.

Proposition 2.5.4. For any nonempty Π0
1 class P of sets, the following are

equivalent:

1. P is the class of subsets of a Π0
1 set A;



2.5. COMPUTABLY ENUMERABLE SETS AND Π0
1 CLASSES 77

2. P is the class of subsets of some set A;

3. P is closed under subsets and under union.

There is a similar result for supersets, which is left to the exercises.
Let us say that a class P of sets is closed under between-ness if, for any

sets X,Y, Z, if X ⊂ Y ⊂ Z and X,Z ∈ P , then Y ∈ P . It is clear that any
separating class is closed under between-ness.

Proposition 2.5.5. For any Π0
1 class P , the following are equivalent.

1. P is the class of separating sets of some pair A,B of r. e. sets.

2. P is the class of separating sets of some pair A,B

3. P is closed under union, intersection and between-ness.

Proof. It is immediate that (1) implies (2) and (2) implies (3). Suppose therefore
that P is closed under union, intersection and between-ness. Define the Π0

1 class
Q to be the family of subsets of sets in P . That is, for σ ∈ {0, 1}n,

σ ∈ TQ ⇐⇒ (∃τ ∈ {0, 1}n)σ ⊆ τ & τ ∈ TP .

It is clear that Q is closed under subsets and under union, so it follows from
Proposition 2.5.4 that Q = P(C) for some Π0

1 set C. Let B = N \ C.
Similarly define the Π0

1 class R to be the family of supersets of sets in P .
That is, for σ ∈ {0, 1}n,

τ ∈ TR ⇐⇒ (∃σ ∈ {0, 1}n)σ ⊆ τ & τ ∈ TP .

It follows that R is the class of supersets of some c.e. set A.
We claim that P = Q ∩ R = S[A,B]. Suppose first that X ∈ P . Then

certainly X ∈ Q ∩ R and therefore A ⊆ X and X ∩ B = ∅. Next suppose that
X ∈ S[A,B]. Then A ⊆ X, so that X ∈ R and therefore Y ⊆ X for some
Y ∈ P . Also, X ∩B = ∅, so that X ⊆ C and X ∈ Q, which means that X ⊆ Z
for some Z ∈ P . It now follows by the between-ness property that X ∈ P .

The proof of the following corollary is left as an exercise 6.

Corollary 2.5.6. For any subset A of N, if {A} is a Π0
1 class, then A is a

computable set.

2.5.2 Subsimilar classes

The notions of a subsimilar set (or subshift) and of forbidden words provides
another link between c. e. sets and Π0

1 classes and is also closely related to
symbolic dynamics.

Definition 2.5.7. 1. A finite string σ ∈ N∗ is a factor of another string τ
if τ = τ0

_σ_τ1 for some strings τ0, τ1.
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2. Similarly σ ∈ N∗ is a factor of x ∈ NN if x = τ_σ_Y for some strings τ
and some Y ∈ NN.

3. x ∈ NN avoids σ if σ is not a factor of x and x avoids a set S of strings
if x avoids each σ ∈ S.

4. AV (S) ⊆ NN is the set of reals which avoid S.

Similar definitions apply for strings in {0, 1}∗ and infinite words in {0, 1}N
and also for finite and infinite sequences any other alphabet Σ. In symbolic
dynamics, strings are referred to as words and infinite sequences as infinite
words. The set S may be thought of a set of forbidden words for AV (S).

The shift function Shift is defined as follows.

Definition 2.5.8. 1. For a finite string τ , Shift(τ) = (τ(1), τ(2), . . . , τ(|τ |−
1).

2. For an infinite sequence x, Shift(x) = (x(1), x(2), . . . ).

3. A set Q ⊆ NN is a subshift (or subsimilar) if Shift(x) ∈ Q for all x ∈ Q;
that is, Q is closed under the subshift function.

Informally, the shift function simply removes the first symbol of a finite or
infinite sequence.

Lemma 2.5.9. For any set S, AV (S) is closed; if S is c. e. , then AV (S) is a
Π0

1 class.

The proof is left as an exercise.

Theorem 2.5.10 (Dashti [20]). 1. A closed set Q is a subshift if and only
if Q = AV (S) for some set S.

2. A Π0
1 class Q is a subshift if and only if Q = AV (S) for some set c. e. set

S.

Proof. For the first part, it is clear thatAV (S) is a subshift, so we will just sketch
the reverse implication. Suppose that P ⊆ {0, 1}N is subsimilar and closed, and
let S = {0, 1}∗ − TP . If x /∈ P , then for some n, x � n ∈ S, so that x /∈ AV (S).
On the other hand, suppose that x /∈ AV (S) and let x = (x � n)_τ_y for some
n < ω and some τ ∈ S. Then τ /∈ TP and thus τ_y /∈ P . Since P is subsimilar,
it follows that x /∈ P . A similar argument works for any alphabet Σ.

The proof of the effective version of this proposition is left as an exercise.

Exercises

2.5.1. Show that the diagonally non-computable functions form a Π0
1 class in

{0, 1}N.

2.5.2. Show that S(K0,K1) is a Π0
1 class of sets with no computable members,

that is, K0 and K1 are computably inseparable.



2.6. RETRACEABILITY 79

2.5.3. Suppose that P = [T ] where T is a tree with no dead ends. Show the
following.

(a) P is closed under supersets if and only if, for every σ ∈ T and every
τ such that σ ⊆ τ , τ ∈ T .

(b) P is closed under intersection if and only if, for every σ and τ in T ,
σ ∩ τ ∈ T .

2.5.4. Let P be a closed subset of {0, 1}N. Then P is the class of supersets of
some set A if and only if P is closed under supersets and P is closed under
intersection.

2.5.5. Show that, for any nonempty Π0
1 class P of sets, the following are equiv-

alent:

(i) P is the class of supersets of a Σ0
1 set A;

(ii) P is the class of supersets of some set A;

(iii) P is closed under supersets and under intersection.

2.5.6. Use Proposition 2.5.5 to show that for any subset A of N, if {A} is a Π0
1

class, then A is a computable set.

2.5.7. Show that a Π0
1 class Q is subsimilar if and only if Q = AV (S) for some

c. e. set S.

2.6 Retraceability

For any infinite set A, recall that the principal function pA enumerates the
elements a0 < a1 < · · · in increasing order and that A is hyperimmune if, for
any computable function f , there is an n such that an > f(n). A c. e. set
is hypersimple if its complement is hyperimmune. A is said to be retraceable
if there is a partial computable function φ such that φ(an+1) = an for all n.
Retraceable sets were introduced by Dekker and Myhill [51], who proved that
any retraceable noncomputable Π0

1 set A is hyperimmune. For Π0
1 sets A, a

stronger characterization can be given.

Theorem 2.6.1. The following are equivalent for any infinite Π0
1 set A:

(a) A is retraceable

(b) There is a total computable function Φ such that, for all n, Φ(an+1) = an
and, for all y, {x : Φ(x) = y} is finite.

(c) There is a total computable function Ψ such that, for all n, Ψ(an) = n
and {x : Ψ(x) = n} is finite
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Proof. Let A = {a0 < a1 < · · · } be an infinite Π0
1 set and let A be the decreasing

intersection of uniformly computable sets As.

(a)→ (b): Let φ be a partial computable retracing function for A. Assume,
without loss of generality, that φ(a0) = a0. Then for any x, we define Φ(x) as
follows. Look for the least s such that either x /∈ As, or such that φs(x) = y ≤ x
converges and, for all z with y < z < x, z /∈ As. In the former case, we let
Φ(x) = x and in the latter case, we let Φ(x) = φ(x). Note that if x /∈ A, then
the former case will obtain and if x ∈ A, then the latter case will obtain, so that
Φ is total and is a retracing function for A. It follows from the definition that
for every x, Φ(x) ≤ x and there are no elements of A between Φ(x) and x. Now
for any y, let a be the least such that a > y and a ∈ A. Then Φ(x) = y implies
that x ≤ a, so that {x : Φ(x) = y} is finite, as desired.

(b) → (c): Let Φ be given as described. Then we define Ψ(x) to be length
n of the chain x > Φ(x) > Φ(Φ(x)) > · · · > Φn(x) = a0, if there is such an
n-chain, and Ψ(x) = x if Φi+1(x) = Φi(x) for some i. Thus for an ∈ A, we
obtain Ψ(an) = n. To complete the proof, we show by induction that, for each
n, there are only finitely many n-chains x > Φ(x) > · · · > Φn(x) = a0 of length
n. For n = 1, this follows from the assumption that Φ(x) = a0 for only finitely
many x. Suppose now that there are only finitely many such n-chains of length
n. Then any n + 1-chain must extend one of these and, by our assumption,
there are only finitely many ways to extend each chain. Thus there can be only
finitely many n+ 1-chains.

(c)→ (a): Let Ψ be given as described. Then for a = an+1 ∈ A, Ψ(a) = n+1
and the retracing function φ(an+1) = an may now be computed by searching
for the least s such that exactly n+ 1 elements of As are less than a and taking
an to be the largest of those.

We say that an infinite set A = {a0 < a1 < · · · } is second-retraceable if there
is a (total) computable function Φ such that, for any m < n, Φ(am, an) = m. In
general, A is k-retraceable if there is a computable Φ such that Φ(am1

, am2
, . . . , amk) =

m1 for any m1 < m2 < · · · < mk. Of course, any k + 1-retraceable set is also
k-retraceable.

A subset F of the set {a0 < a1 < · · · } is said to be an initial subset of A if
an+1 ∈ F implies an ∈ F for all n. Thus the initial subsets of A are A together
with the finite sets {a0, . . . , an−1} for each n. Let I1(A) denote the class of
initial subsets of A. In general, the k-initial subsets Ik(A) are the subsets F of
A such that for any elements a < b1 < b2 < · · · bk of A, if b1, . . . , bk ∈ F , then
a ∈ F .

Theorem 2.6.2. For each finite k, the set A = {a0 < a1 < . . . } is Π0
1 and

k-retraceable if and only if the class Ik(A) of k-initial subsets of A is a Π0
1 class.

Proof. Suppose first that A is k-retraceable via the function Φ and that A is a
Π0

1 set. Let As denote the computable approximation to the set A at stage s,
so that A = ∩sAs. Now define the computable tree T as follows.

bb0, b1, . . . , bn, sc ∈ T ⇐⇒
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1. (∀i ≤ n)(bi ∈ As) and

2. if n ≥ k, then Φ(bn−k+1, bn−k+2, . . . , bn−1, bn) = n− k + 1.

It is easy to check that [T ] = Ik(A), so that Ik(A) is a Π0
1 class.

Now suppose that Ik(A) is a Π0
1 class and let T be a computable tree so

that Ik(A) = [T ]. We will explain how to compute a k-retracing function
Φ. Given b1 = am1

< b2 = am2
< . . . < bk = amk , observe that there is

only one possible string σ = ba0, a1, . . . , am1−1, b1, b2, . . . , bkc_1 of the form
bc0, c1, . . . , cr, b1, b2, . . . , bkc_1 which has an extension in T ; Φ(b1, . . . , bk) = m1

is then easily computed from σ. To find σ, we just search through all strings of
length m > bk until we find m large enough so that all strings τ in T of length
m and with τdbk + 1 of the desired form, start with the same initial segment
(σ) of length bk + 1.

To see that A is a Π0
1 set, recall that Ext(T ) is Π0

1 and observe that
a ∈ A ⇐⇒ (∃σ)[|σ| = a+ 1&σ ∈ Ext(T )&σ(a) = 1].

We can now give a quick proof that any retraceable non-computable Π0
1 set

is hyperimmune.

Theorem 2.6.3. [Dekker-Myhill] If A = {a0 < a1 < · · · } is a retraceable
non-computable Π0

1 set, then A is hyperimmune.

Proof. By Theorem 2.6.2, P (A) is a Π0
1 class. Now suppose by way of con-

tradiction that f were a computable function which dominated pA, that is,
f(n) > pA(n) for all n. Then the set {A} would be the intersection of I(A) with
the following Π0

1 class:
{B : (∀n)(card(B ∩ {0, 1, . . . , f(n)}) ≥ n}.
Thus {A} would be a Π0

1 class, so that A would be computable (this is seen
below in Exercise 4.1.11. This contradiction now demonstrates the result.

For any k-retraceable Π0
1 set A, the Π0

1 class Ik(A) is provides an example
of a class with C-B rank k.

Theorem 2.6.4. For any set A, Dk(Ik(A)) = {A}.

Proof. It is easy to see that D(I(A)) = {A} and that, for each k, D(Ik+1(A)) =
Ik(A).

It follows that if A is k-retraceable, then A has rank k in Ik(P ) and thus has
rank ≤ k.

We next give a result which shows how to define a retraceable Π0
1 set by

Π0
1-recursion.

Theorem 2.6.5. Suppose that the set A = {a0 < a1 < . . . } is defined recur-
sively by a Π0

1 relation Q(x, y) such that, for all n and x, x = an ⇐⇒ Q(x,<
a0, . . . , an−1 >). Then A is a Π0

1 set and is retraceable.
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Proof. Define the Π0
1 relation R(n, x) by

R(n, x) ⇐⇒ (∃x0 < · · · < xn−1 < xn = x)(∀i < n)Q(xi, < x0, . . . , xi−1 >).
Then the set A is Π0

1 since
a ∈ A ⇐⇒ (∃n ≤ a)R(n, a).
Define the uniformly computable relation Rs(n, x) as in the definition of R

above with Qs in place of Q.
The counting function Ψ such that Ψ(an) = n may of course be defined by

the fact that n is the unique y such that R(y, an). Since, given a ∈ A, there is
just one n ≤ a such that a = an, Ψ(a) = n may be computed by searching for
an s large enough so that Rs(n, a) for only one number n ≤ a.

This result can now be applied to give a quick proof of the following theorem
of Dekker and Myhill [51] (Theorem T3).

Theorem 2.6.6. [Dekker-Myhill] Every r.e. set B is Turing equivalent to a
retraceable Π0

1 set A.

Proof. Let the c.e. set B be the union of uniformly computable sets Bs and
define the set A by Π0

1 recursion as follows. There are two cases in the definition
of an. If n /∈ B, then an = an−1 + 1 and if n ∈ B, then an is the least s > an−1

such that n ∈ Bs. It is clear that this is a Π0
1-recursion, so that A is a Π0

1

retraceable set. The definition also shows that A is computable in B. On the
other hand, for any n, we have n ∈ B ⇐⇒ n ∈ Ban , so that B is computable
in A.

Definition 2.6.7. The Cantor-Bendixson (C-B) rank of a set A is the least
ordinal α such that A has rank α in some Π0

1 class P ⊂ {0, 1}N.

It follows from Theorems 2.6.4 and 2.6.6 that every non-zero r.e. degree
contains a set A of C-B rank one. A slightly better result was obtained in [22]
by Cenzer, Downey, Jockusch and Shore, hereafter abbreviated as C-D-J-S.

Theorem 2.6.8. [C-D-J-S] Every c.e. non-computable set B is Turing equiva-
lent to a hypersimple c.e. set E of rank one; furthermore there is a computable
tree U with no dead ends such that D([U ]) = {E}.

Proof. Let A = a0 < a1 < · · · be the Π0
1 retraceable set defined in Theorem

2.6.6 and let A be the intersection of the uniformly computable, decreasing
sequence As. Define the computable tree S to be a slight extension of the tree
T defined in Theorem 2.6.2. That is, we let Φ be the retracing function given
by Theorem 2.6.1 for A so that Φ(an+1) = an and so that {x : Φ(x) = y} is
finite for each y, and define
bc0, . . . , cn, cn+1c ∈ S ⇐⇒ c0 = a0 & (∀i ≤ n)[ci ∈ Acn & (i > 0 → Φ(ci) =
ci−1)].

S has no dead ends because for any string σ ∈ S, it is clear that σ_0 ∈ S.
We leave it to the reader to check that D(P ) = {A}.
To obtain the c.e. set E, we note that the complement function F (C) = N\C

is a computable homeomorphism of {0, 1}ω to itself, so that the c.e. set E = N\A
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has rank one in the Π0
1 class of complements {F (C) : C ∈ P}. Finally, any

retraceable noncomputable Π0
1 set is hyperimmune by Theorem 2.6.3, so that E

is hypersimple.

Exercises

2.6.1. Verify that D(I(A)) = {A} and that, for each k, D(Ik+1(A)) = Ik(A).

2.6.2. Show that D(P ) = {A}, in the proof of Theorem 2.6.8.

2.6.3. For any computable function f , the set K(f) = {x : (∀n)x(n) ≤ f(n)} is
a c. b. Π0

1 class. Show that K(pA) is also a Π0
1 class, where A is a infinite

Π0
1 set and pA is the principal function defined above.

2.6.4. Show that for the total retracing function Φ of Theorem 2.6.1, if g(x) =
card({y : Φ(y) = x}) is computable, then A is a computable set. However,
show that for the retraceing function from Theorem 2.6.6, there is always
a computable upper bound for the cardinality.

2.7 Reducibility

In this section, we consider some connections between subclasses of {0, 1}N,
computably bounded Π0

1 classes, bounded classes and Π0
n classes. Our goal is

to reduce every class to a class of sets.
Computably bounded Π0

1 classes play a fundamental role and occur fre-
quently in the applications. A very useful result which simplifies the theory
of c. b. Π0

1 classes is that every such class is computably homeomorphic to a
subclass of {0, 1}N.

Definition 2.7.1. Classes P and Q are computably homeomorphic if there is
a (total) computably continuous functional F : NN → NN such that F maps P
one-to-one and onto Q.

Notice that we do not require that F be one-to-one onto NN or that it map
NN onto NN.

Lemma 2.7.2. If there is a partial computable function Φ mapping a subset of
NN to a subset of NN such that Φ is total on P and maps P one-to-one and onto
Q, then P and Q are computably homeomorphic.

Proof. Let Φ have a representation φ : N∗ → N∗; that is, let φ(σ) be the
longest sequence of the form (Φ(0, σ),Φ(1, σ), . . . ,Φ(n−1, σ)). Let P = [T ] and
Q = [S] for computable trees tree S and T , Define a new mapping f : N∗ → N∗
by letting f(σ) = φ(σ) for σ ∈ T and letting f(σ_n) = f(σ)_n if σ_n /∈ T .
Then f represents a computably continuous function F such that F (x) = Φ(x)
for x ∈ P and F (x) = φ(x � k)_(x(k), x(k + 1), . . . ) if x /∈ P and k is the least
such that x � k + 1 /∈ T .
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Theorem 2.7.3. Any c. b. Π0
1 class P is computably homeomorphic to a Π0

1

class Q of sets.

Proof. Let T be a highly computable tree such that P = [T ] and let h be a
computable function such that σ(n) < h(n) for all σ ∈ T and all n < |σ|.

The homeomorphism Φ will be defined by

Φ(x) = 0x(0)10x(1) . . .

and the class Q ⊂ {0, 1}N is simply {Φ(x) : x ∈ P}.
The functional Φ is clearly one-to-one and maps P onto Q. Φ is com-

putably continuous since it is represented by the computable map taking σ =
(σ(0), . . . , σ(n − 1)) to 0σ(0)1 . . . 0σ(n−1). Q = Φ[P ] is a Π0

1 class by Theorem
2.4.8.

More specifically, Q = [S], where

0x(0)10x(1) . . . 0x(k−1)10i ∈ S ⇐⇒ (x(0), . . . , x(k − 1)) ∈ T & i < h(k)}.

This result can be relativized to an oracle. Also, we can apply the same
argument to Π0

1 classes which are not computably bounded.

Theorem 2.7.4. (a) Any strong Π0
2 class P which is highly computable in 0′

is computably homeomorphic to a strong Π0
2 class Q of sets.

(b) For any Π0
1 class P , there exists a Π0

1 class Q ⊂ {0, 1}N and a one-to-one
degree-preserving correspondence between the non-computable members of
P and the non-computable members of Q.

Proof. (a) This is just the relativization of Theorem 2.7.3 to the oracle 0′.
(b) Consider the representation of the mapping from Theorem 2.7.3. We

can use the same mapping as above, but in this case Theorem 2.4.8 only tells
us that the image is a strong Σ1

1 class. If we look at the definition of the tree S
such that Q = [S], we have to remove the condition i < h(k). This potentially
introduces computable elements 0x(0)10x(1) . . . 0x(k−1)0ω into Q. However, any
non-computable element has infinitely many 1’s and hence will be the image of
an element of P .

If the same technique is applied to a bounded Π0
1 class, we get one half of

the following result from [86].

Theorem 2.7.5. [Jockusch-Lewis-Remmel]

(a) Any bounded Π0
1 class P is computably homeomorphic to a strong Π0

2 class
Q of sets.
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(b) For any strong Π0
2 class P which is highly computable in 0′, there is a

bounded Π0
1 class Q and an effective one-to-one degree-preserving corre-

spondence between P and Q.

Proof. (a) This is left as an exercise.

(b) Let P = [T ], where S is highly computable in 0′. By Theorem 2.7.4,
we may assume that T is a binary tree. It now follows from Proposition 2.3.7
that T may be assumed to be a Σ0

1 tree. Thus there is a computable relation
R ⊂ N× {0, 1}∗ such that

x ∈ P ⇐⇒ (∀m)(∃n)R(n, x � m).

Now we may define Q by

z = x⊕ y ∈ Q ⇐⇒ (∀m)[R(y(m), x � m) & ∀i < y(m)¬R(i, x � m)].

Then for each x ⊕ y ∈ Q, we have x ∈ P and for each x ∈ P , there is a
unique y such that x⊕ y ∈ Q and that y is defined so that y(m) is the least n
such that R(n, x � m). Thus y is computable in x and therefore x ⊕ y has the
same degree as x.

The proof of part (b) can be modified for an arbitrary Π0
2 class to give a

theorem from [87]. The proof is left as an exercise.

Theorem 2.7.6 (Jockusch-McLaughlin). For any Π0
2 class P , there is a Π0

1

class Q and an effective one-to-one degree-preserving correspondence between P
and Q.

Jockusch and Soare showed in Theorem 1 of [90] that an arbitrary Π0
1 class

P with no computable members can be represented by a c. b. Π0
1 class Q in the

sense that the degrees of members of P are a subset of the degrees of members
of Q. We give this result together with a relativized version. Let D(P ) denote
the set of degrees of members of the class P .

Theorem 2.7.7. (a) For any Π0
1 class P ⊂ NN, there is a Π0

1 class R of sets
such that (1) D(P ) ⊂ D(R) and (2) there is a one-to-one correspondence
between the computable members of P and the computable members of R.
(So that R has no computable members if P has no computable members.)
Furthermore, there is a primitive recursive function k such that for P =
Pe, we have R = Pk(e).

(b) For any Π0
1 class P ⊂ NN with no members computable in 0′, there is

a strong Π0
2 class R of sets with no members computable in 0′ such that

D(P ) ⊂ D(R). Furthermore, there is a primitive recursive function h such
that for P = Pe, we have R = P 2

h(e).
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Proof. (a) Let Q be a Π0
1 class of sets with no computable member. Let P = [S],

let Q = [T ] and assume without loss of generality that S ⊂ (N \ {0, 1})∗.
It suffices, by Theorem 2.7.3 to obtain a classR which is computably bounded

and otherwise meets the requirements of the conclusion. Define the tree U to
be the set of strings

mu = σ1 ∗ τ1 ∗ σ2 ∗ τ2 ∗ · · · ∗ σn ∗ τn

such that σi 6= ∅ for i > 1 and τj 6= ∅ for j < n, such that s(µ) = σ1∗· · ·∗σn ∈ S
and τj ∈ T for all j, and such that µ(k) ≤ k + 1 for all k.

We claim that R = [U ] satisfies the requirements of the theorem. Note first
that the construction is uniformly computable in the tree T , so that there is a
primitive recursive function k such that the for T = Te, the tree U = Tk(e).

The tree U is finite-branching by the restriction that µ(k) ≤ k + 1. Thus
R is a computably bounded Π0

1 class. Now for any x ∈ P we can define z ∈ R
with the same degree as x as follows. First of all, define a computable sequence
∅ = t0, t1, . . . such that tj is the lexicographically least string in T of length j.
Now given x, let

zx = ti0 ∗ (x(0)) ∗ ti1 ∗ x(1)) · · · ,

where for each n, in is the least such that

x(n) ≤ |ti0 ∗ (x(0)) ∗ · · · ∗ tin |+ 1.

Then zx is computable in x by the definition, and x is computable in zx, since
it is the subsequence of zx consisting of the entries zx(n) > 1.

Now let z be any element of R which is not of the form zx for any x. There
are two cases.

(Case 1): Suppose that z(i) > 1 for infinitely many i and let i0, i1, . . .
enumerate {i : z(i) > 1}. Define x by x(n) = z(in). Then x is computable in z
and that x ∈ P , so that x is not computable and therefore z is not computable.

(Case 2): Suppose that z(i) > 1 for only finitely many i and let m be
the largest such that z(m) > 1. Define y by y(n) = z(m + n). Then y is
computable in z and that y ∈ Q, so that y is not computable and therefore z is
not computable.

(b) The proof is just a modification of the proof of (a). Let Q = [T ] in this
case be a strong Π0

2 class of sets with no member computable in 0′. Then we
define a tree U computable in 0′ with µ(k) ≤ k+1 as above so that R = [U ] is a
c. b. strong Π0

2 class with the desired properties and apply Theorem 2.7.5(a).

We will consider members of Π0
1 classes in detail in Chapter 3.

Exercises

2.7.1. Show that there exist Π0
1 classes P and Q which are computably home-

omorphic, but for which there can be no homeomorphism F of NN onto
itself which maps P one-to-one and onto Q.
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2.7.2. Show that if P = [T ] where T is a finite-branching, Σ0
1 tree, then P is

highly computable in 0′.

2.7.3. Show that there is a computably continuous map on NN such that the
image is not even a closed set.

2.8 Thin and minimal classes

A Π0
1 class P is said to be thin if, for every Π0

1 subclass Q of P , there is a clopen
set U such that Q = U ∩ P . An infinite Π0

1 class C is said to be minimal if
every Π0

1 subclass Q of C is either finite or cofinite in C. Thus the notion of a
minimal Π0

1 class is the analog of the notion of a co-maximal Π0
1 subset of ω.

In particular, if C is a co-maximal set, then the class of subsets of C containing
either one or no elements is an example of a minimal Π0

1 class which is not thin.
(See the exercises.)

We have seen that any isolated element of a computably bounded Π0
1 class

must be computable. For a thin Π0
1 class, the converse also holds. (Exercise 2).

It follows that a perfect thin class has no computable members.
The first construction of a thin Π0

1 class is due to Martin and Pour-El [131].

Theorem 2.8.1. (Martin–Pour-El) There exists a perfect thin Π0
1 class with

no computable member.

Proof. Let Pe = [Te] be the e’th Π0
1 class as in Theorem 2.3.3 and let φe be the

e’th partial recursive function from ω into {0, 1}. We will construct a recursive
tree S with corresponding Π0

1 class P = [S] and a homeomorphism F from
{0, 1}ω onto P . F will be constructed by means of a map f : {0, 1}<ω → S such
that σ ≺ τ ⇐⇒ f(σ) ≺ f(τ); then for x ∈ {0, 1}ω, F (x) = ∪nf(xdn).

To ensure that P is thin, we construct f to satisfy the following requirement
for each e.

Re: For each σ ∈ {0, 1}e+1, if f(σ) ∈ Te, then (∀τ)(σ ≺ τ → f(τ) ∈ Te).
To see that this makes P thin, let U = ∪{I(f(σ) : |σ| = e+ 1 & f(σ) ∈ Te}

and observe that if Pe ⊂ P , then Pe = P ∩ U .
The map f is defined in uniformly computable stages fs, beginning with f0

as the identity function.
(Stage s + 1): Look for e < s and σ ∈ {0, 1}e+1 and τ � σ with |τ ≤ s + 1

such that fs(σ) ∈ Te, but fs(τ) /∈ Te. If such e, σ and τ exist, then we take
the least such e and the lexicographically least σ and τ for that e. Then we let
fs+1(σ) = fs(τ) and in general, for any ρ we let

fs+1(σ_ρ) = fs(τ
_ρ) and

fs+1(ρ) = fs(ρ) for ρ incomparable with σ.
If no such e, σ and τ exist, then we just let fs+1 = fs.
It is easy to see by induction on |σ| that for each σ, fs(σ) converges to a limit

f(σ). Then we see by induction on e that the requirements Re are satisfied.

Countable thin classes were studied in [22].
The connection between thin and minimal classes is given by the following.
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Theorem 2.8.2. (C-D-J-S) The following are equivalent for any Π0
1 class P .

(a) P is thin and D(P ) is a singleton.

(b) P is minimal and has a non-computable member.

Proof. (a) → (b): Suppose that P is thin and that D(P ) = {A}. Then A is
non-computable by Exercise 2. Let Q be a Π0

1 class such that Q ⊂ P . Then
Q = U ∩ P for some clopen U , so that P \ Q is also a Π0

1 class. If both Q
and P \Q were infinite, then both would contain limit points, contradicting the
assumption that P has only one limit point.

(b) → (a): Suppose that P is minimal and has a nonrecursive member A.
Then A ∈ D(P ) by Corollary 2.2.16. For any B 6= A in P , let U be an interval
such that A ∈ U and B /∈ U . Then U ∩ P is infinite, and therefore P \ U must
be finite, which implies that B /∈ D(P ). Therefore D(P ) = {A}. Now let Q be
any Π0

1 subclass of P . For any B 6= A in P , let U(B) be an interval such that
U(B) ∩ P = {B}. Since P is minimal, there are two cases.

Case 1: Q is finite. Then Q = P ∩ ∪B∈QU(B).
Case 2: P \Q is finite. Then Q = P ∩ [2ω \

⋃
B∈P\Q U(B)].

We next construct a minimal, thin class.

Theorem 2.8.3 ([22]). There exists a minimal, thin Π0
1 class P ; furthermore,

P is decidable.

Proof. Let Pe = [Te] be the e’th Π0
1 class as above. We will construct a set A,

a sequence τ0 ≺ τ1 ≺ . . . of strings with A = ∪iτi and a Π0
1 class P such that

(1) D(P ) = {A}.
(2) For any e and any extension B ∈ P of τe, if A ∈ [Te], then B ∈ [Te].
Properties (1) and (2) imply that P is minimal, by the following argument.
Note first that, for all B ∈ P , if B 6= A, then the set B is isolated in P by

property (1), so that there exists a clopen set U(B) such that P ∩U(B) = {B}.
Suppose now that [Te] is a subset of P . Then there are two cases.

(Case 1) If A /∈ Pe, then, since A is the only limit point of P and every
infinite class has a limit point, it follows that Pe is finite.

(Case 2) If A ∈ Pe, then it follows from property (2) that every extension
of τe is also in Te. Now the set P \ I(τe) of paths through T which are not
extensions of τe is a closed set and has no limit point (since A is the only limit
point of P ). Thus P \ I(τe) is finite and, since P \ Pe ⊂ P \ I(τe), P \ [Te] is
also finite.

It also follows from properties (1) and (2) that A is not computable. To
see this, suppose by way of contradiction that A were computable. Then {A}
would be a Π0

1 class, so that {A} = Pe for some e. Now by property (2), we
have P ∩ I(τe) ⊂ Pe, which makes A isolated in P , contradicting property (1).
It now follows from Theorem 2.8.2 that P is thin.

It remains to construct the set P . The construction will proceed in stages.
At stage s we will have, for e ≤ s, finite sequences τse such that, for all e < s,
τs_e 1 ≺ τse+1. The construction will ensure the existence of the limits τe =
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lims τ
s
e for each e. The point A will the union of {τe : e ∈ ω}. At the same

time we will be defining a sequence k(0) < k(1) < · · · so that s ≤ k(s) and
constructing a computable tree T in stages T s. At stage s, we will have decided
whether each finite sequence of length k(s) is in T . This will ensure that T is
computable. We will always put σ_0 into T whenever σ is in T . This will imply
that xe = τ_e 0ω ∈ P for all e; since A is non-computable and therefore infinite,
there are infinitely many distinct xe, so that A ∈ D(P ). This also implies that
P is decidable, that is, T has no dead ends. To obtain D(P ) = {A}, we do
the construction so that, whenever τs+1

e = τse , then there are no new branches
added below τse . Thus once we have reached a stage s such that τse = τe and
counted the number n of distinct branches of T s not passing through τse , then
we know that all but n points of P will pass through τe. Now suppose that
some path B is in D(P ) but is different from A. Just let k be the least number
such that A(k − 1) 6= B(k − 1) and let e be least such that Adk ⊂ τe. Then no
extension of Bdk passes through τe. It follows that the set of extensions of Bdk
in P is finite, so that B is isolated in P . This will take care of property (1).

In order to satisfy property (2), we want the construction to ensure the
following requirements for each e.

(Re): If τe ∈ Te, then every extension of τe which is in T is also in Te.

We begin the construction by setting k(0) = 1, putting (0) and (1) in T 0

and setting τ0
0 = ∅.

Now suppose we have completed the construction as far as stage s. At stage
s + 1, we look for the least number e ≤ s such that τse ∈ T s ∩ Te but τse has
some extension τ ∈ T s which is not in Te. If such an e exists, then we act
on requirement Re at stage s + 1, as follows. Let τ be the lexicographically
least extension of τse of length k(s) which is in T s \ Te. Then let τs+1

e = τ .
For i < e, let τs+1

i = τsi . For i ≤ s − e + 1, let τs+1
e+i = τ_1i. Now let

k(s+ 1) = k(s) + s− e+ 1 and define T s+1 to be the union of T s with the set of
the following strings. First, for any σ ∈ T s of length k(s) and any i ≤ s− e+ 1,
the extension σ_0i. Next, for any i ≤ s− e+ 1, and any j ≤ s− e+ 1− i, the
extension τ_(1i)_(0j).

If there is no such e, just let τs+1
i = τsi for all i ≤ s and let τs+1

s+1 = τss
_1.

Let k(s+1) = k(s)+1 and let T s+1 be the union of T s with the set of all strings
σ_0 where σ ∈ T s and the string τs+1

s+1 .

Observe that in either case, we have extended all nodes in T s by at least one
node in T s+1, so that T will have no dead ends.

Claim 1: For every e, the sequence τse converges to some limit τe.

Proof of Claim 1: This is by induction on e. Suppose therefore that Claim 1
is proved for all i < e and that we have reached a stage s such that τsi = τi for
all i < e. There are two cases. If τ re = τse for all r > s, then the limit τe = τse
and we are done. Otherwise, let r > s be least such that τ re 6= τse . It follows
from the construction that we must have τ re /∈ Te. After stage r, there is no way
that τ te can be different from τ re . Thus the limit τe = τ re .

Since τse ≺ τse+1 for all s and e, it follows that τe ≺ τe+1 for all e. Thus we
can define the set A to have characteristic function ∪eτe.
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Claim 2: For any e and any s, if τs+1
e = τse , then there are no new branches

in T s+1 \ T s which do not pass through τse .
Claim 2 is immediate from the construction.

It now follows that, for any e, all but finitely many points of P pass through
τe. It follows from the discussion preceding the construction that D(P ) = {A}.

Claim 3 If τe ∈ Te, then every extension of τe which is in T is also in Te.

Proof of Claim 3: Suppose by way of contradiction that τe ∈ Te but that τe
has some extension τ ∈ T such that τ /∈ Te. Consider a stage s > lh(τ) such
that τsi = τi for all i ≤ e and τ ∈ T s. Then at stage s + 1, we have τ ∈ T s so
the construction dictates that we act on requirement Re and make τs+1

e = τ ,
contradicting the assumption that τse = τe.

This establishes property (1) and (2) above and thus completes the proof

We close the section with two important properties of thin classes.

Lemma 2.8.4. Let Q ⊆ {0, 1}N be a thin Π0
1 class. Then

1. Every Π0
1 P ⊆ Q is thin;

2. For any computable Φ : {0, 1}N → {0, 1}N, Φ[Q] is thin.

Proof. (1) is trivial. For (2), suppose that R ⊆ Φ[Q]. Then Φ−1[R] is a Π0
1

subclass of Q and hence Φ−1[R] = U ∩Q for some clopen U . Thus R = Φ[U ]∩Q
and Φ[U ] is clopen since {0, 1}N is compact.

Exercises

2.8.1. Show that for any maximal c.e. set A, the class containing the empty set
together with all singletons {m} where m /∈ A, is an example of a minimal
Π0

1 class which is not thin.

2.8.2. Show that any computable element of a thin Π0
1 class must be isolated.

2.9 Mathematical Logic

In this section, we set up the framework for the representation and application
of Π0

1 classes, using the area of logical theories. There is a very close connection
between Π0

1 classes and logical theories and we will return to this topic in later
sections as we develop the theory of Π0

1 classes.
Recall the arbitrary first-order effective language L described in Chapter 1.

Let Sent(L) be the set of sentences of L. For any subset Γ of Sent(L), the set
Con(Γ) of consequences of Γ is the closure of Γ under logical deduction and
the set Ref(Γ) of refutations of Γ is the set of negations of the consequences
of Γ. A subset Γ of Sent(L) is a first order logical theory if Γ is closed under
logical deduction. Σ is said to be a set of axioms for Γ if Γ = Con(Σ) and Γ
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is (computably) axiomatizable if Γ has a computable set of axioms; the mod-
ifier (computably) will normally be omitted. It is not hard to see that Γ is
axiomatizable if and only if Γ is computably enumerable. A theory is said to be
decidable if it is computable. It follows from Post’s Theorem that a complete
axiomatizable theory is decidable.

The usual idea for the application of Π0
1 classes is that the set of solutions to

some computable problem should correspond to a Π0
1 class. The problem here is

to find a complete consistent extension of a given computable or axiomatizable
theory. The classical result here is the Completeness Theorem of Gödel that any
consistent theory has an extension to a complete consistent theory and follows
as usual from Zorn’s Lemma. The other fundamental result is the Compactness
Theorem, which states that if all finite subsets of a theory Γ have a model, then
Γ has a model; this follows from König’s Lemma.

Shoenfield observed in [174] that in general, the family of complete, consis-
tent extensions of an axiomatizable first order theory can be represented by a
Π0

1 class. Now the undecidability of arithmetic was discovered by Turing and
Church (independently) in 1936, following soon after Gödel’s incompleteness
theorem. This result stated that there is no decidable complete consistent ex-
tension of Peano Arithmetic and also showed, in our terminology, that there is
a nonempty c. b. Π0

1 class with no computable member. This led to the defini-
tion of an essentially undecidable theory as a theory with no decidable complete
consistent extension. Now if Σ is any consistent complete extension of a theory
Γ, then Σ separates the set T of consequences of Γ from the set R of refuta-
tions of Γ. A theory is said to be separable if the consequences and refutations
can be separated by a computable set and is otherwise said to be inseparable.
Rosser[166] observed also in 1936 that Peano arithmetic is an inseparable theory
and that any inseparable theory is essentially undecidable. This also provided
the first example of computably inseparable c. e. sets. Ehrenfeucht showed in
1961 [63] that there are separable theories which are essential undecidable. His
construction, using theories of propositional calculus, also shows that every Π0

1

class may be represented as the set of complete consistent extensions of a theory.
A complete, consistent extension of Peano Arithmetic is of course just the the
theory of some (possibly non-standard) model of Peano arithmetic. The theory
of Peano arithmetic is of great interest in mathematical logic, due in part to the
connection with Gödel’s Incompleteness Theorem, and has been developed in
the papers of Jockusch and Soare [91, 90], Knight [100], Marker [129] and many
others.

Theorem 2.9.1. (Shoenfield [174] For any c. e. theory Γ of an effective lan-
guage L, both the class of consistent extensions of Γ and the class of complete
consistent extensions of Γ can be represented as Π0

1 classes. Furthermore, if Γ
is a decidable theory, then these classes can be represented by computable trees
with no dead ends.

Proof. Let L be an effective first-order language and let S = Sent(L) have an
effective enumeration as γ0, γ1, . . .. Then the sentence γi may be identified with
the number i, so that a theory Γ is represented by the set {i : γi ∈ Γ}, and a class
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of theories is represented by a class in {0, 1}ω. Let Γ `s γi be the computable
relation of which means that there is a proof of γi from Γ of length s. Then
the class P (Γ) of complete consistent extensions of Γ may be represented by
the set of infinite paths through the computable tree T defined so that for any
σ = (σ(0), . . . , σ(n− 1)), σ is in T if and only if the following conditions hold.

(1) For any i < n, if Γ `n γi, then σ(i) = 1.

(2) For any i, j < n, if Γ `n γi → γj and σ(i) = 1, then σ(j) = 1.

(3) For any i, j, k < n, if γk = (γi & γj), σ(i) = 1 and σ(j) = 1, then σ(k) = 1.

(4) For any i, j < n, if σ(i) = 1 and γj = ¬γi, then σ(j) = 0.

(5) For any i, j < n, if γj = ¬γi, then either σ(i) = 1 or σ(j) = 1.

Let x be an infinite path through T and let ∆ = {γi : x(i) = 1}. Condition
(1) ensures that Γ ⊆ ∆, while conditions (1), (2), and (3) ensure that ∆ is a
theory. Condition (4) ensures that ∆ is consistent and condition (5) ensures
that ∆ is complete. To represent the class of consistent extensions of Γ, simply
omit the final clause (5).

If Γ is decidable, then in each case we can modify the clauses given above as
follows to get a tree S with no dead ends which has the same class of infinite
paths. First, combine the first three clauses into the statement:

(1′) : For any k < n, if Γ ` ∧{γi : i < n & σ(i) = 1} → γk, then σ(k) = 1.

Next, replace clause (4) with

(4′) It is not the case that Γ ` [∧{γi : i < n & σ(i) = 1} → (γ0&¬γ0)].

It follows that for any σ ∈ S, Γ ∪ {γi : i < |σ| & σ(i) = 1} ∪ {¬γi :
i < n & σ(i) = 0} is consistent and therefore has an extension to a complete
consistent theory Γ(σ) which will be represented by an extension of σ. Thus S
has no dead ends.

We can now apply Theorem 2.2.15 to logical theories.

Theorem 2.9.2. For any consistent, axiomatizable first-order theory Γ:

(i) Γ has a complete consistent extension which is computable in 0′.

(ii) If Γ is decidable, then Γ has a complete, consistent, decidable extension.

Next we turn to the other direction of our correspondence, that is, represent-
ing an arbitrary Π0

1 class by the set of complete consistent extensions of some
axiomatizable theory.

Theorem 2.9.3. Any c. b. Π0
1 class P may be represented by the set of com-

plete, consistent extensions of an axiomatizable theory Γ in propositional logic.
Furthermore, if P is a decidable Π0

1 class, then Γ may be taken to be a decidable
theory.
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Proof. We give the proof due to Ehrenfeucht [63]. Let the language L consist of
a countable sequence A0, A1, . . . of propositional variables. For any x ∈ {0, 1}N,
we can define a complete consistent theory ∆(x) for L to be Con({Ci : i ∈ ω}),
where Ci = Ai if x(i) = 1 and Ci = ¬Ai if x(i) = 0. It is clear that every
complete consistent theory of L is one of these. Thus for any Π0

1 class P ⊆
{0, 1}N, we want a theory Γ such that ∆(P ) = {∆(x) : x ∈ P} is the set of
complete, consistent extensions of Γ.

For each finite sequence σ = (σ(0), . . . , σ(n−1)), let Pσ = C0∧C1∧· · ·∧Cn−1,
where Ci = Ai if σ(i) = 1 and Ci = ¬Ai if σ(i) = 0. Let the binary tree T be
given such that P = [T ] and define the theory Γ(T ) to consist of all Pσ → An
such that σ ∈ T and σ_0 /∈ T and all Pσ → ¬An such that σ ∈ T and
σ_1 /∈ T , where |σ| = n. We claim that ∆(P ) is in fact equal to the set
of complete consistent extensions of Γ(T ). Suppose first that x ∈ P and let
Con({Ci : i ∈ ω}) = ∆(x). Now any γ ∈ Γ(T ) is of the form Pσ → ±Ai
for some σ ∈ T ; say that |σ| = n. There are several cases. If σ 6= xdn, then
∆(x) ` ¬Pσ, so that we always have ∆(x) ` Pσ → ±An. Thus we may suppose
that σ = xdn. If σ_0 /∈ T , then of course x(n) = 1, so that Cn = An ∈ ∆(x)
and therefore ∆(x) ` Pσ → An. Similarly, if σ_1 /∈ T , then ∆(x) ` Pσ → ¬An.
Thus ∆(x) is a complete consistent extension of Γ(T ). On the other hand, let
∆ be a complete consistent extension of Γ(T ). Then, for each i, we have either
∆ ` Ai or ∆ ` ¬Ai; let Ci = Ai if Ai ∈ ∆ and Ci = ¬Ai otherwise. Define
x ∈ {0, 1}ω so that x(i) = 1 if and only if ∆ ` Ai. Then clearly ∆ = ∆(x). It
remains to be shown that x ∈ P . Now if x /∈ P , then there is some n such that
σ = xdn+ 1 /∈ T and xdn ∈ T . Then Pσ = C0 ∧ · · · ∧Cn−1, so that ∆ ` Pσ, and
Pσ → ¬Ci ∈ Γ(T ), so that ∆ is not consistent with Γ(T ). This contradiction
proves that ∆ = ∆(x).

Now suppose that P is a decidable class, so that the tree T has no dead
ends. Let a sentence γ = γ(A0, . . . , An−1) of the language L be given. We claim
that Γ(T ) ` γ if and only if

∧
{Pσ ` γ : σ ∈ T & |σ| = n}, that is, if and only

if Pσ ` γ for all σ ∈ T with |σ| = n. This claim clearly implies that Γ(T ) is
decidable.

We argue by the contrapositive. Suppose first that Γ(T ) 6` γ. Then there
is some x ∈ [T ] such that ∆(x) ` ¬γ. Since γ only depends on A0, . . . , An−1,
it follows that Pτ ` ¬γ, where τ = xdn ∈ T . Thus Pτ ` γ is clearly false,
making it also false that

∧
{Pσ ` γ : σ ∈ T & |σ| = n}. Suppose next that∧

{Pσ ` γ : σ ∈ T & |σ| = n} is false. Then Pτ ` γ is false for some fixed τ ∈ T ,
which means that Pτ ` ¬γ (since γ depends only on A0, . . . , An−1). Since T
has no dead ends, there is some x ∈ P such that τ ≺ x and therefore ∆(x) ` ¬γ
and therefore Γ(T ) 6` γ.

This proof can be adapted to first order logic; see Exercise 1 below.
This representation theorem has the following corollary.

Theorem 2.9.4. There is a consistent axiomatizable first-order theory Gamma
which has no computable consistent complete extension.

The perfect thin class constructed by Martin and Pour-El (see Theorem
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2.8.1) was designed to produce a certain type of axiomatizable theory. A theory
Γ is said to be Martin–Pour-El if every axiomatizable extension of Γ is generated
by a single proposition. It follows from the proof of the next theorem that an
axiomatizable theory Γ is a Martin–Pour-El theory if and only if the class of
complete consistent extensions of Γ is a thin Π0

1 class.

Theorem 2.9.5. There exists an axiomatizable, essentially undecidable theory
T such that each axiomatizable extension of T is a finite extension of T .

Proof. Let P be a perfect thin class with no computable members and let the
axiomatizable theory T be given by Theorem 2.9.3 such that P represents the
family of complete consistent extensions of T . Now suppose that Γ is an axiom-
atizable extension of T . Then the family of complete consistent extensions of Γ
is represented by a Π0

1 subclass Q of P . Since P is thin, there is a clopen set U
such that Q = U ∩P . Let U = I(σ1)∪I(σ2)∪· · ·∪I(σn) for some distinct finite
sequences σi all having the same length k and let φi = Pσi as in the proof of
Theorem 2.9.3. Then the complete consistent extensions of Γ are exactly those
complete consistent extensions of ∆ which satisfy P1 ∨ · · · ∨ Pn.

Exercises

2.9.1. Show that any c. b. Π0
1 class may be represented as the set of complete

consistent extensions of a first order logical theory in the language of one
binary relation R Jockusch and Soare in ([91], p. 54). Hint: the underlying
axioms assert that R is an equivalence relation and that, for any n, there
are either one or two equivalence classes consisting of exactly n members.
The propositional statement An in the proof above is replaced by the
statement that there is exactly one equivalence class with n elements.

2.9.2. Let the propositional language L have variables A0, A1, . . . . Variables and
their negations ¬Ai are said to be literals. Show that a consistent theory
Γ for L is c. e. if and only if the set C(Γ) of conjunctions of literals,
consistent with Γ, is co-c. e. and that Γ is decidable if and only if C(Γ)
is computable. Show that this is not true for the set of literals consistent
with Γ.



Chapter 3

Members of Π0
1 Classes

In this chapter, we study the complexity of members of Π0
1 classes. We present

some “basis theorems” and “anti-basis theorems”. The class Γ ⊂ NN is said to
be a basis for a family Θ of subclasses of NN if every nonempty class from Θ has
a member from Γ. For example, the class ∆0

0 of computable reals is a basis for
the family of open subclasses of NN. This is an example of a “basis theorem”.
We have already given the simple positive result 4.2.3 that the class P = [T ] of
infinite paths through the tree T contains a member computable from Ext(T ),
the set of nodes of T which have an infinite extension in P . Recall in particular,
that if T is computably bounded, then P has a member computable in 0′ and
if P is decidable, then P has a computable element. We will give several more
basis results, including the Low Basis Theorem of Jockusch and Soare [91] is
given.

On the other hand, the class of computable reals is not a basis for the family
of closed subclasses of NN since every singleton is a closed class. This is an
example of an “anti-basis theorem”. One result given is that the set of Boolean
combinations of c. e. sets is not a basis for the c. b. Π0

1 classes. Any c. b.
Π0

1 class with no computable members is perfect and has a set of continuum
many mutually Turing incomparable elements [91]. There is a c. b. Π0

1 class of
positive measure which has no computable element.

3.1 Basis theorems

One of the most cited results in the theory of Π0
1 classes is the Low Basis

Theorem of Jockusch and Soare [91]. We will introduce the method of forcing
with Π0

1 classes in connection with this theorem. First we consider the notion
a generic real.

Definition 3.1.1. An element x ∈ NN is said to be 1-generic if, for every Π0
1

class P , there exists n such that either I(x � n) ⊂ P or I(x � n) ∩ P = ∅.

The existence of a generic real is obtained by forcing. Let P = [T ]. The idea

95
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here is that the finite sequence σ = xdn “forces” x /∈ P if σ /∈ Ext(T ), that is,
σ  x /∈ P if no extension of σ is in P , and similarly σ  x ∈ P if I(σ) ⊆ P ,
that is, if every extension of σ is in P . Then we write  x ∈ P ( x /∈ P ) if
there is some σ such that σ  x ∈ P (σ  x /∈ P ). With this notation, x is
1-generic if, for every Π0

1 class P , either  x ∈ P or  x /∈ P , or equivalently
x ∈ P implies  x ∈ P . (See Section III.6 of Hinman [80] for a presentation of
arithmetical forcing.)

A subset D of {0, 1}∗ is said to be dense if, for any σ, there exists a τ � σ
such that τ ∈ D. Now let D = {Di : i ∈ I} be a family of dense sets. The
element x of {0, 1}N is said to be D-generic if, for each i, x � n ∈ Di for some n.

The standard forcing theorem shows that any countable family of dense sets
possesses a generic set. We observe that this is an effective version of the Baire
Category Theorem.

Lemma 3.1.2. If D = {Di : i < ω} is a sequence of subsets of N∗ uniformly
computable in 0′, there exists a D-generic x ≤T 0′.

Proof. Let m be the least such that σm ∈ D0 and let τ0 = σm. Then for each
n, find the least m such that σm is a proper extension of τn and let τn+1 = σm.
Then x = ∪nτn will be the desired generic real. This construction is computable
using an oracle for the sequence D.

Recall that by Theorem 2.3.3, there is a uniformly primitive recursive enu-
meration of trees Te such that Pe = [Te] is the eth Π0

1 class. Then the standard
family of dense sets is now Di = {σ : σ /∈ Ti ∨ (∀τ � σ)τ ∈ Ti}. Observe
each Di is dense and that the sequence of sets is uniformly Π0

1. The element
x ∈ {0, 1}N is 1-generic if it is generic for this sequence of dense sets. Then the
remarks above imply the existence of a 1-generic real. The crucial property of
a 1-generic real is given by the following well-known fact.

Theorem 3.1.3. For any 1-generic x ∈ {0, 1}N, if x ≤T 0′, then x′ ≤T x⊕ 0′.

Proof. Let x be 1-generic. For each e, let the Π0
1 class Pe = {y : φye(e) ↑}, so

that Pe = [Ue], where σ ∈ Ue ⇐⇒ φσe (e) ↑. Thus e ∈ x′ ⇐⇒ x /∈ Pe. If
e ∈ x′, then of course there is some n such that xdn /∈ Ue. Since x is 1-generic,
if e /∈ x′, then there is some n such that (∀τ � xdn)τ ∈ Ue. Let f(e) be the
least n such that either xdn /∈ Ue or (∀τ � xdn)τ ∈ Ue. Then f is computable
in x⊕ 0′. But then we have e ∈ x′ if and only if xdf(n) /∈ Ue, so that x′ is also
computable in x⊕ 0′.

It follows that if a 1-generic real x is computable in 0′, then x′ = 0′, that
is, x is low. For the low basis theorem of Jockusch and Soare, a modification of
this argument is used.

Theorem 3.1.4 (Low Basis Theorem). (a) Every nonempty c. b. Π0
1 class

P contains a member of low degree.

(b) There is a low degree a such that every nonempty r. b. Π0
1 class contains

a member of degree ≤ a.
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Proof. (a) We may assume that P ⊂ {0, 1}ω. Let P = [T ] and, as above,
let σ ∈ Ue ⇐⇒ φσe (e) ↑. We will define, computably in 0′, a sequence
T = S0 ⊃ S1 ⊃ S2 ⊃ · · · of infinite subtrees of T and show that any member x
of ∩e[Se] has low degree. There are two cases in the definition of Se+1.

1. If Se ∩ Ue is finite, then Se+1 = Se.

2. If Se ∩ Ue is infinite, then Se+1 = Se ∩ Ue.

Observe that this construction is computable in 0′, in that there is a function
f ≤T 0′ such that Se = Uf(e) for each e. This is because the determination
of whether Se ∩ Ue is finite can be made using a 0′ oracle. Since each Se is
infinite by the construction, it follows that each [Se] is nonempty, so that ∩e[Se]
is nonempty. Now suppose that x ∈ ∩e[Se]. Then, for any e, we have e ∈ x′ if
and only if x /∈ [Ue], and it follows from the construction that x /∈ [Ue] if and
only if Se ∩ Ue is finite. It follows by the observation above that x′ ≤T 0′.

(b) It suffices to prove the result for classes in {0, 1}N. Let Pe = [Te] be an
effective enumeration of the Π0

1 in {0, 1}N and let pe be the e’th prime number.
Let the tree T be the amalgamation of the nonempty Π0

1 classes, in the following
sense. Let σ ∈ T if, for each e such that Pe is nonempty and each k such that
pke < |σ|, (σ(pe), σ(p2

e), . . . , σ(pke)) ∈ Te. Since we can test computably in 0′

whether Pe is nonempty, the tree T is computable in 0′. Thus the construction
above can be carried out to produce a member x of P = [T ] of low degree. Then
any nonempty class Pe has a member (x(pe), x(p2

e), . . . ) computable in x.

The same technique can be used to prove other basis results. For example, a
generalization shows that if the c. b. class P contains no computable member,
then for any degree b, P has a member A of degree a such that a⊕ 0′ = a′ = b′.
It follows (for b = 0′) that any Π0

1 class P has a member A of degree a such
that a⊕ 0′ = a′ = 0′′. Now a degree a is said to be high if a ≤ 0′ and a′ = 0′′.
It will be shown later that not every r. b. Π0

1 class contains a member of high
degree.

The following result is from Jockusch and Soare [90].

Theorem 3.1.5 (Jockusch and Soare). Every nonempty c. b. Π0
1 class P con-

tains a member of hyperimmune-free degree, that is, contains an almost com-
putable member.

Proof. We sketch the proof indicated in Soare [181] (p. 109). Let P = [T ], where
T is an infinite computable binary tree. Recall that A is hyperimmune-free if
every function f computable in A is majorized by some computable function.
Thus we want to find A ∈ P such that φAe whenever total, is majorized by
a computable function. We define the decreasing sequence Se of computable
subtrees of T beginning with S0 = T . Then for each e and i, let U ie = {σ ∈ Se :
φσe (i) ↑}. There are again two cases in the definition of Se+1.

1. If U ie is finite for every i, let Se+1 = Se.
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2. If U ie is infinite for some i, choose such an i and let Se+1 = Se ∩ U ie.

Suppose now that A ∈ ∩eSe and that f = φAe is total. If the second case
applied in the definition of Se+1, then φAe (i) ↑, so that φAe is not total. If the
first case applied, then ΦAe is defined for all A ∈ [Se+1]. Since [Se] ⊆ P , [Se]
is computably bounded and it follows from Theorem 2.4.8 that Φe[Se] is also
bounded by some computable function h, which thus majorizes ΦAe .

We will show in the next section that a nonempty Π0
1 class P ⊆ {0, 1}N need

not contain any sets which are c. e. or co-c. e.. However, it always contains
elements which corresponds to c. e. and co-c. e. Dedekind cuts.

Theorem 3.1.6. Any nonempty Π0
1 class P ⊆ {0, 1}N contains elements x

and y such that the Dedekind cut L(rx) is c. e. and the Dedekind cut L(ry) is
co-c. e..

Proof. Let P = [T ] where T is a computable tree. Let x be the “leftmost”
element of P under the lexicographic order. For each n, let σn be the leftmost
node in T ∩ {0, 1}n and let qn = rσ =

∑n
i=0 σ(i)2−i−1. It is clear that {qn}n<ω

is an increasing sequence and hence has limit r such that L(r) is c. e. set by
Proposition 2.1.8.3. We claim that x = limnσn converges to a path in P and
that r = rx. For each n, σn(0) ≤ σn+1(0), since otherwise σn+1dn <lex σn.
Thus the sequence σn(0) converges to some x(0). Once σn(0), . . . , σn(k − 1)
have all converged, then σn(k) becomes increasing and thus also converges to
some limit which we call x(k). It remains to show that x ∈ P . Fix n and choose
s > n such that σm(i) = x(i) for all i < n and all m ≥ s. Then xdn ≺ σs and
hence xdn ∈ T .

A similar argument shows that the “rightmost” element Y of P corresponds
to a real with a Π0

1 Dedekind cut.

Some further basis results are given below in Chapter 4.

Exercises

3.1.1. The Baire Category Theorem for NN states that the countable intersection
of a sequence of dense open sets is nonempty. Use forcing to prove this
theorem.

3.1.2. Show that x is 1-generic if and only if it belongs to every Σ0
1 co-meager

set (equivalently, every non-meager Σ0
1 set).

3.1.3. Show that if the c. b. class P contains no computable member, then for
any degree b, P has a member A of degree a such that a⊕ 0′ = a′ = b′.
Then show that any Π0

1 class P has a member of degree a such that
a⊕ 0′ = a′ = 0′′.

3.1.4. Show that if x is an isolated member of P , then x is computable. (Define
a decidable subclass of P and use Theorem 2.2.15.)
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3.1.5. Show that any nonempty Π0
1 class which is almost recursively bounded

must contain an element computable in 0′.

3.1.6. Show that for any x and y with x <lex y such that L(rX) is Σ0
1 and L(ry)

is Π0
1, there is a Π0

1 class with leftmost element x and rightmost element
y.

3.2 Special Π0
1 classes

A c. b. Π0
1 class is said to be special if it has no computable members.

We have seen in Section 3.2.5(Exercise (3)) that the diagonally non-computable
sets form a Π0

1 class with no computable element. We give an improvement of
this result due to Jockusch [84]. Recall that a set A is immune if it has no infi-
nite recursive subset; A is said to be bi-immune if both A and N\A are immune.
It is elementary that any infinite c. e. set has an infinite recursive subset, and
it follows that the difference of two c. e. sets cannot be bi-immune and then by
induction that no Boolean combination of c. e. sets can be bi-immune.

Theorem 3.2.1 (Jockusch). There is a nonempty Π0
1 class of sets containing

only bi-immune sets.

Proof. Let We be the e’th c.e. set and let Dn be the n’th finite set. Let ψ be a
partial recursive function such that, whenever |We| ≥ e+3, then ψ(e) is defined
and Dψ(e) ⊂ We and |Dψ(e)| = e + 3. Define the Π0

1 class P = ∩ePe, where
A ∈ Pe if and only if, if ψ(e) is defined, thenA∩Dψ(e) 6= ∅ and (N\A)∩Dψ(e) 6= ∅.
Any element A of P is clearly bi-immune. To see that P is nonempty, note that
for each e, {0, 1}N\Pe has measure≤ 2−e−2. (ForA /∈ Pe, either all e+3 elements
of Dψ(e) are in A or all e+ 3 elements are not in A, which allows only 2 of the

2e+3 possibilities.) It follows that {0, 1}N \ P has measure ≤
∑
e 2−e−2 = 1

2 , so
that P 6= 0.

This immediately implies the following.

Theorem 3.2.2. (Jockusch) There is a nonempty c. b. Π0
1 class with no member

a Boolean combination of r.e. sets.

A set A is said to be effectively immune if there is a computable function g
such that for any e, if We ⊂ A, then |We| ≤ g(e). For the Π0

1 class P constructed
in the proof of Theorem 3.2.1, it is clear that any set A ∈ P is effectively bi-
immune via the function g(e) = e+ 3. This yields the following corollary, which
we note is essentially exercise 4.2 on page 87 of [181].

Theorem 3.2.3. There is a nonempty c. b. Π0
1 class such that if a is the degree

of a member of P and b is a c.e. degree and a ≤ b then b = 0′.

Proof. Let P be the Π0
1 class defined in the proof of Theorem 3.2.1. Then

every member of P is effectively immune. Now suppose that P had a member
C of c. e. degree. We claim that C must have degree 0′. By the Modulus



100 CHAPTER 3. MEMBERS OF Π0
1 CLASSES

Lemma (Soare [181], C = lims Cs with a modulus function m(i) computable
in C such that s ≥ m(i) implies that i ∈ C ⇐⇒ i ∈ Cs. We may assume
without loss of generality that each Cs is infinite and let c0,s, c1,s, . . . enumerate
in increasing order the elements of Cs. Let C = {c0, c1, . . . } enumerate C in
increasing order, so that for each n, cn = lims cn,s. Now let the complete c. e.
set K have enumeration Ks and let the partial recursive function θ be defined
so that θ(i) = s if and only if s is the least such that x ∈ Ks.

By the recursion theorem, define the computable function h so that Wh(i) =
∅, if i /∈ K and otherwise Wh(i) = {c0,θ(i), c1,θ(i), . . . , cg(h(i)),θ(i)}.
Let r(i) be the least s such that, for all j ≤ g(h(i)) and all t ≥ s, cj,t = cj .
Then the function r can be computed from C using the modulus function m. If
r(i) ≤ θ(i), then Wh(i) ⊂ C, so that C has g(h(i)) + 1 elements, contradicting
the hypothesis on g. It follows that θ(i) < r(i) for all i, so that K is computable
from C, as desired.

It follows that the only possible c. e. degree of a member of P is 0′. There
is a more general version of this result, Theorem 5 of [90].

Theorem 3.2.4. For any c. e. degree c, there is a nonempty c. b. Π0
1 class P

such that the c. e. degrees of member of P are precisely the c. e. degrees above
c.

Proof. For c = 0, this is trivial. For c 6= 0, let A be the simple but not hyper-
simple c. e. set of degree c from Theorem 1.11.8. Let Df(n) be a disjoint strong
array such that Df(n) \ A 6= ∅ for all n and assume without loss of generality
that Card(Df(n) \A) ≥ 2. Now define the Π0

1 class P by

D ∈ P ⇐⇒ D ∩A = ∅ & (∀n)(D ∩Df(n) 6= ∅).

For any D ∈ P of c. e. degree, it follows from Theorem 1.11.8 that A ≤T D.
Now let E be a set of any degree d ≥ c and find D ∈ P such that D ≤T E

and
Card(Df(n) \D) = 1 ⇐⇒ n ∈ E.

Clearly E ≤T D. Since A ≤T D, we can compute from D a sequence of pairs
〈an, bn〉 with an, bn both in Df(n) \ A. Let E = {e0 < e1 < . . . . Then we can
code D into E by letting Df(ei) \ D = {aei} if i ∈ D and Df(ei) \ D = {bei}
otherwise. Thus D will be a member of P with degree d.

We next show that every special c. b. Π0
1 class satisfies a weakened form of

Theorem 3.2.3.

Theorem 3.2.5. (Jockusch-Soare [90]) For any special Π0
1 class, there exists a

non-zero c. e. degree a such that P has no members of degree ≤ a.

Proof. We give the proof from [90]. Let P = [T ] where T is a computable tree.
We will construct a simple (and hence noncomputable) c. e. set A in stage As,
such that φAe /∈ P for any e.

Two binary computable functions will be used in the construction.
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p(e, s) = max{n ≤ s : Φe(Asds)dn) ∈ T};

q(e, s) = (least j) : |Φe(Asdj)| ≥ p(e, s)}.

Initially, A0 = ∅. At stage s + 1, let es+1 be the least e ≤ s such that
We,s ∩ As = ∅ and We,s contains u ≥ max{q(e′, s) : e′ ≤ e} ∪ {2e}. Let
As+1 = As ∪ {u}, where u is the least such number for e = es+1. (If no such e
exists, let As+1 = As.)

Claim 1 No element of P is computable in A.

Proof of Claim 1: Suppose by way of contradiction that y = φAe ∈ P (and is
thus a total function). It follows that limsp(e, s) = ∞. For the contradiction,
we will show that y is computable. Let t be a stage such that for all e′ < e,
if We ∩ A 6= ∅, then We,t ∩ At 6= ∅. Then for all s ≥ t, either es is undefined
or es ≥ e. To compute y(n), find sn ≥ t such that n < p(e, sn), so that
Φe(Adsn, n) is defined and in T . We claim that y(n) = Φe(Adsn, n). To show
this, it suffices to prove that no number u < q(e, sn) enters A after stage sn.
But if u ∈ As+1 −As and s+ 1 > sn, then es+1 ≥ e and so u ≥ q(e, sn) by the
construction.

Claim 2 For fixed e, q(e, s) is bounded over all s.

Proof of Claim 2:
Let n be the least such that ΦAe dn /∈ T and let t be as in the proof of Claim

1. It follows that p(e, s) ≤ n for all s ≥ t. Choose j such that ΦAe dn � Φe(Adj).
It follows that q(e, s) ≤ j for all sufficiently large s.

Claim 3 A is simple.

Proof of Claim 3: For each c. e. set We, A contains at most one member
u ≥ 2e from We, so that A contains at most e elements ≤ 2e and the complement
of A is infinite. Fix e and let j = max{q(e′, s) : e′ ≤ e, s ∈ N}. Let t be given
from Claim 1. Then if s ≥ t and We,s contains a member ≥ max{j, 2e}, then
We,s+1 ∩A 6= ∅ by the construction. Hence if We is infinite, then We ∩A 6= ∅.

This completes the proof of the theorem.

As we saw in Exercise 4, any isolated member of a c. b. Π0
1 class is com-

putable. Hence, if P is a special c. b. Π0
1 class, then it is perfect and hence has

cardinality 2ℵ0 . It follows that there are 2ℵ0 different degrees of members of P .
Several results deal with the comparability of these degrees.

It is easy to see that if F is a computable function from {0, 1}N to {0, 1}N,
r ∈ {0, 1}N, and P is a Π0

1 class such that F (x) = r for all x ∈ P , then r is
computable. (See the exercises.) The next lemma, from Jockusch-Soare [91],
improves this observation.

Lemma 3.2.6. Let P be a nonempty c. b. Π0
1 class P and let Φ : N × NN →

N be a partial computable functional. Suppose that for any n ∈ N and any
x1, x2 ∈ P , Φ(n, x1) = Φ(n, x2) whenever they are both defined. Then there is
a nonempty Π0

1 class Q ⊆ P such that, for all y ∈ Q, if λnΦ(n, y) is total then
it is computable.
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Proof. Let P = [T ] where T is a computable tree and suppose that P and Φ
satisfy the hypothesis. There are two possibilities. Suppose first that for some
n, Φe(n, σ) is undefined for infinitely many σ ∈ T . Then we may let S be the
subtree {σ ∈ T : Φe(n, σ) ↑} and let Q = [S], since y ∈ Q then implies that
Φe(n, y) ↑. Thus we may suppose that for any given n, Φ(n, σ) ↓ for all but
finitely many σ ∈ T . Thus Φ(n, y) ↓ for all y ∈ P and by the hypothesis there
is a unique kn such that Φ(n, y) = kn for all y ∈ P . Let r(n) = kn for each
n. It now follows from the remark above that r is computable. Thus in fact
Φ(n, y) = r(n) for all y ∈ P and all n.

When F is the identity function, we obtain the following corollary.

Lemma 3.2.7. If P is a nonempty c. b. Π0
1 class with no computable elements,

then any σ ∈ Ext(T ) has incompatible extensions τ1, τ2 ∈ Ext(T ).

Theorem 3.2.8. (Jockusch-Soare [91]) For any c. b. Π0
1 class P with no com-

putable members and any countable set {ai : i < ω} of noncomputable degrees,
P has continuum many mutually incomparable members x such that the degree
of x is incomparable with each ai.

Proof. We may assume without loss of generality that P ⊆ {0, 1}N and let
P = [T ] for some computable tree T ⊆ {0, 1}∗. For simplicity, we construct the
elements of P to be incomparable to a single noncomputable degree a and let z
have degree a; for the general argument simply work on a0, . . . ,an at level n.

We will define a function ψ : {0, 1}∗ → Ext(T ) such that σ1 ≺ σ2 implies
ψ(σ1) ≺ ψ(σ2) and infinite trees Sσ ⊆ T ∩ I(ψ(σ) such that, for all n

(1) If |σ| = n+ 1 and x ∈ [Sσ], then Φxn 6= z.

(2) If |σ = |τ | = n+ 1 and σ 6= τ , then for any x ∈ Sσ and y ∈ Sτ , Φxn 6= y.

Initially, we let F (∅) = ∅. Now suppose that we have defined ψ(σ) and Sσ
for |σ| = n and let Φ = Φn. By Lemma 3.2.6, there are two possible cases.
First suppose that there is a nonempty Π0

1 subclass Q of Sσ such that Φyn is
either computable or not total for all y ∈ Q. Then apply Lemma 3.2.7 to obtain
incompatible extensions τ0 and τ1 of F (σ) from Ext(Q), by Lemma 3.2.7 and
let F (σ_i) = τi and Sσ_i = I(τi) ∩Q for i = 0, 1.

In the second case, by Lemma 3.2.6, F (σ) has extensions ρ0, ρ1 ∈ Ext(Sσ)
such that Φn(m, ρ1) 6= Φn(m, ρ2) for some m. Without loss of generality,
Φn(m, ρ1) 6= z(m) and thus we first extend F (σ) to ρ1 to satisfy condition
(1) and then take extensions τ0 and τ1 as above. In this case, F (σ_i) will be an
extension of the provisional value τi for i = 0, 1 after we take care of condition
(2). The provisional values for Sσ_i are Sσ ∩ I(τi).

Now we will indicate how to satisfy condition (2). Let σ1, σ2 have length
n + 1 with provisional values τ1 and τ2 for F (σ1) and F (σ2) and provisional
values Q1 and Q2 for Sσ1

and Sσ2
with Qi ⊆ P ∩ I(τi). Our goal is to ensure

that Φx 6= y for any x ∈ Sσ1
and y ∈ Sσ2

. If σ1 came under case 1 above, then
this is already satisfied. Otherwise, find m and extensions ρ1, ρ2 ∈ Sσ1

such that
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Φ(m, ρ1) 6= Φ(m, ρ2) as above and find an extension τ of τ2 such that, without
loss of generality, τ(m) 6= Φ(m, ρ1). Then the new provisional value of F (σ1) is
ρ1, the new provisional value of F (σ2) is τ ; the new provisional value of Sσ1

is
Q1 ∩ I(ρ1) and the new provisional value of Sσ2

is Q2 ∩ I(τ). This satisfies one
of the finitely many subconditions of (2).

We repeat this procedure for each pair σ1, σ2 ∈ {0, 1}n+1 to obtain final
provisional values which will satisfy all of the necessary conditions.

This leads to the following. Two noncomputable reals x, y are said to be a
minimal pair if any real computable both in x and in y is itself computable.

Corollary 3.2.9. (Jockusch-Soare [91] Let P ⊂ {0, 1}N be a Π0
1 class with no

computable members. Then P contains a minimal pair.

Proof. Let x be any member of P . By Theorem 3.2.8 P contains an element y
which is incomparable with each of the (countably many) noncomputable reals
which are computable in x.

Theorem 3.2.10. (Jockusch-Soare [90]) There is an infinite c. b. Π0
1 class P

such that any two different members of P are Turing incomparable.

Proof. We will use a priority argument to define a uniformly computable se-
quence fs : {0, 1}∗ → {0, 1}∗ of one-to-one, computable tree homomorphisms
and corresponding perfect Π0

1 classes Ps = [Ts], where

Ts = {τ : (∃σ)[fs(σ) � τ ]}.

Then the desired (perfect) Π0
1 class P is defined to be P = ∩sPs. In particular,

each fs satisfies the following for all σ ∈ {0, 1}∗.

(1) fs(σ
_0) and fs(σ

_1) are incompatible extensions of fs(σ) for all s;

(2) range(fs+1) ⊆ range(fs);

(3) lims fs(σ) = f(σ) exists.

It follows that f induces a homeomorphism F from {0, 1}N onto P , defined
by F (x) = ∪nf(xdn). It follows that that P is a perfect set, hence uncountable
and therefore certainly nonempty.

The construction of P will ensure that for each y ∈ P and each partial
function Φe, Φe(y) 6= y implies that Φe(y) /∈ P . To accomplish this, we will
ensure that for each e and each x ∈ {0, 1}N, if z = Φe(F (x)) converges and
z 6= F (x), then Φe(f(xde)) is incompatible with F (x). That is, for each e and
each σ ∈ {0, 1}e+1, we have the following requirement.

Re,σ : (∀y)[y ∈ I(f(σ)) & Φe(y) total & Φe(y) 6= y → Φe(y) /∈ P ].

The priority order on the requirements is lexicographic, first on e and then
on σ.
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Requirement Re,σ is said to be satisfied at stage s if Φe(f(σ)) /∈ Ts. If this
requirement is satisfied at stage s and y ∈ I(f(σ)), then of course requirement
Re,σ is actually satisfied, since Φe(f(σ)) � Φe(y).

Initially we set f0(σ) = σ for all σ ∈ {0, 1}∗.
Stage s + 1. Requirement Re,σ needs attention at stage s + 1 if it is not

satisfied at stage s and there exists σ′ � σ such that Φe(fs(σ
′)) is incompatible

with fs(σ
′) and extends fs(ρ

_i) for some ρ ∈ {0, 1}e+1 and some i ∈ {0, 1}.
If no requirement needs attention at stage s+ 1, then fs+1 = fσ. Otherwise,

let Re,σ be the requirement of highest priority which needs attention and let σ′,
ρ and i be given as above. Define fs+1 as follows, for any ν ∈ {0, 1}∗.

(4) fs+1(σ_ν) = fs(σ
′_ν);

(5) If ρ 6= σ, then fs+1(ρ_ν) = fs(ρ
_(1− i)_ν);

(6) If ν does not extend either ρ or σ, then fs+1(ν) = fs(ν).

Now suppose that fs+1(σ) ≺ y. Then Φe(fs+1(σ)) = Φe(fs(σ
′)) � fs(ρ_i) =≺

Φe(y) and is incompatible with fs+1(σ). There are two cases. If σ 6= ρ, then
fs+1(ρ) = fs(ρ)_(1− i) so that fs(ρ

_i) /∈ Ts+1. If σ = ρ, then fs(ρ
_i) extends

fs(σ) but is incompatible with fs+1(σ) and therefore again is not in Ts+1.
The functions fs clearly satisfy (1) and (2). To verify (3), we show simul-

taneously that, for each e and σ, action is taken on each requirement Re,σ at
most finitely often. Fix e and σ and choose s by induction so that for all t ≥ s
and all requirements Rd,τ of higher priority

(7) fs(τ) = ft(τ) and

(8) no action is ever taken on requirement Rd,τ after stage s.

Then fs(τ) = ft(τ) for all τ ≺ σ so that fs(σ) � ft(σ). Thus once re-
quirement Re,σ is satisfied at stage t, it will remain satisfied. Hence it requires
attention at most one more time after stage s and therefore ft(σ) converges.

Finally, suppose that y ∈ P , Φe(y) is total and Φe(y) 6= y. Let y = F (x),
σ = xdn and τ = f(σ) ≺ y. Since Φe(y) 6= y, there must exist σ′ � σ such
that Φe(f(σ′)) is incompatible with y. It follows that in fact Φe(τ) /∈ T , since
otherwise Re,σ would require attention at arbitrarily large stages s.

There is a version of this theorem for classes of separating sets.

Theorem 3.2.11. (Jockusch-Soare [90]) There exist disjoint c. e. sets A and
B such that A ∪ B is cofinite, but any two members of Sep(A,B) either have
finite difference or are Turing incomparable.

Proof. The disjoint c. e. sets A and B will be defined by a priority argument as
the effective, increasing unions A = ∪sAs and B = ∪Bs. The construction will
ensure that for each partial function Φe and any pair of C,D of separating sets
for A,B, the following requirement is satisifed.

Re: If C 6= D (modulo finite difference), then D 6= Φe(C).
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As in the construction of a maximal set ([181], p. 188), an increasing sequence
{ms

i : i < ω} will be defined at stage s so that for each i, m0
i ≤ m1

i ≤ . . .
and mi = limsm

s
i exists. At any stage s, As ∪ Bs = ω \ {ms

i : i ∈ ω}, so that
{mi : i < ω} is the complement of A ∪B.

For fixed e, let
De = {mi : i < e}.

Let C and D be two subsets of De. The subrequirement RC,De associated with
C and D asserts that for any separating sets C1 and D1 for A and B such that
C1 ∩De = C and D1 ∩De = D, D1 6= Φe(C1).

This requirement is said to be satisfied at stage s if there exists a string σ
such that, for any n,

(1) if n ∈ De, then n ∈ C ⇐⇒ σ(n) = 1;

(2) if n ∈ Dom(σ), then n ∈ As → σ(n) = 1 and n ∈ Bs → σ(n) = 0.

(3) Dom(σ) ⊆ De ∪As ∪Bs

(4) Φse(m,σ) is defined and 6= D(m) for some m.

That is, let (1) through (4) hold and suppose that C1 and D1 are separating
sets for A and B such that C1 ∩De = C and D1 ∩De = D. Then σ ≺ C1 so
that Φ(m,C) 6= D(m).

RC,De requires attention at stage s if it is not satisfied at stage s and if there
exists a string σ satisfying (1) and (2) and such that

(5) Φse(m
s
e, σ) is defined.

Then we also say that Re requires attention at stage s.
The construction proceeds as follows. Initially A0 = B0 = ∅ and m0

e = e for
all e.

Stage s + 1: Choose the requirement Re of highest priority which requires
attention at stage s. (If none exists, let As+1 = As, Bs+1 = Bs and ms+1

i = ms
i

for all i.) Then choose C and D such that RC,De requires attention at stage s
and let σ be given as above. For m = ms

e, put m ∈ As+1 if Φse(m,σ) = 0 and
otherwise put m ∈ Bs+1. For m < |σ| such that m /∈ De and m 6= ms

e, put
m ∈ As+1 if σ(m) = 1 and put m ∈ Bs+1 otherwise.

Then the sequence ms+1
i is defined so that ms+1

i is the ith element not in
As ∪Bs.

Subrequirement RC,De is now satisfied at stage s + 1, since σ′ satisfies the
conditions (1) through (4) where σ′ = σ except possibly for σ(ms

e).
It is easy to see that each requirement Re requires attention only finitely

often and that ms
e converges for each e. To verify that all requirements are

satisfied, let C ′ and D′ be separating classes for A and B which have infinite
difference and suppose by way of contradiction that C ′ = Φe(D

′). Choose s0 so
that every requirement of priority Re or higher has ceased to require attention
by stage s0. Then for i ≤ e, ms

i = mi for all s ≥ s0. Let C = C ′ ∩ De and
D = D′ ∩ De. Now at some stage s > s0, Φse(me, D) must converge so that
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there is a σ ≺ D with Φse(me, D) defined. But then RC,De requires attention at
stage s, contrary to the assumption on s0. This completes the proof.

The proof of the following theorem is omitted.

Theorem 3.2.12. (Jockusch-Soare [89]) There exist disjoint pairs (A0, B0) and
(A1, B1) of disjoint, recursively inseparable c. e. sets such that if C ∈ S(A0, B0)
and D ∈ S(A1, B1), then C and D form a minimal pair, that is, any set com-
putable in both C and D is computable.

Corollary 3.2.13. For any degree a, there is a special c. b. Π0
1 class which has

no members of degree ≥ a.

Proof. Let (Ai, Bi) be given for i = 0, 1 by Theorem 3.2.12. Each class S(Ai, Bi)
contains no computable elements. Suppose that S(A0, B0) has a member of
degree ≥a. Then no member of S(A1, B1) can have degree ≥ a.

Exercises

3.2.1. Theorem 3.2.3 can be improved to say that for any degree c of a member
of P and any c. e. degree a ≥ c, a = 0′. Show this using the full Modulus
Lemma, which gives a modulus m ≤T A for C whenever A is a c.e. set
such that C ≤T A.

3.2.2. Show that any nonempty c. b. Π0
1 class P contains members x and y

whose degrees have greatest lower bound 0. If P is special, then this gives
a minimal pair of members.

3.2.3. Show that if F is a computable function from {0, 1}N to {0, 1}N, r ∈
{0, 1}N, and P is a Π0

1 class such that F (x) = r for all x ∈ P , then r is
computable.

3.3 Measure, Category and Randomness

that is, {q ∈ Q : q ≤ r} is a Π0
1 set, since r can be approximated from above

as the limit of a decreasing computable sequence. That is, given a computable
tree T ⊂ 2<ω with P = [T ], let Pn =

⋃
{I(σ) : σ ∈ T ∩ 2n}. Then m(Pn) is just

k/2n, where k = card{σ ∈ T ∩ 2n} and m(P ) = limnm(Pn). The measure is
not necessarily computable, which will follows from the next two results.

The measure of a Π0
1 class of reals will be discussed in detail in Chapter 14.

It is easy to modify the class of diagonally non-computable reals to obtain
a Π0

1 class which has positive measure but has no computable elements.

Theorem 3.3.1. There is a Π0
1 class P ⊂ {0, 1}N with positive measure which

has no computable members.

The proof is left as an exercise.
On the other hand, there is a computable basis result.
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Theorem 3.3.2. Any Π0
1 class P ⊆ {0, 1}N with positive, computable measure

has a computable member.

Proof. Let P have computable measure r > 0. It follows that the measure of
P ∩ I(σ) is computable uniformly in σ, since we can approximate the measure
from below by subtracting the measure of the complement P ∩ ({0, 1}N − I(σ))
from r. Thus we can recursively select paths σ = (x(0), . . . , x(n)) of length n
such that P ∩ I((x(0), . . . , x(n))) always has measure ≥ r/2n. The infinite path
x will be a computable member of P .

Theorem 3.3.3. For any thin Π0
1 class Q ⊆ {0, 1}N, µ(Q) = 0.

Proof. Let Q be a thin class and let T be a computable tree such that Q =
[T ]. Suppose that µ(Q) > 0 and choose a rational p > 0 so that µ(Q) ≥ p.
Uniformly define the class Px to be {y ∈ Q : (∀n)y � n ≤lex y � n}. Then let
P = {x ∈ Q : µ(Px) ≥ p. This is a Π0

1 class since

x ∈ P ⇐⇒ (∀n)card({σ ∈ T : σ ≤lex x � n) ≥ 2np.

P has the property that, for x, y ∈ Q, if x ∈ P and x ≤lex y, then y ∈ Q. Since
Q is thin, the complement Q − P is also a Π0

1 class and µ(Q − P ) = p. But
as a closed set Q has a greatest element z. It follows that Q− P = Pz so that
µ(Pz) = p, which would mean that z ∈ P , a contradiction.

Definition 3.3.4. 1. The real x ∈ {0, 1}N is said to be random if x does not
belong to any Π0

1 class of measure 0.

2. The real x ∈ {0, 1}N is said to be 1-random if for any computable function
f such that µ(Pf(n)) > 1− 2−n for all n, x ∈ Pf(n) for some n.

It follows from this definition that the class of random reals is simply the
intersection of all Σ0

1 classes of measure 1 and therefore has measure 1 itself.
Thus any set of positive measure must contain a random real.

We will also consider degrees of members of Π0
1 classes. For any class P ⊂ NN,

D(P ) is the collection of all sets Turing equivalent to a member of P and U(P )
is the collection of all sets A such that some member of P is Turing reducible
to A. Note that D(P ) ⊆ U(P )

P. Martin-Lof [133] introduced the notion of 1-randomness and showed that
there is a universal, increasing sequence Pen of Π0

1 classes such that µ(Pen) >
1 − 2−n and such that ∪nPen is precisedly the class of 1-random reals. Thus
the class of 1-random reals also has measure 1. The degree of a 1-random real
is called a 1-random degree. Recall that a function f : ω → ω is fixed-point-free
if there is no e such that φe = φf(e).

Theorem 3.3.5. (Martin-Lof) There is a computable function g such that if
Qn = Pg(n), then

1. Q0 ⊆ Q1 ⊆ . . .

2. For each n, µ(Qn) > 1− 2−n
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3. ∪nQn is the set of 1-random reals.

Proof. For each n, we construct a c. e. set Un ⊂ {0, 1}∗ and let Qn = {0, 1}N \
∪σ∈UnI(σ). First enumerate all c. e. Martin-Lof tests as follows. Let We denote
the eth c. e. subset of {0, 1}∗ and let We,s ⊆ {0, 1}s denote the finite subset of

We,s enumerated into We by stage s. Then let We,j,s =
⋂j
i=1W〈e,j〉,s as long as

µ(
⋃
{I(σ) : σ ∈ We,j,s}) ≤ 2−(j+1) and otherwise We,j,s = We,j,s−1. Then for

We,j =
⋃
{I(σ) : s ∈ N, σ ∈ We,j,s}. the c. e. Martin-Lof tests consist exactly

of the sequences We,0,We,1, . . . for e ∈ N.
Now define

Un = ∪e∈NWe,n+e+1,

and let
Un = ∪{I(σ) : σ ∈ Un}.

Note that µ(Un) ≤
∑
e∈N µ(We,n+e+1) ≤

∑
e 2−(n+e+1) ≤ 2−n. Then {U}n<ω

is a c. e. Martin-Lof test. Let Qn = {0, 1}N \ Un.
If x is 1-random, then x ∈ ∪nQn since it passes all c. e. Martin-Lof tests. If

x is not 1-random, suppose that it fails the test We,ne<ω, Then x ∈ ∩n≥e+1We,n

and hence x ∈ ∩nUn.

Theorem 3.3.6. (Kucera). For any Π0
1 class P of positive measure, D(P )

contains every 1-random degree.

Proof. Suppose µ(P ) > 0. Let W be a c. e. set such that {0, 1}N \ P =
∪σ∈W I(σ). For each n, define a sequence of uniformly c. e. sets Uk by U0 = W
and for each k,

Uk+1 = {τ_σ : τ ∈ Uk & σ ∈W}.

Then for each k, let V k =
⋃
σ∈Uk I(σ). It is easy to see that, for all k, V k+1 ⊆ V k

and that µ(V k) = µ(V )k. Choose m such that µ(V k) < 1
2 . Then for each n,

µ(V nk) < 2−n. Thus ∩mV m contains no 1-random elements. Suppose now that
A is 1-random. It follows that A /∈ V j for some j; let k be the least such. If
k = 0, then A ∈ P . If k > 0, then A ∈ V k−1 \ V k, so that A = τ_B for some
τ ∈ Uk−1 and some B ∈ P .

It follows from this proof that for any Π0
1 class P of positive measure and

any random real A, the iterated shift σn(A) ∈ P for some n.

Corollary 3.3.7. For each n, D(Qn) equals the set of 1-random degrees.

Proof. By Theorem 3.3.5, every element of Qn is 1-random and by Theorem
3.3.6, D(Qn) contains all 1-random degrees.

This also proves the following result from [91], which significantly improves
Theorem 3.3.1, since now we know that D(Qn) includes the 1-random degrees
and thus has measure one.

Corollary 3.3.8. (Jockusch-Soare) There is a c. b. Π0
1 class P with no com-

putable members such that µ(D(P )) = 1.
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The following is due to Kucera [106].

Theorem 3.3.9. Every 1-random set is bi-effectively immune.

Proof. Let Qn be defined as in Theorem 3.3.5 above. Following Kucera’s proof,
we will construct computable functions f and g such that for all k, x ∈ N:

A ∈ Qn & Wx ⊆ A =⇒ card(Wx) ≤ f(n, x);

A ∈ Qn & Wx ⊆ N−A =⇒ card(Wx) ≤ g(n, x).

Now define the uniformly Π0
1 classes Px,n ⊆ {0, 1}N by

A ∈ Px,m ⇐⇒ [A contains the first m+ 1 elements of Wx → card(Wx) < m.

Then µ(Px,m) > 1 − 2−m. Now let e = f(n, x) be defined so that φe(j) is an
index of Px,j for all j ∈ N. It follows from the definition of Qe that Qe ⊆ Px,e,
so that Qk ⊆ Px,e. Thus if A ∈ Qk & Wx ⊆ A, then card(Wx) ≤ e. The
argument for N−A and g is similar.

The next two results are taken from [91].

Theorem 3.3.10. For any closed subset P of NN with no computable member,
U(P ) (and hence D(P )) is meager.

Proof. Let P = [T ] where T is not necessarily computable and assume by way
of contradiction that U(P ) is not meager. Then for some e, Se = {A : φAe ∈ P}
is not meager. Now Se is not nowhere dense, so there exists σ such that every
extension τ of σ can be extended to some A ∈ Se. Note that Se is not necessarily
a closed set. We will use e and σ to construct a computable member of P . By
assumption there is an extension A of σ in Se so that φAe ∈ P . Thus we can
find τ0 � σ such that φe(τ0, 0) is defined. Proceeding recursively, we can find
τn+1 � τn such that φe(τn) ∈ T and |φe(τn)| > n. It follows that the computable
function f(n) = φe(τn, n) ∈ P . (Although x∪n τn is not necessarily an element
of Se.)

This theorem implies the result of Sacks [167] that U({A} is meager for any
noncomputable set A and the following theorem from [91] will imply the result
from [167] that µ(U({A})) = 0 for noncomputable A.

Theorem 3.3.11. (Jockusch-Soare) For any Π0
1 class P = S[A,B] where A

and B are computably inseparable, µ(U(P )) = 0.

Proof. Suppose by way of contradiction that µ(U(P )) > 0. Then for some e and
some rationalm, Qe = {C : φCe ∈ P} has positive measure p withm < p < 3m/2
for some rational m. Let Qe = [T ] for some computable tree T . For i = 0, 1, let

Ci = {n : µ({C : φCe (n) = i}) > m/2}.

Then each Ci is a c. e. set, since to test whether n ∈ Ci, simply find k such that
card({σ ∈ {0, 1}k : φσe (n) = i}) > m2k−1. Since φCe is total for a set of measure
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> m, it follows that C0 ∪ C1 = N. Hence by the reduction principle, there are
disjoint c. e. sets E0 ⊆ C0 and E1 ⊆ C1 such that E0∪E1 = N and therefore E0

and E1 are computable. We claim that E1 is a separating set for A and B. If
n ∈ A, then µ({C : φCe ∈ P}) > m, so that µ({C : φCe (n) = 1}) > m and hence
µ({C : φCe (n) = 0}) < m/2, so that n /∈ C0 and therefore n ∈ E1. Similarly
if n ∈ B, then n ∈ E0. But this contradicts the assumption that A and B are
computably inseparable.

Exercises

3.3.1. Construct a Π0
1 class which has positive measure m but has no computable

members. Show that for any real number ε > 0, we can make m > 1− ε.
(Hint: we can ensure that φe /∈ P by making φedn /∈ T for some large
value of n. )

3.3.2. Say that a real r is Σ0
1 if {q ∈ Q : q < r} is a Σ0

1 set. Show that r is Π0
1

(respectively, Σ0
1) if and only if r is the limit of a computable, decreasing

(resp. increasing) sequence of rationals. Thus r is computable if and only
if r is both an increasing and a decreasing limit of rationals.

3.3.3. Show that the class of 1-generic reals has measure 0 and is not a basis
for the family of Π0

1 classes of positive measure. (Hint: x is 1-generic if it
never belongs to the boundary of any Pe.)

3.3.4. Show that 1-generic reals and 1-random reals are also random.

3.3.5. Show that if a Π0
1 class P contains a random element, then µ(P ) > 0.

3.4 Mathematical Logic: Peano Arithmetic

In this section, we consider further the connection between Π0
1 classes and math-

ematical logic and, in particular, Peano Arithmetic. We begin with some appli-
cations of the present chapter together with sections 2.2.9.

Theorem 3.4.1. Any axiomatizable theory Γ has a complete consistent exten-
sion of low c. e. degree.

Proof. Let Γ be an axiomatizable theory and let the Π0
1 class P represent the

family of complete consistent extensions of Γ, by Theorem 2.2.9.1. Then P has
a member of low c. e. degree by Theorem 3.1.4.

On the other hand, we have the following.

Theorem 3.4.2. There is a (propositional) axiomatizable theory Γ which has
no c. e. complete consistent extension.

Proof. By Theorem 3.2.1, there is a Π0
1 class P with no c. e. member. Now, by

Theorem 2.2.9.3, there is an axiomatizable theory Γ such that P represents the
set of complete consistent extensions of Γ.
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Theorem 3.4.3. For any c. e. degree c, there is an axiomatizable theory Γ such
that the c. e. degrees of complete consistent extensions of Γ are exactly the c. e.
degrees above c.

Proof. This is an immediate consequence of Theorems 2.2.9.3 and 3.2.4.

Theorem 3.4.4. For any essentially undecidable, axiomatizable theory Γ, there
exists a c. e. degree a such that Γ has no complete consistent extensions of degree
≤ a.

Proof. This follows from Theorems 2.2.9.1 and 3.2.5.

Theorem 3.4.5. For any essentially undecidable, axiomatizable theory Γ, there
exists two complete consistent extensions, ∆1 and ∆2, of Γ such that any set
computable from ∆1 and computable from ∆2 is in fact computable.

Proof. This follows from Theorems 2.2.9.1 and 3.2.12.

Theorem 3.4.6. There is an axiomatizable theory Γ such that any two complete
consistent extensions of Γ are Turing incomparable.

Proof. This follows from Theorems 2.2.9.3 and 3.2.10.

3.4.1 Peano Arithmetic

The standard model N = (N, S,+, ·, <) of arithmetic is fundamental in math-
ematics. The language of arithmetic is often defined to consist of a one-place
function symbol S, representing the successor function, and binary function
symbols + for addition and · for multiplication. The usual linear ordering ≤
may then be defined by

x ≤ y ⇐⇒ (∃z)(x+ z = y);

x < y ⇐⇒ x ≤ y & x 6= y.

Each natural number n may be represented by the term Sn0. We will generally
identify Sn0 with n for simplicity of expression. Peano Arithmetic is a first order
theory for N the consisting of nine axioms needed to define the functions and
also the axiom scheme of induction. The eight axioms of Robinson arithmetic
are the following.

S1 Sx = Sy =⇒ x = y

S2 (∀x)Sx 6= 0

L1 (∀x)¬x < 0

L2 (∀x)(∀y)[x < Sy ⇐⇒ (x < y ∨ x = y)]

A1 (∀x)x+ 0 = x

A2 (∀x)(∀y)x+ Sy = S(x+ y)
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M1 (∀x)x · 0 = 0

M2 (∀x)(∀y)x · Sy = x · y = y

The axiom scheme of induction provides for each formula φ with one free
variable:

IP [φ(0) & (∀x)(φ(x) → φ(Sx))]→ (∀y)φ(y)

The fundamental results of Gödel and others [92, 192] connecting Peano
Arithmetic and computability theory is the following.

Theorem 3.4.7. For any c. e. set A, there is a formula φ (which represents
A) such that, for all m, the following are equivalent:

(1) m ∈ A;

(2) N |= φ(m) and

(3) PA ` φ(Sm0).

A partial converse to this result is the result of Gödel that any axiomatizable
theory Γ is computably enumerable (in the sense that the set of Gödel numbers
of members of Γ is a c. e. subset of N). This means that in particular PA itself is
a c. e. set. The Incompleteness Theorem of Gödel follows from these results and
tells us in particular, that PA can have no axiomatizable, complete consistent
extension.

We shall now consider the connection between Peano Arithmetic and Π0
1

classes. It follows from Theorem 2.9.1 that the set of complete consistent exten-
sions of PA as well as the set of consistent extensions of PA may be represented
as Π0

1 classes. It then follows that there is a complete consistent extension of
PA with c. e. degree. Now any axiomatizable extension Γ of PA is necessarily
incomplete by Gödel’s theorem, hence the family of complete consistent exten-
sions of Γ will be an uncountable Π0

1 class. Certainly not every Π0
1 class may be

represented as the set of complete extensions of such a Γ. However, the Scott
Basis Theorem shows that these classes are as complicated as an arbitrary Π0

1

class in a certain sense.

Theorem 3.4.8. (Scott [171]) For any consistent extension Γ of PA, the sets
computable in Γ form a basis for the c. b. Π0

1 classes.

Proof. Let Γ be a consistent extension of PA, let P be a c. b. Π0
1 class and let

TP ⊆ N∗ be the tree of nodes which have an extension in P . Then TP is a Π0
1

set and it follows from Theorem 3.4.7 that there is a formula ψ such that, for
all strings σ,

σ /∈ TP =⇒ PA ` φ(〈σ〉) =⇒ φ(〈σ〉 ∈ Γ.

Now we can define a subtree T of TP which is computable in Γ by

σ ∈ T ⇐⇒ φ(〈σ〉 /∈ Γ.

The tree T has no dead ends and thus there P contains an infinite path which
is computable in T and hence computable in Γ.
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Tennenbaum [193] observed that no nonstandard model of PA can be com-
putable and the following improvement of that result was noted by Jockusch
and Soare [90].

Theorem 3.4.9. If M = (N,+M , ·M ) is any nonstandard model of Peano
arithmetic, then the sets computable in M form a basis for the c. b. Π0

1 classes.

Proof. We follow the proof of Cohen [49]. Since PA and the set of negations
of sentences in PA form a pair of computabley inseparable c. e. sets, it suffices
by Theorem 3.4.8 to show that M can compute a separating set for any pair
of disjoint c. e. sets A and B. First observe that we can recursively compute
the standard numbers inM by starting with a0 and a1 which represent 0 and 1
and letting an+1 = an +M a1 for all n. Similarly we may compute from M the
sequence pn of (finite) prime numbers of M. Now by the Chinese Remainder
Theorem, there must exist an infinite element a of M such that, in M, a =
0(modpn) if and only if a ∈ A and a = 1(modpn) if and only if n ∈ B. A
separating set for A and B may now be computed fromM as follows. Given n,
compute the unique q and unique r < pn such that a = q ·M pn +M r and put
n ∈ C if and only if r 6= 1. It is immediate that A ⊂ C and B ∩ C = ∅.

We have the following corollary to Theorem 3.2.3.

Corollary 3.4.10. If a is the degree of any consistent extension or nonstandard
model of Peano Arithmetic and b is a c. e. degree such that a ≤ b, then b = 0′.

It now follows that no consistent extension of PA can have c. e. degree < 0′.
However, can get degree exactly 0′, as announced by Scott and Tennenbaum in
[172].

Corollary 3.4.11. There is a complete consistent extension of Peano Arith-
metic of degree 0′.

Proof. Let P be the c. b. Π0
1 class of all complete consistent extensions of PA.

Then P has a member of c. e. degree b and it follows from Corollary 3.4.10 that
b = 0′.

Here is a nice corollary to Theorem 3.2.8.

Corollary 3.4.12. (Jockusch-Soare [91]) There is a complete consistent exten-
sion Γ of Peano Arithmetic such that every set definable in Γ is either com-
putable or not arithmetical.

Proof. By Theorem 3.2.8, there is a theory Γ whose degree is incomparable
with 0(n) for each n > 0. The corollary now follows from the fact that each set
definable in Γ is computable from T .
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Chapter 4

The Cantor-Bendixson
Derivative

The perfect set theorem states that any closed subset of {0, 1}N is the union of
a perfect closed set (the perfect kernel) and a countable set. The perfect kernel
results from iterating the Cantor Bendixson derivative Dα(P ) until a fixed point
(an analytic set) is reached. The effective version of this theorem is that the
perfect kernel of a Π0

1 class is a Σ1
1 and that the iteration must stop by the first

non-computable ordinal ωC−K1 .
For a countable Π0

1 class P , the perfect kernel is the empty set and the iter-
ation must stop at some computable ordinal (the C-B rank of P . The Kreisel
basis theorem [105] showed that isolated members of Π0

1 classes must be hyper-
arithmetic in general, must be computable in 0′ if P is bounded, and must be
computable if P is computably bounded. Furthermore, any countable closed set
must have an isolated element.

A finer analysis was given in [19] for Π0
1 classes in {0, 1}N. The C-B rank of

a real x in a class P is the least ordinal α such that x /∈ Dα(P ). In particular,
if x has C-B rank λ + n in P for some limit ordinal λ and finite n, then x
is computable in 0λ+2n. It follows that every element of a countable class is
hyperarithmetic. The C-B rank of a real x is defined to be the minimum of the
ranks of x in any Π0

1 class.

4.1 Cantor-Bendixson derivative and rank

The Cantor-Bendixson derivative D(P ) of a compact subset P of NN is the set
of nonisolated points of P . Thus a point x ∈ P is not in D(P ) if and only
if there is some open set U containing x which contains no other point of P .
Equivalently, x /∈ D(P ) if and only if there is some clopen set U such that
U ∩ P = {x}. Another useful observation is that, for any compact set P , D(P )
is empty if and only if P is finite.

115
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The iterated Cantor-Bendixson derivative Dα(P ) of a closed set P is defined
for all ordinals α by the following transfinite induction.

Definition 4.1.1. 1. D0(P ) = P ; Dα+1(P ) = D(Dα(P )) for any α;

2. Dλ(P ) =
⋂
α<λD

α(P ) for any limit ordinal λ.

There is a related derivative which we can define for a tree T ⊆ {0, 1}∗.

Definition 4.1.2. 1. d(T ) = {σ ∈ T : (∃τ)[σ ≺ τ & τ_0 ∈ Ext(T ) & τ_1 ∈
Ext(T )]}.

2. d0(T ) = T , dα+1(T ) = d(dα(T )) and dλ(T ) = ∩α<λdα(T ) for limit λ.

Then d(T ) ≤T T (2) and is in fact Σ0
2 in T . We iterate this derivative by

Lemma 4.1.3. For any countable ordinal α and any tree T ⊆ {0, 1}∗, Dα([T ]) =
[dα(T )].

Proof. The proof is by transfinite induction. The equality is clear for α = 0.
The interesting case is when α = 1. Suppose that x ∈ [d(T )] and fix n ∈ ω.

Then xdn ∈ d(T ), so that there exists τ � xdn such that both τ_0 and τ_1
are in Ext(T ). Thus I(xdn)∩ [T ] contains at least two elements. It follows that
there is some path yn ∈ [T ] such that xdn ≺ yn and x 6= yn. Hence x ∈ D([T ]).

Next suppose that x ∈ D([T ]) and again fix n ∈ ω. Since x is not isolated
in [T ], there must exist y ∈ [T ] such that y 6= x and xdn ≺ y. Let m > n be
the least such that ydm + 1 6= xdm + 1 and let τ = xdm. Then xdn ≺ τ and
τ_0 and τ_1 are both in Ext(T ), which demonstrates that xdn ∈ d(T ). Hence
x ∈ [d(T )]. v Now suppose that Dα([T ]) = [dα(T )]. Then

Dα+1([T ]) = D(Dα([T ]) = D([dα(T )]) = [d([dα(T ))] = [dα+1(T )].

For a limit ordinal λ,

Dλ([T ]) = ∩α<λDα([T ]) = ∩α<λ[dα(T )] = [dλ(T )].

This completes the proof.

The Cantor-Bendixson (CB) rank of a closed set P is the least ordinal α
such that Dα+1(P ) = Dα(P ); then Dα(P ) is a perfect closed set, denoted
K(P ), called the perfect kernel of P and P \ K(P ) is a countable set. For
A ∈ P \ K(P ), the C-B rank rkP (A) of A in P is the least ordinal α such
that A ∈ Dα(P ) \ Dα+1(P ); the C-B rank rk(P ) is the least α such that
Dα(P ) = K(P ). The set A is ranked if there is a Π0

1 class P such that A ∈
P \ K(P ), and the C-B rank rk(A) is the least α such that rkP (A) = α for
some Π0

1 class P . Kreisel [105] used the Boundedness Principle of Spector [184]
to show that rk(P ) ≤ ωC−K

1 for any Π0
1 class P , so that any ranked point A has

rk(A) < ωC−K
1 .
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Theorem 4.1.4 (Kreisel). For any Π0
1 class P , K(P ) is a Σ1

1 class and rk(P ) ≤
ωC−K1 .

Proof. Fix a computable tree T such that P = [T ] and define the Σ0
2 monotone

inductive operator Γ on {0, 1}∗ as follows.

σ ∈ Γ(A) ⇐⇒ σ /∈ T ∨ σ /∈ d({0, 1}∗ −A).

It follows that Γ1 = {0, 1}∗ − T , Γ1 = {0, 1}∗ − d(T ), and so on, so that
Cl(Γ) = {0, 1}∗ − TK(P ). It follows from Theorem II.1.13.8 that TK(P ) is Σ1

1,
so that K(P ) = [TK(P )] is also Σ1

1. It follows from Corollary 1.13.13 that
rk(P ) ≤ ω1.

We will show in Section VI.5.7 that there is a Π0
1 class P such that rk(P ) =

ωC−K1 and K(P ) is not ∆1
1.

For the sake of completeness, let rkP (A) = rk(P ) if A ∈ K(P ). This means
that the rank function will define a prewellordering on P .

A fundamental idea here is that the complexity of an element x of a Π0
1

class P is related to the Cantor-Bendixson rank of x in P . Kreisel [105] first
noticed that the Turing degree of a member x of a Π0

1 class is related to the
CB rank; he used this to show that every member of a countable Π0

1 class is
hyperarithmetic. In particular, it is easy to see that a real has rank 0 if and
only if it is computable.

We need a series of lemmas from [42]. Note first that for two closed sets P
and Q, D(P ∪Q) = D(P ) ∪D(Q) but D(P ∩Q) is in general only a subset of
D(P ) ∩D(Q).

More generally, we have

Lemma 4.1.5. For any closed sets P and Q and any ordinal α:

(a) Dα(P ∪Q) = Dα(P ) ∪Dα(Q) and

(b) Dα(P ∩Q) ⊂ Dα(P ) ∩Dα(Q).

Proof. The proofs are by induction on α. For α = 0, these are trivial.
(a) For α = 1, D(P ) and D(Q) are subsets of D(P ∪Q) since P and Q are

subsets of P ∪ Q. For the reverse inclusion, suppose that x /∈ D(P ) ∪ D(Q).
Then there are clopen sets U and V with U ∩ P = {x} and V ∩ Q = {x}.
Thus U ∩ V ∩ (P ∪ Q) = {x}, so that x /∈ D(P ∪ Q). Now assume that
Dα(P ∪Q) = Dα(P ) ∪Dα(Q). Then using the case α = 1, we have

Dα+1(P ∪Q) = D(Dα(P ∪Q)) = D(Dα(P ) ∪ Dα(Q))

= D(Dα(P )) ∪ D(Dα(Q)) = Dα+1(P ) ∪ Dα+1(Q).

(b) This is left as an exercise.

Note that equality holds in (b) if one of the sets is clopen.
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Lemma 4.1.6. For any compact subset Q of {0, 1}ω, any clopen set K and any
ordinal α,

(a) Dα(K ∩Q) = K ∩Dα(Q).

(b) rkK∩Q(A) = rkQ(A) for any A.

The proof is left as an exercise.

Lemma 4.1.7. For any set A and any computable ordinal α, rk(A) ≤ α if and
only if there is some Π0

1 class P such that Dα(P ) = {A}.

Proof. The “if” direction is immediate from the definition of rank. Suppose
now that rk(A) ≤ α, so that A ∈ Dα(Q) \Dα+1(Q) for some Π0

1 class Q. Thus
A is isolated in Dα(Q), so that for some clopen K, K ∩ Dα(Q) = {A}. Let
P = K ∩Q. It follows from Lemma 4.1.6 that

Dα(P ) = Dα(K ∩Q) = K ∩Dα(Q) = {A}.

Lemma 4.1.8. (Cenzer-Smith [42])

(a) Let Φ be a continuous map from {0, 1}ω into {0, 1}ω and let P,Q be
compact sets such that Φ(P ) = Q. Then for any y ∈ Q, rkQ(y) ≤
max{rkP (x) : x ∈ P & Φ(x) = y}.

(b) For any sets A,B, if A ≤tt B and B is ranked, then A is ranked and
rk(A) ≤ rk(B).

(c) For any sets A,B, if A ≡tt B and B is ranked, then A is ranked and
rk(A) = rk(B).

Proof. Let rkQ(y) = β, so that y ∈ Dβ(Q) \ Dβ+1(Q). It is shown in Lemma
1.2 of [42] that Dα(Φ(P )) ⊂ Φ(Dα(P )) for any α. Since y ∈ Dβ(Q), it follows
that y = Φ(x) for some x ∈ Dβ(P ), so that rkQ(y) = β ≤ rkP (x), where it is
possible that x is not ranked in P .

(b) By Theorem 1.9.10, if A ≤tt B, then there is a computable function
Φ : {0, 1}ω → {0, 1}ω such that Φ(B) = A. Now let rk(B) = α and, by
Lemma 4.2, let P be a Π0

1 class such that Dα(P ) = {B}, so that rkP (B) =
max{rkP (x) : x ∈ P}, and let Q = Φ(P ). It follows from (a) that rk(A) ≤
rkQ(A) ≤ rkP (B) = rk(B).

(c) This is immediate from (b).

The following improvement of Lemma 1.4 of [42] is due to J. Owings and C.
Laskowski [153]. Recall that α⊕ β is the Hessenberg sum of two ordinals, that
A⊕B is the disjoint union of two sets and that P⊕Q = {A⊕B : A ∈ P & B ∈ Q}
for two classes P and Q of sets.

Theorem 4.1.9. (Owings, [153]) For any sets A,B ∈ {0, 1}N and any compact
P,Q ⊂ {0, 1}N, rkP⊕Q(A⊕B) = rkP (A)⊕ rkQ(B).
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Proof. We first show by induction on rkP (A) ⊕ rkQ(B) that rkP⊕Q(x ⊕ y) ≤
rkP (A) ⊕ rkQ(B). If rkP (A) ⊕ rkQ(B) = 0, then A is isolated in P and B is
isolated in Q, so that there are open intervals I and J such that P ∩ I = {A}
and Q ∩ J = {B}. It follows that (P ⊕ Q) ∩ (I ⊕ J) = {A ⊕ B}, so that
rkP⊕Q(A ⊕ B) = 0. Now let rkP (A) = α and rkQ(B) = β and suppose the
inequality holds for all x, y such that rkP (x)⊕ rkQ(y) < α⊕ β. By intersecting
with open intervals, as above, we may assume that Dα(P ) = {A} and that
Dβ(Q) = {B}. It suffices to show that rkP⊕Q(x⊕y) < α⊕β for all x⊕y 6= A⊕B
in P ⊕ Q. But if x ⊕ y 6= A ⊕ B, then either x 6= A or y 6= B, so that either
rkP (x) < α or rkQ(y) < β. In either case, rkP (x) ⊕ rkQ(y) < α ⊕ β, so that
rkP⊕Q(x⊕ y) < α+ β.

For the reverse inequality, we prove by induction on α⊕ β that
Dα(P )⊕Dβ(Q) ⊂ Dα⊕β(P ⊕Q).
For α ⊕ β = 0, this is obvious. We also need the case where α ⊕ β = 1.

Suppose without loss of generality that α = 1 and β = 0 and suppose that
A ∈ D(P ) and B ∈ Q. Then for any interval I ⊂ {0, 1}ω, there is some A′ 6= A
in P ∩ I. Then for any basic open set I ⊕ J ∈ {0, 1}ω ⊕ {0, 1}ω, there is an
element A′ ⊕B 6= A⊕B in (P ⊕Q) ∩ (I ⊕ J). Thus A⊕B ∈ D(P ⊕Q). This
shows that

D(P )⊕Q ⊂ D(P ⊕Q).
Now suppose the inclusion holds for all ordinals σ, τ with σ ⊕ τ < α ⊕ β.

There are two cases.
(Case 1) If α⊕β is a limit ordinal, then α and β are both limit ordinals and

α⊕ β = sup{σ ⊕ τ : σ < α & τ < β}. Thus

Dα⊕β(P ⊕Q) = ∩γ<α⊕βDγ(P ⊕Q) = ∩σ<α,τ<βDσ⊕τ (P ⊕Q)

= ∩σ<α,τ<βDσ(P )⊕Dτ (Q) = Dα(P )⊕Dβ(Q).

(Case 2) If α⊕β is a successor, then either α is a successor or β is a successor–
without loss of generality say that α = γ+ 1, so that α⊕β = (γ⊕β) + 1. Then

Dα(P )⊕Dβ(Q) = D(Dγ(P ))⊕Dβ(Q) ⊂ D(Dγ(P )⊕Dβ(Q))

⊂ D(Dγ⊕β(P ⊕Q)) = Dα⊕β(P ⊕Q).

This completes the proof.

Thus we have the following corollary.

Theorem 4.1.10. For any sets A and B, max{rk(A), rk(B)} ≤ rk(A⊕B) ≤
rk(A)⊕ rk(B).

Proof. The first inequality follows from Lemma 4.1.8, since both A and B are
≤tt A⊕B. The second inequality follows from Theorem 4.1.9.

The basic result for rank 0 is the following.

Lemma 4.1.11. For any x ∈ {0, 1}ω, the following are equivalent:
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(a) x is computable;

(b) {x} is a Π0
1 class;

(c) x has Cantor-Bendixson rank 0.

Proof. Suppose first that x is computable. Then {x} = [T ], where σ ∈ T ⇐⇒
(∀i < |σ|)(σ(i) = x(i)). Next suppose that {x} is a Π0

1 class. Then the rank
of x in {x} is 0, so that the C-B rank of x is 0. Next suppose that x has C-B
rank 0 and let P = [T ] be a Π0

1 class such that x is isolated in P , where T is a
computable tree. Then for each sufficiently large n, xdn+ 1 is the unique path
of length n which has an extension in P . Thus we may compute xdn + 1 (and
therefore compute x(n)) by searching for the least m such that all strings σ ∈ T
of length m have the same initial segment σdn.

We remark that Lemma 4.1.11 and its proof can be relativized to computabil-
ity in B for any set B.

Exercises

4.1.1. Give a proof of Lemma 4.1.5(b).

4.1.2. Give a proof for Lemma 4.1.6.

4.1.3. Prove a relativized version of Lemma 4.1.11.

4.1.4. Show by induction on ordinals α that for any continuous map Φ : {0, 1}N →
{0, 1}N, and any compact set Q, Dα(Φ(P )) ⊆ Φ(Dα(P )).

4.1.5. Show that if rk(B) = rk(A⊕B), then A is computable in B.

4.1.6. Owings [153] defined a Cantor singleton as being the unique noncom-
putable element of some Π0

1 class. By Theorem 2.6.2, every noncomputable
Π0

1 retraceable set is a Cantor singleton. Show that any noncomputable
set which is the union of a computable set with a Π0

1 retraceable set is
also a Cantor singleton.

4.1.7. Show that if B is a Cantor singleton and A ≤tt B, then A is a Cantor
singleton.

4.1.8. Show that if A⊕B is a Cantor singleton, then either B is computable or
A is computable in B.

4.1.9. A set A is said to be autoreducible if there is a computablee functional F
such that, for all n, A(n) = F (n,A \ {n}). Show that every ranked set
A is autoreducible (Owings). (Hint: note that, for any n, A \ {n} and
A ∪ {n} are both ≡tt A and thus have rank α.)
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4.2 Basis results

In this section, we consider basis results for countable Π0
1 classes. The key

observation here is the following.

Theorem 4.2.1. Any countable closed P ⊂ {0, 1}N has countable rank and has
an isolated point.

Proof. If P has no isolated points, then P is perfect and hence uncountable.
For the rank, observe that for α < rk(P ), Dα(P ) \Dα+1(P ) is nonempty.

Basis results for countable Π0
1 classes can thus be obtained from the following.

Theorem 4.2.2. (Kreisel [105]) Let P be a Π0
1 class.

(a) Any isolated member of P is hyperarithmetic; if P is finite, then every
member of P is hyperarithmetic.

(b) Suppose that P is bounded. Then any isolated member of P is computable
in 0′; if P is finite, then every member of P is computable in 0′.

(c) Suppose P is computably bounded. Then any isolated member of P is
computable; if P is finite, then every member of P is computable.

Proof. Let x be isolated in P = [T ] and take n large enough so that P∩I(xdn) =
{x}. Now define the Π0

1 class Q to be P ∩ I(xdn). That is, Q = [S], where S is
the computable tree consisting of all strings in T which are compatible with xdn.
It follows that Ext(S) = {xdn : n < ω}, so that x is computable in Ext(S).
Now consider the three cases.

(a) For an (unbounded) tree S, Ext(S) is Σ1
1 by Theorem 2.2.13 and since

[S] is a singleton, we have
σ ∈ Ext(S) ⇐⇒ (∀τ ∈ ω|σ|(τ 6= σ → τ /∈ Ext(S)),
so that Ext(T ) is also Π1

1. It follows that Ext(T ) and hence x are hyper-
arithmetic.

(b) For a finitely branching tree T , Ext(T ) is Π0
2 by Theorem 2.2.13. Now

it follows from König’s Lemma that for each n, there is some k ≥ n such that
every sequence in T of length k is an extension of xdn. Thus we have

σ ∈ Ext(S) ⇐⇒ (∃k ≥ |σ|)(∀τ ∈ ωk)(τ ∈ S → σ ≺ τ),
so that Ext(S) is also Σ0

2. It follows that Ext(S) and hence x are computable
in 0′.

(c) In this case, Ext(S) is Π0
1 by Theorem 2.2.13 and is also Σ0

1 since
σ ∈ Ext(S) ⇐⇒ (∃n ≥ |σ|)(∀τ ∈ {0, 1, . . . , f(n)}n)(τ ∈ S → σ ≺ τ),
where f is a computable bounding function for S. Thus Ext(S) and x are

both computable.
Suppose now that P is finite. The conclusion in each case follows from the

fact that every member of P will be isolated.

Combining this with the previous result, we have

Theorem 4.2.3. (Kreisel) Let P be a countable Π0
1 class.
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(a) P has a hyperarithmetic member.

(b) If P is bounded, then P has a member computable in 0′.

(c) If P is computably bounded, then P has a computable member.

As a corollary to the proof of Theorem 4.2.2, we also have the following.

Theorem 4.2.4. Let P = [T ] be a Π0
1 class.

(a) Suppose that T is finite branching. Then any isolated member of P is
computable in T ′; if P is finite, then every member of P is computable in
T ′. Thus if P is countable, then P has a member computable in T ′.

(b) Suppose T is computably bounded. Then any isolated member of P is
computable in T ; if P is finite, then every member of P is computable in
T . Thus if P is countable, then P has a member computable in T .

4.3 Ranked Points and Rank-Faithful Classes

The following notions were introduced by G. Martin [132] and J. Owings [153].
A Π0

1 class is said to be rank-faithful if rkP (x) = rk(x) for all x ∈ P . The Π0
1

classes constructed in Theorems 2.6.8, 4.4.5 and 4.4.8 are clearly rank-faithful.
A real x is said to be a Cantor Singleton if it is the unique non-computable
member of some Π0

1 class. Theorem 2.ref2.2 implies that every non-computable
Π0

1 retraceable set is a Cantor singleton. G. Martin improved this result by
showing that any noncomputable set which is the union of a computable set
with a Π0

1 retraceable set is a Cantor singleton. (See the exercises.)

Theorem 2.2.6.2 was improved to the following.

Theorem 4.3.1. (G. Martin) For each computable ordinal α and every non-
zero r.e. degree a, there are c. e. sets A and B of degree a and rank α such
that A is a Cantor singleton and B belongs to a rank-faithful Π0

1 class.

Recall from Theorem 2.8.2 that a minimal Π0
1 class is a thin class of rank

one such that all computable elements are isolated and the unique nonisolated
element is noncomputable. It follows that any minimal Π0

1 class is rank-faithful.
This can be extended to arbitrary thin classes as follows.

Theorem 4.3.2. Any thin Π0
1 class P is rank-faithful.

Proof. Suppose that A ∈ P and that rk(A) = α. Let Dα(Q) = {A}. Then
A ∈ P ∩Q and P ∩Q = P ∩ U for some clopen set U . It follows from Lemma
4.1.6 that rkP (A) = rkP∩Q(A) ≤ rkQ(A). Equality follows since rkQ(A) is
minimal by assumption.

Here are two interesting results from Owings [153].



4.4. RANK AND COMPLEXITY 123

Theorem 4.3.3. (Owings) (a) If A ⊕ B is a Cantor singleton, then either B
is computable or A is computable in B, so that the degree of A⊕B is either the
degree of A or the degree of B.

(b) If rk(B) = rk(A⊕B), then A is computable in B.

Proof. (a) Suppose that A⊕B is the unique noncomputable element of P and
that B is noncomputable. Let Q = P ∩({0, 1}ω⊕{B} and observe that B ≤tt C
for every C ∈ Q, so that any C ∈ Q is noncomputable. Thus A ⊕ B is the
unique element of Q and is therefore computable in B by the relativized version
of Lemma 4.1.11.

(b) Let α = rk(A⊕B) and let P be a Π0
1 class such that Dα(P ) = {A⊕B}.

As in (a), let Q = P ∩ ({0, 1}ω ⊕ {B}). It follows from Lemma 4.3(b) that
rk(C) ≥ α for all C ∈ Q, so that in fact Q = {A ⊕ B}. Then A ⊕ B is
computable in B as above.

Recall that a set A is autoreducible if there is a computable functional F
such that, for all n, A(n) = F (n,A \ {n}).

Theorem 4.3.4. (Owings) Every ranked set A is autoreducible.

Proof. Let rk(A) = α and let P = [T ] be a Π0
1 class such that Dα(P ) = {A}.

Note that for any n, A\{n} and A∪{n} are both ≡tt A and thus also have rank
α. It follows that only one of them can belong to P . Thus, given n and A\{n},
we search for the least k such that every σ ∈ T of length k consistent with
A \ {n}, except possibly at n, has the same value σ(n). Then A(n) = σ(n).

Exercises

4.3.1. Prove G. Martin’s result that any noncomputable set which is the union
of a computable set with a Π0

1 retraceable set is a Cantor singleton.

4.3.2. For any sets A,B such that B is a Cantor singleton and A ≤tt B, show
that A is a Cantor singleton (Owings [153].) Hint: recall the proof of
Lemma 4.4.3.

4.4 Rank and Complexity

In this section, we examine the connection between the rank and the hyper-
arithmetic complexity of a set.

Our first theorem will be a generalization of Theorem 4.2.2 (c) to arbitrary
rank.

First we consider the complexity of the tree resulting from the iterated C-B
derivative.

Lemma 4.4.1. For any computable tree T ⊆ {0, 1}∗, any computable limit
ordinal λ and any finite n > 0,
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(a) dn(T ) ≤T 0(2n) and is Σ0
2n;

(b) dλ(T ) ≤T 0(λ+1) and is Π0
λ+1;

(c) dλ+n(T ) ≤T 0(λ+2n) and is Σ0
λ+2n+1.

Proof. Let T be given and define the inductive operator Γ on {0, 1}∗ by

σ ∈ Γ(U) ⇐⇒ σ /∈ d(T ) ∨ σ /∈ d({0, 1}∗ − U).

Then Γ is Π0
2 by Definition 4.1.2 and it is easy to see that for all ordinals α,

dα(T ) = {0, 1}∗ − Γα.

The result now follows immediately from Theorem 2.1.14.9.

For decidable trees, there is a slight improvement.

Lemma 4.4.2. For any decidable tree T ⊆ {0, 1}∗, any computable limit ordinal
λ and any finite n > 0, dn(T ) ≤T 0(2n−1) and is Σ0

2n−1.

Proof. Since T is decidable, Ext(T ) is a computable set and it follows that d(T )
is a Π0

1 set. The result now follows from Exercise 2.3.

Theorem 4.4.3. For any A ∈ {0, 1}N, any Π0
1 class P , any finite n and any

limit ordinal λ,

(a) If rkP (A) = n, then A ≤T 0(2n). Furthermore, if rkP (A) = n for some
decidable P , then A ≤T 0(2n−1).

(b) If rkP (A) = λ+ n, then A ≤T 0(λ+2n+1).

Proof. (a) Let T be a computable binary tree such that [dn(T )] = {A}. It
follows from Lemma 4.4.1 that dn(T ) ≤T 0(2n) and then by Theorem 4.2.4 that
A ≤T 0(2n). For a decidable class P = [T ], dn(T ) ≤T 0(2n−1) by Lemma 4.4.2.

(b) Similarly x ≤T dλ+n(T ) ≤T 0(λ+2n).

Theorem 4.4.4. For any countable Π0
1 class P ⊆ {0, 1}N,

(a) rk(P ) is a computable ordinal;

(b) Every element of P is hyperarithmetic.

Proof. Since P is countable, it follows that the perfect kernel of P is empty. Thus
the inductive definition Γ given in the proof of Lemma 4.4.1 has closure {0, 1}∗
which is a computable set. It follows from the Boundedness Theorem for induc-
tive definability (Theorem II.1.13.12) that |Γ| < ω1 and therefore rk(P ) < ω1. It
now follows from Theorem 4.4.3 that every element of P is hyperarithmetic.

It follows from Theorem 4.4.3 that any set of rank one must be computable
in 0′′. We now analyze the rank one sets further. Recall from Theorem 2.6.8
that every c. e. set is Turing equivalent to a hypersimple r.e. set of rank one.
This result has the following improvement.
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Theorem 4.4.5. (Cenzer-Smith [42] For any noncomputable degree b ≤ 0′,
there is a hyperimmune set B with degree b of rank one; furthermore, there is
a computable tree T with no dead ends such that D([T ]) = {B}.

Proof. Let A be a set of degree b. By the limit lemma, there is a computable
function f such that, for all e,

A(e) = limn f(n, e).
Let n(0) be the least n > 0 such that f(n, 0) = A(0) and, for any e, let

n(e+ 1) be the least n > n(e) such that, for all i < e+ 2, f(n, i) = A(i). Then
n(0) < n(1) < · · · is a modulus for the set A, so that B = {n(0), n(1), · · · } has
degree b.

We define a Π0
1 class P with rkP (B) = 1.

The (possibly finite) set C = {m(0) < m(1) < · · · } is in P if and only if
0 < m(0) and for all e, i, and m:

1. (0 < m < m(0) & C 6= 0)→ f(0,m) 6= f(0,m(0));

2. e < i < card(C)→ f(m(i), e) = f(m(e), e);

3. (e+1 < card(C) & m(e) < m < m(e+1))→ (∃j < e+2)(f(m(e+1), j) 6=
f(m, j)).

It is clear that P may be defined by a tree T without dead ends and in fact
closed under extension by 0. Also, P contains all initial subsets of B and in fact
is closed under initial subsets, so that rkP (B) ≥ 1.

If C = {m(0) < m(1) < · · · } is any infinite set in P , then it follows from (ii)
that f(m(e), e) = f(n(e), e) = A(e) for all e. But it then follows from (i) or, by
induction, from (iii) that m(e) = n(e) for all e, so that C = B.

If C = {m(0) < m(1) < · · · < m(k)} is any finite set in P , then it follows
from (i) and (iii) that there are at most two extensions C ∪ {m} of C in P (one
with f(m, k + 1) = 0 and one with f(m, k + 1) = 1), so that C is isolated in P .

Thus B is the only non-isolated element of P and therefore rkP (B) = 1.
To see that B is hyperimmune, suppose by way of contradiction that h were

a computable function with h(e) > n(e) for all e. Then we could define a Π0
1

subclass Q of P by adding the restriction

(iv) (∀e)[card(C ∩ {0, 1, . . . , h(e)− 1}) > e].

We shall see later that not every Σ0
2 degree contains a ranked set. Thus there

is a more complicated result for degrees below 0′′. The following theorem gives
a partial inverse C-B derivative and shows that a large class of degrees contain
ranked points.

Theorem 4.4.6. [19] For any real B and any tree S ⊂ {0, 1}∗ such that S is
computable in B′′, there is a tree T computable in B and a homeomorphism Φ
from [S] onto D([T ]) such that for all x ∈ [S], x ≤T Φ(x) ≤T x⊕B′.
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Proof. Let F be a function, computable in B, such that, for all σ ∈ {0, 1}∗,

χS(σ) = lim
p→∞

lim
n→∞

F (p, n, σ).

For each p and σ, let Fp(σ) = limn→∞ F (p, n, σ).

Let x ∈ {0, 1}N be given and assume that x ∈ [S]. We define “outer modulus”
values p = pk(x) such that Fp(xdk) = 1 and “inner modulus” values n = nk(x)
such that F (pk, n, xdk) = 1.

Let p1 = p1(x) be the least p > 0 such that Fp(xd1) = 1 and let n1 = n1(x)
be the least n > p1 such that, for all m ≥ n, F (p,m, xd1) = 1. Now inductively
define pe+1(x) to the least p > ne such that Fp(xdi) = 1 for all i ≤ e+ 1. Since
x ∈ [S], pe+1 exists. Now let ne+1 be the least n > pe+1 such that

(1) for all i ≤ e+ 1 and all m ≥ n, F (pe+1,m, xdi) = 1, and

(2) for all p with ne < p < pe+1, there is an i ≤ e+ 1 such that, for all m ≥ n,
F (p,m, xdi) = 0.

Note that our choice of ne+1 not only verifies that Fpe+1
(i) = 1 for all

i ≤ e+ 1, it also verifies that pe+1 is the least p > ne with this property.

Now for x ∈ [S], let

(3) H(x) = {x(0)_1_0n1_1_0p1_1x(1)_1_0n2_1_0p2_ . . .

It is clear from the definition that x is computable from H(x) and that H(x)
is computable in 0′ ⊕B′.

The tree T is to contain all initial segments of each image H(x) together
with certain strings which resemble those initial segments when only finitely
many values of F are considered. Every element of [T ]−H([S]) will be isolated
in [T ] and each point H(x) will be the limit of a distinct sequence of points from
[T ] \H([S]).

Elements of the computable tree T with D([T ]) = {B} will be initial seg-
ments of strings σ of the form

(4) σ = r(0)10n110p11r(1)10n210p2 . . . r(k − 1)10nk10pk1.

The string σ as above is said to be consistent if it satisfies the following
conditions:

(5) 0 < p1 < n1 < p2 < n2 < · · · < pk < nk.

(6) For all i, j, k and m, if i ≤ j ≤ k and nj ≤ m ≤ nk, then F (pj ,m, rdi) = 1.

(7) For all j, k and p, if j ≤ k and nj−1 < p < pj , then there is an i ≤ j such
that, for all m with ni ≤ m ≤ nk, F (p,m, i) 6= F (p,m, rdi) = 0.
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If τ = σ_r or τ = σ_r_1_0n, then τ is consistent if σ is consistent. The
string ρ = σ_r_1_0n_1 is consistent if σ is consistent and if conditions (ii)
and (iii) hold when nk is replaced by n and the string ρ_1_0p is consistent if
ρ is consistent and p < n.

It is clear that for all x ∈ [S], every initial segment of H(x) is consistent.
Now let y ∈ {0, 1}N be an extension of σ as in (4) above and suppose that every
initial segment of y is consistent. There are two possibilities. Either y has the
form in (3) above or y = τ_0ω, where τ = σ_r(k + 1)_ . . ._r(`)_1. In either
case, the values of nj are unbounded in the initial segments of y. It now follows
from (5) that:

(8) For all i ≤ j ≤ k, Fpj (rdi) = 1.

It also follows from (v) that:

(9) For all j ≤ k and all p with nj−1 < p < pj , there exists i ≤ j such that
Fp(rdi) = 0.

It is now clear that if y has form (3), then for all j, pj is the least p greater
than nj−1 (or > 0 for j = 1) such that Fp(rdi) = 1 for all i ≤ j. It follows that
x ∈ [S].

A consistent string τ with σ � τ � σ_r_1_0nk+1
_1_0pk+1 is said to be

exact if each ni is minimal, that is,

(10) For all i, k, n, if i ≤ k and pi < n < ni, then
r(0)10n110p11 . . . 1r(i)10n10pi1 is not consistent.

The desired tree T is defined to be the set of all exact strings. It is clear
that for each x ∈ [S], H(x) is in [T ]; furthermore, for each k,
x(0)_1_0n1(x)_1 . . ._1_x(k)_1_0ω belongs to [T ]. Thus H(x) ∈ D([T ]) as
desired. It remains to show that all other elements of [T ] are isolated.

First suppose that y ∈ [T ] has infinitely many 1’s. Then we saw above that
y has the form (3) where x ∈ [S] with each pj minimal. It now follows from
(10) that each ni is also minimal so that y = H(x). Thus any element of y of
[T ] = H([S]) must have the form

y = r(0)10n110p11r(1)10n210p2 . . . r(k)10ω = τ_0ω

Now suppose that z 6= y and z ∈ [T ] ∩ I(τ). Then for some nk and pk,
τ_1_0nk_1_0pk_1 ≺ z. It follows from (8) and (9) that pk is uniquely de-
termined and from (10) that nk is uniquely determined. Thus y is the unique
element of [T ] which extends τ_1_0nk+1 and hence y is isolated in [T ] as de-
sired.

We now have that H is an isomorphism of [S] onto [S] onto D([T ]). Since H
is computable in B, it must be continuous and since [S] and D([T ]) are compact,
it follows that H−1 is also continuous. This completes the proof.
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We note that this proof is uniform in S. That is, there is a primitive recursive
function φ such that if e is an index for S as a Π0

3-in-B set, then φ(e) is an index
for T as a Π0

1-in-B set.

Corollary 4.4.7. (a) For any finite n and any tree S ≤T 0(2n), there is a
computable tree T and a homeomorphism H from [S] onto Dn([T ]) such
that, for all x ∈ [S], x ≤T H(x) ≤T x⊕ 0(2n−1).

(b) For any finite n and any real x such that 0(2n−1) ≤T x ≤T 0(2n) or such
that 0(2n−2) ≤T x ≤T 0(2n−1), there is a computable tree T and a real
y ≡T x with |y|T = |y| = n.

Proof. Part (a) follows easily from Theorem 4.4.6 by induction on n. Part (b)
now follows from (a) by letting [S] = {x}.

This result can be extended to higher levels of the hyperarithmetic hierarchy
as follows. The following is Theorem 42 of [35].

Theorem 4.4.8. For any computable ordinal α and any c. b. Π0
2α+1 class Q,

there exists a Π0
1 class P of sets and a homeomorphism from Q onto Dα(P )

such that x ≤T H(x) ≤ x⊕ 02α−1 for all x ∈ Q.

Proof. The proof is by a uniform recursion up to a fixed computable ordinal κ
with a set of notations as given by Lemma 1.12.16. We may assume that Q is
actually a class of sets and build a P which is computably bounded. In fact, we
only need to assume that Q = [S], where for all σ ∈ S and all relevant notations
a, σ(i) 6= a for any i.

We will actually define computable functions f and ψ such that φ0o(a)−1

ψ(e,a)

is a homeomorphism from Pe,2o(a)+1 onto Do(a)(Pf(e,a)) and such that x ≤
φψ(e,a)(x) for each x.

The construction will be presented as a transfinite recursion on o(a), but is
actually obtained by the recursion theorem.

We need a series of lemmas. We shall write A = tnBn if A = ∪nBn and the
elements of {Bn : n ∈ ω} are pairwise disjoint

Lemma 4.4.9. There is a primitive recursive function ρ such that, for each
α = o(a), Pe,α+3 = [T ], with T = tnUρ(e,a,n),α+1.

Proof. From the definition, Pe,α+3 = [U ], where U = [Ue,α+3] is uniformly
Π0
α+3. It is then easy to define, as in Proposition 2.3.7 a Σ0

α+2 tree S such that
[U ] = [S]. Thus there exists a Σ0

α relation R such that

σ ∈ S ⇐⇒ (∃n)(∀m)R(m,n, e, σ)

As usual, we may assume that ¬R(m,n, e, σ)→ ¬R(m,n+ 1, e, σ) and that
(∀m)R(m,n, e, σ)→ (∀m)R(m,n+ 1, e, σ).

Now define the desired trees by
σ ∈ Uρ(e,a,〈m,n〉),α+1 if and only if
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1. (∀m′)(∀i ≤ |σ|)R(m′, n, e, σdi)

2. (∀n′ < n)(∃m′ < m)(∃i ≤ |σ|)¬R(m′, n′, e, σdi)

3. (∀m′ < m)(∃n′ < n)(∀m′′ < m′)(∀i ≤ |σ|)R(m′′, n′, e, σdi).

We need a slightly modified notion from [19] of a completely ranked tree.

Definition 4.4.10. A tree T is completely ranked up to α if, for all y ∈ [T ]
and all notations a with o(a) < α,

1. y ∈ Do(a)([T ]) if and only if y(n) = a for infinitely many n.

2. y /∈ Do(a)([T ]) implies that for some n, any extension τ ∈ T of ydn never
has τ(i) = a for i ≥ n.

T is completely ranked if there exists a recursive ordinal α such that T is com-
pletely ranked up to α and, for any τ ∈ T , any notation a with o(a) ≥ α, and
any i, τ(i) 6= a.

Let Q be a r. b. strong Π0
2α+1 class of sets. Note that elements of Q are

only allowed to contain notations for ordinals > α. We will define a Π0
1 class P ,

a recursively bounded, tree T , completely ranked up to α+1, such that P = [T ]
and a homeomorphism Φ from Q onto Dα(P ) such that x ≤T Φ(x) ≤T ⊕02α−1

for all x ∈ Q. In fact, x is always a subsequence of Φ(x). Furthermore, an
element y of P will contain infinitely many notations for ordinals > α only if
y = Φ(x) for some x ∈ Q.

For α = 0, just let Q = P and let Φ be the identity.
Successor Case: Suppose that β = o(b) = o(a) + 1 = α + 1 and that

Q = Pe,2α+3 = [T ]. By Lemma 4.4.9, we have
T = tnUρ(e,a,n),2α+1 = tnTn.
Now for x ∈ Q, let ni for each i be the unique n such that xdi+ 1 ∈ Tn and

let
Γ(x) = (bx(0)0n0+1bx(1)0n1+1b . . .).

Define the Π0
2α+1 tree U to contain τ = (bx(0)0n0+1bx(1)0n1+1 . . . x(k)0n)

and its initial segments provided that xdi+ 1 ∈ Tni for all i < k.
It is easy to see that G = [U ] contains exactly {Γ(x) : x ∈ Q} together with

paths y = (bx(0)0n0+1bx(1)0n1+1bx(k))_0ω for all x ∈ Q and all k. Each of the
latter will thus be isolated in G and each of the former will have rank 1, so that
Q is homeomorphic to D(G). Furthermore, for x ∈ Q, x a subsequence of Γ(x)
and therefore is recursive in Γ(x), since the values of x are just those following
immediately after b’s. Γ(x) is recursive in x⊕ 02α+1, since the computation of
the sequence of witnesses ni may be performed with a Π0

2α+1 complete oracle.
In addition, for any y ∈ G, y ∈ D(G) if and only if y has infinitely many

occurrences of b, and y has no occurrences of any notation ≤ α. Let f be a recur-
sive function so that σ(i) ≤ f(i) for all σ ∈ T and all i. Then for any τ ∈ U and
any i, τ(i) ≤ max{b, f(i)}, so that G is recursively bounded. In addition, if y =
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(bx(0)0n0+1bx(1)0n1+1bx(k))_0ω /∈ D(G), then (bx(0)0n0+1bx(1)0n1+1bx(k))_0nk+1

may only be extended in U by 0’s.

Now by induction, there is a r. b. Π0
1 class P = [S] which is completely

ranked up to β and a homeomorphism Ψ from G onto Dα(P ) such that y ≤T
Ψ(y) ≤T y ⊕ 02α−1. We may assume that y is always a subsequence of Ψ(y)
and that the values of y follow immediately after the occurrences of a in Ψ(y).

It is immediate that Ψ is also a homeomorphism from D(G) onto Dβ(P ).
Now let Φ(x) = Γ(Ψ(x)). Then clearly Φ is a homeomorphism from Q onto
Dβ(P ).

It remains to show that P is completely ranked up to β + 1. Suppose first
that z has infinitely many occurrences of b. Then, by the construction, z = Ψ(y)
for some y ∈ G such that y has infinitely many occurrences of b. Thus y ∈ D(G),
so that z ∈ Dβ(P ). Next suppose that z ∈ Dβ(P ). Then z = Ψ(y) for some
y ∈ D(G). Now y has infinitely many occurrences of b, so that z must also have
infinitely many occurrences of b.

Finally, suppose that z ∈ P has only finitely many occurrences of b, so that
z /∈ Dβ(P ). Observe that by the construction, the occurrences of b may only
follow immediately after occurrences of a. There are two cases.

First, suppose that z /∈ Dα(P ). Then z has only finitely many occurrences
of a and by induction, there is some n such that no extension τ ∈ S of zdn has
any occurrences of a past τ(n). It follows from the observation above that b
may not occur in τ past τ(n) either.

Next, suppose that z ∈ Dα(P ). Then z = Ψ(y) for some y ∈ G such that
y has only finitely many occurrences of b. Thus by the construction, there is
some n so that ydn may only be extended by 0’s in U . Now choose m so that
zdm includes the subsequence ydn. It follows that no extension of zdm in S
may contain any further occurrences of b. This concludes the proof that P is
completely ranked up to β + 1.

We note that the construction of P and of Ψ are uniform.

Limit Case: Suppose that λ = o(b) is a limit ordinal and that Q = Pe,λ+1 =
[T ]. Let a0, a1, . . . enumerate the set of notations for ordinals less than λ and
let αn = o(an). By definition, we have Q = ∩nQn = ∩n[Tn], where Tn =
Uφe(an),o(an)+1.

By induction, we have constructed r.b. classes Pn = [Un], completely ranked
up to λ and homeomorphisms Φa from Qn onto Dαn+1(Pn). For each x ∈ Q
and each n, let

Φn(x) = (anx(0)σn,0anx(1)σn,1 . . . ,

where each witness σn,i contains no occurrence of an. Now let

Φ(x) = (bx(0)σ0,0bx(1)σ1,0bx(2)σ1,0 . . . .

Here the sequence of witnesses σi,n is enumerated in order, first by the sum i+n
and then by the value of n.

It is immediate that x ≤T Φ(x) and it follows from the uniformity of the
construction that Φ(x) ≤T x⊕ 0β .
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Define the Π0
1 tree U to contain all initial segments of

τ = (bx(0)σ0,0bx(1)σ0,1bx(2)σ1,0 . . . σn,ibx(k)σ) such that

1. For all m, j with m + j < n + i or with m + j = n + i and m ≤ n,
amx(0)σm,0amx(1)σm,1 . . . amx(j)σm,j ∈ Un and σm,j contains no occur-
rence of am.

2. If n 6= 0, then an−1x(0)σn−1,0an−1x(1)σn−1,i . . . an−1x(i+ 1)σ ∈ Un−1

3. If n = 0, then ai+1x(0)σ ∈ Ui+1 and σ contains no occurrence of ai+1.

Then P = [U ] clearly contains Φ(x) for all x ∈ Q. It is easy to see that if
y ∈ P has infinitely many occurrences of b, then y = Φ(x) for some x ∈ Q. Now
suppose that y has only finitely many occurrences of b and let

y = (bx(0)σ0,0bx(1)σ0,1bx(2)σ1,0 . . . σn,ibx(k))_z,

where z has no occurrences of b. Let

ρ = (bx(0)σ0,0bx(1)σ0,1bx(2)σ1,0 . . . σn,ibx(k)).

This given, we can define a string ν as follows. There are two cases.

Case 1 If n 6= 0, then
u = (an−1x(0)σn−1,0an−1x(1)σn−1,i . . . an−1x(i+ 1))_z ∈ Pn−1. Let

ν = an−1x(0)σn−1,0an−1x(1)σn−1,i . . . an−1x(i+ 1)).

Case 2 If n = 0, then u = ai+1x(0)_z ∈ Pi+1. Let

ν = ai+1x(0).

We will now establish several claims leading to the desired result that P is
completely ranked and that Φ is a homeomorphism of Q onto Dβ(P ). The proof
depends on the definition of ν. We will give the proofs for Case 1 and leave the
simpler Case 2 to the reader.

We claim first that there is some initial segment τ of y such that no extension
of τ in U has any further occurrences of b. There are two subcases here.

(Subcase a): If z has an occurrence of an−1, then it follows from the definition
of U that no further occurrence of b can occur after the first an in z has occurred
in y. Let σ be an initial segment of z containing the first an.

(Subcase b): If z has no occurrences of an−1, then since Un−1 is completely
ranked, there is some initial segment σ of z such that no extension of ν_σ in
Un−1 may contain any further occurrences of an−1. It follows from the definition
of U that b can not occur in U past ρ_σ.

Next, we claim that the rank |y|P of y in P equals the rank |u|Pn−1 of u in
Pn−1. We first observe that for any z′, if ν_z′ ∈ Un−1, then ρ_z′ ∈ U . This
implies that |u|Pn−1

≤ |y|P . For the other inequality, observe that for any z′

extending σ, if ρ_z′ ∈ U , then ν_z′ ∈ Un−1.
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It now follows that Φ(x) has rank at least λ in P , since it is the limit of the
sequence ρ_n zn, where, for the appropriate value of k,

ρn = (bx(0)σ0,0bx(1)σ0,1bx(2)σ1,0 . . . σn,ibx(k)),
νn = an−1x(0)σn−1,0an−1x(1)σn−1,i . . . an−1x(i+ 1)), and
Φn(x) = y = ν_n zn.
Finally, we show that P is completely ranked up to β + 1. We have already

established that y has rank ≥ β if and only if y has infinitely many occurrences
of b. Now suppose that |y|P < β and let ρ, ν and z be as above. Then for any
a with o(a) ≤ b, |y|P ≥ o(a) if and only if ν_z has rank ≥ o(a) in Pn−1, which
is if and only if z has infinitely many occurrences of a, since Un−1 is completely
ranked, and this is if and only if y has infinitely many occurrences of a. The
previous discussion already established the other criterion for being completely
ranked.

The uniformity of the proof shows that, using the Recursion theorem, we
can actually compute indices for P and for Φ from an index for Q. We omit the
details.

Corollary 4.4.11. [35] For any computable ordinal λ which is either 0 or a
limit and any finite n:

(a) there is a B ≡T 0(λ+2n) with rk(B) = λ+ n;
(b) for any degree a such that 0(λ+2n+1) ≤ a ≤ 0(λ+2n+2), there is a B of

degree a with rk(B) = λ+ n+ 1.

Proof.

Next we briefly consider sets which cannot be ranked.

Theorem 4.4.12. (Cenzer-Smith [42]) For any hyperimmune set A, there is a
C ≡T A which is not ranked.

Proof. Let A = {f(0) < f(1) < · · · } be hyperimmune. Let [T0], [T1], . . . enu-
merate the Π0

1 classes as in Lemma 1.2. We first define B ≤T A so that [Ti]
is uncountable whenever B ∈ [Ti], which implies that B is not ranked. The
characteristic function of B is the limit of a sequence of strings σn of length
f(n) which is computable in A. Let σ0 = 0. Given σn, σn+1 is defined in two
cases.

(Case 1) There is some i ≤ f(n) and some σ of length f(n) such that

1. σn ∈ Ti

2. σ /∈ Ti

3. σdn = σndn

4. for any j < i, if σn /∈ Ti, then σ /∈ Tj .

Then we let i be the least for which there is a σ satisfying the conditions
and we let σn+1 be the (lexicographically) least corresponding to that i.

(Case 2) If there is no such i, then σn+1 = σ_n 0f(n+1)−f(n).
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Let B have characteristic function ∪nσn. It is clear that B ≡T A. The proof
that B ∈ [Ti] implies [Ti] uncountable is by induction. Suppose true for all
i < j, suppose that B ∈ [Ti], and choose m large enough that B /∈ [Ti] implies
Bdm /∈ Ti for all i < j. Then for any n > f(m), any extension σ /∈ Ti of Bdn of
length f(n) will satisfy the conditions of Case 1. Thus the shortest extension σ
of Bdn not in Ti must have length > f(n). If [Ti] were countable, then every σ
would have an extension not in Ti, so that we could define a function h(n) to be
the least k such that any string σ of length n has an extension of length k which
is not in Ti. Then for n > f(m), h(n) > f(n), contradicting the assumption
that A is hyperimmune.

It follows that B is unranked. Finally, let C = A ⊕ B. Then C ≡T A and
B ≤tt C, so that C is unranked by Lemma 4.1.8.

Of course this implies that every r.e. degree contains an unranked set. We
say that a is completely unranked if every setA of degree a is unranked. Jockusch
and Shore construct in [88] a Σ0

2 degree which is completely unranked. Downey
observed that since sets with the same truth-table degree have the same rank
and since all sets in a hyperimmune-free degree have the same truth-table degree
(see [151], p. 589), the construction of an unranked set of hyper-immune free
degree will provide a completely unranked degree. This led to the following
improvement in of the Jockusch-Shore result.

Theorem 4.4.13. (Downey [55]) There is a hyperimmune-free degree which is
completely unranked.

On the other hand, Downey also showed the following, again using a hyper-
immune free degree a, so that every A of degree ≤ a is in fact ≤tt a.

Theorem 4.4.14. (Downey [55]) There exists a degree a ≤ 0′′ such that every
set A of degree ≤ a is ranked.

Cenzer and Smith consider in [42] the problem of sets below 0′ but with high
rank. They showed that for every computable ordinal α, there is a ∆0

2 set A of
rank α. This was improved by Cholak and Downey in [46].

Theorem 4.4.15. (Cholak-Downey [46]) For each computable ordinal α, there
is an r.e. set of rank α.

4.5 Computable Trees with One or No Infinite
Branches

Recall the notions of the height ht(T ) of a well-founded tree T ⊆ N∗ and the
height htT (σ) of the nodes of T introduced in Section ??.1.14. If T has a
unique infinite branch, then following Clote [48], we let γT = sup{htT (σ) + 1 :
T [s] is well-founded}. Theorem ??.1.14.19 of Clote showed that the hyperarith-
metic complexity of the unique infinite branch is bounded in some sense by the



134 CHAPTER 4. THE CANTOR-BENDIXSON DERIVATIVE

height of T . In this section we consider the reverse result that every hyper-
arithmetic set is reducible to the unique infinite branch of some computable
tree.

We also look at the complexity of the perfect kernel K(Q) of a Π0
1 class in

{0, 1}N.
In section 2.1.9, we showed that any Π0

1 class P ⊆ NN can be reduced to a
Π0

1 class Q ⊆ {0, 1}N. In this section, we consider the connection between the
height of a computable tree T such that P = [T ] and the rank of the tree S
such that Q = [S].

The following theorem is a variant of the result of Clote [48].

Theorem 4.5.1. For any computable ordinal α and any hyperarithmetic index
a ∈ Hα·2, there is a computable tree T with unique infinite branch x such that
γT ≤ ωα and Ha ≤T x.

Proof. In fact, we will use the recursion theorem to obtain a function ψ such
that for all hyperarithmetic indices a ∈ Hα·2, Tψ(a is a computable tree with
unique infinite branch xa such that γTψ(a)

≤ ωα and Ha ≤ xa. Recall that

Ha = ∪nN−Hφa(n), so that for a ∈ Hα·2, we have

i ∈ Ha ⇐⇒ (∃n)(∀k)i ∈ Hφφa(n)(k)(i).

Using Lemmas 1.14.6, 1.14.7 and 1.14.8, we can find a function f such that

i /∈ Ha ⇐⇒ (∃∞n)i ∈ Hf(a,n),

where f(a, n) ∈ Hβ·2 for some β with β + 1 ≤ α.
For the base case of α = 0, we may assume that Ha is uniformly primitive

recursive. Let pi denote the ith prime number. Then for each i, we xa(pi) =
〈χHa(i)〉 and we let xa(j) = 0 for all non-primes j. Let Tψ(a) = {xadn : n ∈ N}.
Certainly γ(Tψ(a)) = 0 for all such a.

Now we may assume that for each a and n, there is a tree Ta,n = Tψ(f(a,n))

with unique infinite branch xa,n and γTa,n ≤ ω · β for some β with β + 1 ≤ α.
Furthermore, for every i and n, xa,n(pi) = 〈τ〉 for some sequence τ such that
τ(0) = χHf(a,n)

(i). Now define ya and xa as follows. For all i and n,

ya(2i+1 · 3n+1) = xa,n(i).

For all i, there are two cases in the definition of ya(pi).

Case I: ya(pi) = 0. Then for all k,

ya(pk+1
i ) = (least n > ya(pki )i ∈ Hf(a,n).

Here the sequence of values ya(pk+1
i ) provides an infinite set of witnesses that

i /∈ Ha.
Case II: ya(pi) = 1. Then

ya(p2
i ) = (least n)(∀m ≥ n)i /∈ Hf(a,m)
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and ya(pki ) = 0 for all k > 2. Here ya(p2
i ) provides a witness that i ∈ Ha.

Finally

xa(j) = 〈ya(j), ya(j − 1), . . . , ya(0)〉.

Observe that Ha may be computed from xa by

i ∈ Ha ⇐⇒ (xa(i))0 = 1 ⇐⇒ ¬(xa(i))0 = 0.

The computable tree T = Tψ(a) with unique infinite branch xa is defined as
follows. Given a sequence σ = (σ(0), . . . , σ(m − 1)) which is a candidate for
membership in T , we first require that there exists a sequence e0, e1, . . . , em−1

such that for each j < m, σ(j) has the form 〈ej , ej−1, . . . , e0〉. Then for j =
2i+1 · 3n+1 < m, we require that

(e2i+1·3, e2i+1·9, . . . , e2i+1·3n+1) ∈ Ta,n.

These conditions mean that σ provides an answer to whether i ∈ Hf(a,n) for
a certain set of (i,m, n). For j = pi, ej = 0 indicates the guess that i /∈ Ha

and then {epk+1
i
}k is intended to enumerate the infinite set {n : i ∈ Hf(a,n)}.

Similarly ej = 1 indicates the guess that i ∈ Ha. Then for j = p2
i , ej = n is

intended to be the least n such that i /∈ Hf(a,m) for all m ≥ n. The string σ
is in T if and only if the “witnesses” provided by σ as to whether i ∈ Ha are
confirmed by the coded subsequences from the trees Ta,n.

It follows that xa is the unique infinite branch of T . That is, suppose that
x ∈ [T ] and has the proper form. Then each of the coded subsequences must be
in Ta,n so that each infinite coded subsequence must be xa,n. Now the coded
values of ya(pki ) must be correct since the witnesses from Ta,n are all correct.

It remains to check that γ(T ) ≤ ω ·ω ·α. Let σ ∈ T be a dead end of length
m in the proper form and let e0, e1, . . . , em−1 be given as above. There are two
cases.
Case I: For some n, the coded subsequence τ = (e2i+1·3, e2i+1·9, . . . , e2i+1·3n+1)
is a dead end of Ta,n. Then it can be shown by induction that htT (σ) ≤
htTa,n(τ) ≤ ω · β < ω · α for some β < α.
Case II: All coded subsequences from any Ta,n are initial segments of xa,n.
Case IIa: ej = ya(j) for all primes j but some witness ej where j = pki is
different from ya(pki ). Suppose first that ya(i) = 0 is correct and the witnesses
should be n2 = ya(p2

i ), n3 = ya(p3
i ), . . . but for j = pki , ej 6= nj . Now let σ′ ∈ T

be any extension of σ long enough to predict the value of xa,n(nj). Then τ must
be incorrect as in Case I and thus htT (τ) ≤ ωβ. Thus htT (σ) ≤ ω×β+n < ω ·α.
A similar argument apples when ya(i) = 1 is correct but the witness ej where
j = p2

i is incorrect.
Case IIb: For some i and for j = pi, ej 6= ya(j). Suppose first that ej = 0
but ya(j) = 1. Then there can be only a finite number K of witnesses in the
sequence ya(pki ) and any extension of σ long enough to predict ya(pKi + 1) must
code a dead end of Ta,K+1 as in Case IIa. A similar argument applies when
ej = 1 but ya(j) = 0.
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Corollary 4.5.2. For any computable ordinal α, hyperarithmetic index a ∈
Hα·2, there is a computable tree T with unique infinite branch x such that γT ≤
ωα and x is Σ0

α·2 complete.

The next result explores further the relation between trees T in N∗ with a
unique infinite branch and the natural images Φ(T ) ∈ {0, 1}∗, relating the height
of T with the rank of Φ(T ). Recall from the proof of Theorem 2.2.7.3 the defi-
nition of Φ(x) = 0x(0)10x(1) . . . mapping NN into {0, 1}N and the corresponding
mapping of trees so that

0σ(0)10x(1)1 . . . 0x(k−1)10x(k) ∈ S = Φ(T ) ⇐⇒ (σ(0), . . . , σ(k − 1)) ∈ T.

Then a dead end σ ∈ T of length k corresponds to an isolated point

yσ = 0σ(0)10x(1)1 . . . 0x(k−1)10∞ ∈ [S].

Theorem 4.5.3. Let T ⊂ N∗ be a computable tree with no infinite paths and
let S = Φ[T ] be the image of T in {0, 1}∗ and Q = [S]. Then for any σ ∈ T ,
rkQ(yσ) ≤ htT (σ).

Proof. It is easy to see that Q = {yσ : σ ∈ T . The inequality is proved by induc-
tion on α = htT (σ). If htT (σ) = 0, then σ has no immediate extensions in T and
hence yσ is isolated in Q so that rkQ(yσ) = 0. Now let σ = (σ(0), . . . , σ(k− 1))
and suppose that htT (σ) = α, so that for any proper extension τ ∈ T of σ,
ht(T ) < α. Let y ∈ Q be any extension of σ∗ = 0σ(0)10x(1)1 . . . 0x(k−1)1 differ-
ent from yσ. Then y = yτ for some extension τ ∈ T of σ, so that htT (τ) < α
and hence by induction rk(y) < α. It follows that rkQ(yσ) ≤ α.

Exercises

4.5.1. Show that the reverse inequality in Theorem 4.5.3 does not hold. In fact,
for any computable ordinal α, there is a computable tree T with no infinite
path and σ ∈ T such that the rank of yσ in Φ[T ] is 0 but htT (σ) = α+ 1.

4.5.2. Combine Theorem 4.5.3 and Corollary 4.5.2 to show that for any com-
putable ordinal α, there is a real x ∈ {0, 1}N of degree 0α·2 and a Π0

1 class
Q such that rkQ(x) ≤ ω · α.

4.6 Logical Theories revisited

In this section, we apply the basis results for countable Π0
1 classes to axiomati-

zable theories.

Theorem 4.6.1. Let Γ be an axiomatizable first order theory with only count-
ably many complete consistent extensions. Then

(a) Γ has a decidable complete consistent extension.
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(b) If Γ has only finitely many complete consistent extensions, then every
complete consistent extension is decidable.

(c) Every complete consistent extension of Γ is hyperarithmetic.

Proof. Let Γ be an axiomatizable theory with countably many complete consis-
tent extensions. By Theorem 2.2.9.1, the set of complete consistent extensions
of Γ may be represented as a Π0

1 class P . It follows from Theorem 4.2.3 that
P has a computable member, which represents a decidable complete consistent
extension of Γ. Similarly, it follows from Theorem 4.4.4 that every complete
consistent extension of Γ is hyperarithmetic. If Γ has only finitely many com-
plete consistent extensions, then P has only finitely many elements and therefore
all of the elements of P are computable by Theorem 4.2.2 and thus all of the
complete consistent extensions of Γ are decidable.

Given an axiomatizable theory Γ, let us say that an extension ∆ of Γ is
a finite extension of Γ if there is a finite set F of sentences such that ∆ is
logically equivalent to Γ ∪ F . Then it is easy to see that a complete consistent
extension ∆ of Γ is a finite extension if and only if ∆ is isolated in the Π0

1 class
of complete consistent extensions of Γ. In particular, any complete consistent
finite extension of Γ must be decidable. Thus if ∆ is an undecidable complete
consistent extension of Γ, then ∆ is not a finite extension. We now want to
focus on complete consistent extensions of rank one.

Theorem 4.6.2. Let Γ be an axiomatizable first-order theory which has a unique
complete consistent, non-finite extension ∆. Then ∆ ≤T 0′′ and if Γ is decid-
able, then ∆ ≤T 0′.

Proof. This follows from Theorem 4.4.3.

Here is an existence result.

Theorem 4.6.3. (a) For any degree b ≤ 0′, there is a decidable theory Γ with
unique complete consistent, non-finite extension ∆ and ∆ has degree b.

(b) For any degree b such that 0′ ≤ b ≤ 0′, there is an axiomatizable theory
Γ with unique complete consistent, non-finite extension ∆ of degree b.

Proof. (a) Let b ≤ 0′. Then by Theorem 4.4.5, there is a decidable Π0
1 class

P with unique nonisolated element B of degree b. By Theorem 2.2.9.3, there
is a decidable theory Γ such that P represents the set of complete consistent
extensions of Γ and thus B represents the unique non-finite complete consistent
extension ∆ of Γ.

(b) This follows from Corollary 4.5.2 and Theorem 2.2.9.3 as in (a).
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Chapter 5

Index Sets

The notions of enumeration and of an index set are fundamental in the study
of the computable functions and computably enumerable sets. The complexity
(in the arithemetic hierarchy) of many properties can be measured using index
sets. For example, the index set Inf = {a : Wa is infinite} is Π0

2 complete, so
that from this point of view, the property of being infinite is Π0

2. The chapter
begins with a brief list of such results for c.e. index sets, together with their
complexity.

We present an enumeration of the Π0
1 classes and then classify several index

sets for Π0
1 classes. In particular, we study index sets for properties related to

cardinality, computable cardinality, measure and category. We then indicate
how these index sets will play an important role in the application of Π0

1 classes
to various mathematical problems in Part 2.

A set A is said to be an index set (for c. e. sets) if for any a, b, a ∈ A and
φa = φb imply that b ∈ A. We can also define a co-index set to be a set A
such that for any a, b, (a ∈ A & b ∈ A & φa = φb) implies that a = b. Thus
in particular, ∅ and ω are index sets. Rice’s Theorem ([181], p. 21) states that
these are the only two computable index sets. We have defined the index sets
K and K0 in Section 1.7. In fact, it is the case that if A is an index set other
than ∅, ω, then K ≤1 A or K ≤1 Ā where K = {a : a ∈ Wa}. Here are some
other examples of index sets which we will employ:

• K1 = {a : Wa 6= ∅};

• Fin = {a : Wa is finite};

• Inf = {a : Wa is infinite};

• Cof = {a : ω \Wa is finite};

• Coinf = {a : ω \Wa is infinite};

• Rec = {a : Wa is a computable set};

• Tot = {a : φa is total};

139
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• Ext = {a : φa is extendible to a total computable function};

• Ext2 = {a : φa is extendible to a total {0, 1}-valued computable function};

• Comp = {e : We ≡T K};

• U1
1 = {a : (∃x)(∀n) < xdn >/∈Wa}.

Following Soare [181], p. 66, we define (Σmn ,Π
m
n ) ≤m (B,C) for a disjoint

pair of sets B and C if for some Σmn complete set A, there is a computable
function f such that, for any a, a ∈ A ⇐⇒ f(a) ∈ B and a /∈ A ⇐⇒ f(a) ∈ C.
If B is Σmn , C is Πm

n and (Σmn ,Π
m
n ) ≤m (B,C), then we will say that the pair

(B,C) is (Σmn ,Π
m
n ) complete.

The index sets described above all turn out to be complete for some level of
the arithmetical hierarchy. Here is a brief list of such complexity results, most
taken from Soare [181], where the reader can find a further discussion of index
sets. We give some details of the proofs as preparation for the work on index
sets for Π0

1 classes.

Theorem 5.0.4. (i) K, K0 and K1 are Σ0
1 complete sets;

(ii) Tot is a Π0
2 complete set;

(iii) (Fin, Inf) is (Σ0
2,Π

0
2) complete.

(iv) (Cof,Coinf) is (Σ0
3,Π

0
3) complete;

(v) Ext, Ext2, and Rec are Σ0
3 complete sets;

(vi) Comp is Σ0
4 complete;

(vii) U1
1 is a Σ1

1 complete set.

Sketch. (i) It is clear that these are all Σ0
1 sets and that K0 is complete. Let

W = Dom(φ) be any c. e. set and define the partial recursive function φe so
that φe(m, i) = φ(m). Let f(m) = S1

1(e,m) so that φf(m)(i) = φe(m, i) = φ(m).
Then

m ∈W ⇐⇒ φ(m) ↓ ⇐⇒ Wf(m) = ω

and
m /∈W ⇐⇒ φ(m) ↓ ⇐⇒ Wf(m) = ∅.

Thus m ∈W ⇐⇒ f(m) ∈Wf(m) ⇐⇒ Wf(m) 6= ∅.
(ii,iii) a ∈ Tot ⇐⇒ (∀m)(∃s)m ∈ Wa,s and a ∈ Fin ⇐⇒ (∃m)(∀n >

m)(∀s)n /∈Wa,s.
For the completeness, let B be a Π0

2 set and let R be a computable relatio
such that

i ∈ B ⇐⇒ (∀m)(∃n)R(i,m, n).

It is an important observation that we may assume that R(i,m, n)→ R(i,m, n+
1) and that R(i,m + 1, n) → R(i,m, n). That is, let R′(i,m, n) ⇐⇒ (∀m′ ≤
m)(∃n′ ≤ n)R(i,m′, n′). Then R′ has the desired properties.
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Now let φa(i,m) = (µn)R(i,m, n) and let g(i) = S1
1(a, i), so that φg(i)(m) =

(µn)R(i,m, n). If i ∈ B, then Wg(i) = ω, so that g(i) ∈ Tot and also g(i) ∈ Inf .
If i /∈ B, then Wg(i) is finite, so that g(i) ∈ Fin and g(i) /∈ Tot.

(iv,v) Let A be a Σ0
3 set and let R be a computable relation so that, for all

a,
a ∈ A ⇐⇒ (∃m)(∀n)(∃k)R(a,m, n, k)

We will define a primitive recursive function f such that a ∈ A if and only
if Wf(a) is cofinite, which will be if and only if Wf(a) is computable. Let the
standard noncomputable c. e. set K have a computable enumeration K = ∪sKs.
The c. e. set Wf(a) in stages Wf(a),s so that ω \Wf(a),s = {{bsa,0 < bsa,1 < . . . }.

Stage 0: Wf(a),s = ∅.
Stage s + 1: For each m ≤ s such that either m ∈ Ks+1 \Ks or such that

there is some n ≤ s such that (∀n′ ≤ n)(∃k ≤ s)R(a,m, n′, k) but ¬(∀n′ ≤
n)(∃k < s)R(a,m, n′, k), enumerate bsa,m into Wf(a),s+1.

If a ∈ A, then for some m, bsa,m is put into Wf(a),s+1 infinitely often, so
that lims b

s
a,m = ∞ and hence Wf(a) is cofinite. If a /∈ A, then for every m,

lims b
s
a,m = ba,m < ∞. Thus Wf(a) is coinfinite. Furthermore, K ≤ Wf(a) (so

that Wf(a) is not computable), since m ∈ K ⇐⇒ m ∈ Kba,m and ba,m can be
uniformly computed from Wf(a).

This argument can be modified to show that Ext and Ext2 are both Σ0
3

complete, as follows. Here we want to say that a ∈ A if and only if φa is
extendible. As before, put m ∈Wf(a) at stage s+1 (by defining φf(a)(m) = 0) if
the list of n such that (∃k)R(a,m, n, k) becomes longer at stage s. Also, replace
the action associated with the set K with the following. If φm,s(b

s
a,m) = j and

(∀i < bsa,m)φf(a),s(i) = φm,s(i),

then define φf(a)(b
s
a,m) = 1 − j, thus putting bsa,m ∈ Wf(a). (By the usual

convention, a−b = 0 if a < b.) If a ∈ A, then Wf(a) is cofinite as before, so that
φf(a) is extendible. If a /∈ A, then for each m, φf(a)(ba,m) is either undefined or
not equal to φm(ba,m), so that φf(a) is not extendible.

(vi) A proof is given in Soare [181, Ch. XII].
(vii) A proof can be found in Hinman [80, p. 84].

Each of the results above can be relativized. That is, letW x
e = {n : Φxe (n) ↓}.

Then for example, Finx = {a : W x
a is finite} is Σ0,x

2 complete. In particular,
if we let x = ∅(n) denote the n-th jump of the emptyset, then Post’s theorem
(Theorem 1.10.7) implies that a set is Σ0,x

k if and only if it is Σ0
n+k, see Soare

[181]. It follows that, for example, FinK is Σ0
3 complete.

5.1 Index sets for Π0
1 classes

There are several different ways to define index sets to Π0
1 classes. We use here

an approach from [36] based on primitive recursive trees.
Let σn denote the string σ ∈ N∗ such that 〈σ〉 = n. Then σ0, σ1, . . . enu-

merate N∗, and furthermore, whenever σi ≺ σj , it must be the case that i < j.
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Then a tree T is primitive recursive, computable, etc. if the corresponding set
{i : σi ∈ T} is itself primitive recursive, computable, etc..

Definition 5.1.1. Let πe denote the eth primitive recursive function and let
σ ∈ Te ⇐⇒ (∀τ � σ)πe(〈τ〉) = 1; let Pe = [Te].

Lemma 5.1.2. (a) For each e, Πe is a Π0
1 class;

(b) For each Π0
1 class P , there are infinitely many e such that P = Pe.

Proof. Part (a) is clear. Part (b) follows from Proposition 2.3.1 and the obser-
vation that every primitive recursive function has infinitely many indices.

There are several other approaches to defining and enumerating the Π0
1

classes. Some of these were studied in [18].
For example, one can first define the Σ0

1 classes (or c. e. open sets, and then
obtain the Π0

1 classes as compements.
For any set W ⊆ ω∗, we define the open set generated by W to be

O(W ) =
⋃
{I(σ) : 〈σ〉 ∈W}.

We say that a subset U of NN is a Σ0
1 class, or c. e. open set, if U = O(W )

for some c. e. set W . Thus the Σ0
1 classes may be enumerated in the form

Ue = O(We) and the Π0
1 classes in the form Ψ(e) = NN − Ue.

Proposition 5.1.3. There are primitive recursive functions φ and ψ such that
Pe = Ψ(φ(e)) and Ψ(e) = Pψ(e) for all e.

Proof. For each e, recall that We,s is the set of elements enumerated into the
eth c.e. set We by stage s and define ψ so that

σ ∈ Tψ(e) ⇐⇒ (∀τ v σ) 〈τ〉 /∈We,|σ|.

It is easy to seee that Pψ(e) = [Tψ(e)] = Ψ(e).
Given the primitive recursive tree Te, define φ so that Wφ(e) = N∗ − Te.

Then it is easy to check that Pe = [Te] = NN −O(We) = Ψ(φ(e)).

Other numberings are given in the exercises.
An enumeration of the strong Π0

n classes can be given based on the enumer-
ation of the Σ0

n sets. Let Wn
e be the eth Σ0

n set. To be more precise, Wn
e is the

domain of the function φne where φne (m) = Φe(m, ∅(n)). Then the eth strong
Π0
n+1 class is defined as follows, where we identify σ ∈ N∗ with 〈σ〉 as usual for

simplicity of expression.

Definition 5.1.4. Tn+1
e = {σ : (∀τ � σ)τ ∈ Wn

e }; Pn+1
e = [Tn+1

e = {x :
(∀m)xdm ∈Wn

e }.

Next we look at the complexity of the various notions of boundedness.

Theorem 5.1.5. Let g ≥ 2 be a computable function.
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(a) {e : Te is g-bounded} is Π0
1 complete;

(b) {e : Te is almost g-bounded} is Σ0
2 complete.

Proof. (a) Let g : N∗ → N be an arbitrary function such that g(σ) ≥ 2 for all σ.
The set is Π0

1 since Te is g-bounded if and only if

(forallσ)(∀i)[σ_i ∈ Te → i < g(σ)].

For the completeness, we will define a primitive recursive function h such that
Th(e) is g-bounded if and only if e /∈ K. Let

σ ∈ Th(e) ⇐⇒ (∀t < |σ|)[φe,t(e) ↑→ σ(t) = 0].

It follows from the Master Enumeration Theorem 1.6.5 and the s-m-n Theorem
1.6.7 that h is primitive recursive. If e /∈ K, then Th(e) = {0t : t ∈ N} and is
clearly g-bounded. If e ∈ K and φe,t(e) ↓, then 0t_i ∈ Th(e) for all i, so that
Th(e) is not g-bounded.

(b) This set is Σ0
2, since if g = φa, then Te is almost g-bounded if and only

if
(∃k)(∀i)(∀σ)[(|σ| ≥ k & σ_i ∈ Te)→ i < φa(σ)].

For the completeness, we define a reduction of Fin as follows. For each e and
s, recall that We,s = {i : φe,s(i) ↓} and that φe,s(i) ↓ implies that i ≤ s. Thus
e ∈ Fin if and only if {s : We,s+1 \We,s 6= ∅} is finite. For |σ| = s, let

σ ∈ Th(e) ⇐⇒ (∀n < s)[We,n+1 \We,n = ∅ → σ(n+ 1) < g(σ)].

If e ∈ Fin and k satisfies We,k = We, then Th(e) is g-bounded above k. If
e /∈ Fin, then for each n such that We,n+1 \We,n 6= ∅, we have 0n_i ∈ Th(e) for
every i, so that Th(e) is not almost bounded by g.

Theorem 5.1.6. (a) {e : Te is c. b.} is Σ0
3 complete.

(b) {e : Te is almost c. b.} is Σ0
3 complete.

Proof. (a) The first set is Σ0
3, since Te is c. b. if and only if Te is φa-bounded

for some total computable function φa.
For the completeness, we define a reduction f of Rec to our set. This will

be done so that [Tf(e)] is empty if We is finite and [Tf(e)] has a single element if
We is infinite. The primitive recursive tree Tf(e) is defined as follows: Put σ =
(s0, s1, . . . , sk−1) ∈ Tf(e) if and only if s0 < s1 < · · · < sk−1 and there exists a
sequence m0 < m1 < · · · < mk−1 such that, for each i < k, mi ∈We,si \We,si−1

and mi is the least element of We,sk−1
\ {m0, . . . ,mi−1}. We observe that if

We is finite, then Tf(e) is also finite and therefore recursively bounded. Now
fix e and suppose that We is infinite. Then we may define canonical sequences
n0 < n1 < . . . of elements of We and corresponding stages t0 < t1 < . . . such
that, for each i, ni ∈ We,ti \We,ti−1 and (t0, t1, . . . , ti) ∈ Tf(e) as follows. Let
n0 be the least element of We and, for each k, let nk+1 be the least element of
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We \We,tk . Then for each k, (t0, . . . , tk) ∈ Tf(e) and nk ∈ We,tk . Furthermore,
we see by induction on k that

k ∈We → k ∈We,tk .

For s = 0, this is because n0 = 0 if 0 ∈ We. Assuming the statement to
be true for all i < k, we see that if k ∈ We, then either k ∈ We,tk−1

, or
else nk = k. In either case, we have k ∈ We,tk . The key fact here is that
for any (s0, . . . , sk) ∈ Tf(e), sk ≤ tk. To see this, let (s0, . . . , sk) ∈ Tf(e), let
(m0, . . . ,mk) be the associated sequence of elements of We, and suppose by
way of contradiction that sk ≥ tk. It follows from the definitions of Tf(e) and
of t0, . . . , tk that in fact si = ti and mi = ni for all i ≤ k. Thus Tf(e) has the
sequence (t0 + 1, t1 + 1, . . .) as a bounding function.

Suppose now that We is computable. Then the sequence t0 < t1 < . . . is
also computable and thus Tf(e) is computably bounded by. Now suppose that
Tf(e) is bounded by some computable function h. Then we must have tk < h(k)
for each k. It follows that k ∈We ⇐⇒ k ∈We,h(k), so that We is computable.

(b) This set is Σ0
3, since Te is a. c. b. if and only if Te is φa-almost bounded

for some total computable function φa.
For the completeness, use the argument given in (3) above. We may assume

that We is infinite, since otherwise the argument goes through trivially. Clearly,
if We is computable, then Tf(e) is computably bounded and therefore a. c. b.
as well. If Tf(e) is almost bounded by the computable function g, let k be large
enough so that for |σ| > k, σi ∈ Tf(e) → i < g(σ) and let τ = (t0, t1, . . . , tk).
Then we can recursively define a bounding function h(i) ≥ t(i) by letting h(i) =
t(i) for i ≤ k and, for each j ≥ k,

h(j + 1) = max{g(〈τ_(sk+1, . . . , sj)〉) : si ≤ h(i) for each i with k < i ≤ j}.

It follows as above that We is computable.

Theorem 5.1.7. (a) {e : Te is bounded} is Π0
3 complete;

(b) {e : Te is almost bounded} is Σ0
4 complete.

Proof. (a) This set is Π0
3, since

Teis bounded ⇐⇒ (∀σ)(∃n)(∀m > n)(σ_m /∈ Te).

For the completeness, we define a reduction of ω\Cof as follows. Let φ(e,m, s) =
(least n > m)(n /∈ We,s). This is a primitive recursive definition since n ∈
We,s → n ≤ s. Then, using the s-m-n Theorem, define the tree Tf(e) by

Tf(e) = {0m : m ∈ N} ∪ {0m_(s+ 1) : φ(e,m, s+ 1) > φ(e,m, s)}.

Then Tf(e) will be a finite-branching tree if and only if, for each m, there are
only finitely many s such that 0m_(s + 1) ∈ Tf(e). Now if We is not cofinite,
then for each m there is a minimal n > m such that n /∈ We. It follows that
lims φ(e,m, s) = n, so that φ(e,m, s + 1) > φ(e,m, s) for only finitely many
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s, which will make Tf(e) finite-branching. On the other hand, if We is cofinite
and we choose m so that n ∈ We for all m > n, then it is clear that there will
be infinitely many s such that φ(e,m, s + 1) > φ(e,m, s), so that 0m will have
infinitely many successors and Tf(e) will not be finite-branching. Thus we have

e /∈ Cof ⇐⇒ Tf(e) is bounded.

(b) This set is Σ0
4, since

Te is almost bounded ⇐⇒ (∃k)(∀σ)(∃n)(∀m > n)(|σ| > k → σ_m /∈ Te).

For the completeness, first modify the proof of part (a) by letting Tg(e) contain
0m for each m together with 0m_(s+1) if m is the least such that φ(e,m, s+1) >
φ(e,m, s)} This modification ensures that Tg(e) is always almost bounded, since
only for the largest m /∈We will there be infinitely many s with 0m_s+1 ∈ Tg(e).
By the previous argument, Tg(e) will be bounded if and only if e /∈ Cof . Now
S be an arbitrary Σ0

4 set and suppose that a ∈ S ⇐⇒ (∃k)R(a, k), where R is
Π0

3. By the usual quantifier methods, we may assume that R(a, k) implies that
R(a, j) for all j > k. By the argument above, there is a computable function
h such that R(a, k) if and only if Th(a,k) is bounded and such that Th(a,k) is
almost bounded for every a and k. Now simply define

Tφ(a) = {0n : n < ω} ∪ {(0k1)_σ : σ ∈ Th(a,k)}.

If a ∈ S, then Th(a,k) is bounded for all but finitely many k and is almost
bounded for the remainder. Thus Tφ(a) is almost bounded. If a /∈ S, then, for
every k, Th(a,k) is not bounded, so that Tφ(a) is not almost bounded.

Index sets for decidable Π0
1 classes will use the alternate definition that

P = [T ] for some computable tree T with no dead ends.

Theorem 5.1.8. (i) {e : Pe is decidable is Π0
2 complete.

(ii) For any recursive g ≥ 2, {e : Pe is decidable and g-bounded is Π0
1 com-

plete.

(iii) For any computable g ≥ 2, {e : Pe is decidable and g-a.b. is D0
2 complete.

(iv) {e : Pe is decidable and c. b. is Σ0
3 complete.

(v) {e : Pe is decidable and almost c. b. is Σ0
3 complete.

(vi) {e : Pe is decidable and bounded is Π0
3 complete.

(vii) {e : Pe is decidable and almost bounded is Σ0
4 complete.

Proof. (i) This set is Π0
2 since Te has no dead ends if and only if

(∀σ ∈ Te)(∃i)(σ_i ∈ Te).
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For the completeness, let C be a Π0
2 set and R be a computable relation so

that

e ∈ C ⇐⇒ (∀m)(∃n)R(e,m, n).

Put ∅ and (m) in Tf(e) for all m and, for any k, put (m,n)_0k ∈ Tf(e) if and
only if R(e,m, n). Thus Tf(e) has no dead ends if and only if e ∈ C. Note that
Tf(e) is g-a.b. for any g.

(ii) This index set is Π0
1, since a g-bounded tree Te has no dead ends if

(∀σ)(σ ∈ Te → (∃i ≤ g(σ)(σ _ i ∈ Te).

For the completeness, observe that the proof given in Theorem 5.1.5 in fact
defines a tree with no dead ends.

(iii) This index set is D0
2 since the property of being g-bounded is Σ0

2 and
for any tree Ue, Te has no dead ends if and only if

(∀σ ∈ Te)(∃i)σ_i ∈ Te.

For the completeness, let A = B ∩ C, where B is a Σ0
2 set and C is a Π0

2

set. The tree Tj(e) is constructed in two parts. First, modify the construction of
part (a) by putting 1_σ ∈ Tj(e) ⇐⇒ σ ∈ Tf(e). Then Tf(e) ∩ I((1)) is always
g-a.b. and has no dead ends if and only if e ∈ C. Then we use the function h
defined in Theorem 5.1.7 which has the property that e ∈ B if and only if Th(e)

is g-a.b.. Note that Th(e) always has no dead ends. Then put 0_σ ∈ Tj(e) if
and only if 0_σ ∈ Th(e).

(iv) For this and the remaining cases, the upper bound on the complexity fol-
lows from part (0) above and complexity of the corresponding parts of Theorems
5.1.6 and 5.1.7. The completeness of the remaining cases follows from a simple
modification of the reductions used to prove the corresponding theorems above.
That is, one needs only ensure that corresponding trees used in the reductions
have no dead ends. This is easily accomplished by modifying any given recursive
tree T to construct a new computable tree T ′ such that (i) 0k ∈ T ′ for all k ≥ 0
and (ii) for any n ≥ 1, (σ1, . . . , σn) ∈ T iff (σ1 + 1, . . . , σn + 1) _ 0k ∈ T ′ for all
k ≥ 0.

Notions of boundedness for strong Π0
2 classes are considered in the exercises.

Exercises

5.1.1. The following numbering is essentially taken from Jockusch and Soare [90].
Let Φe be the e’th functional mapping NN×N to N and let Ψ2(e) = {X ∈
NN : Φe(e,X) ↑}. Define transfer functions φ and ψ as in Proposition
5.1.3 so that Ψ2(e) = Pψ(e) and Pe = Ψ2(φ(e)). As an alternative, let
Ψ3(e) = {X : Φe(0, X) ↑}.

5.1.2. Show that {e : T 2
e is g-bounded} is Π0

1 complete and
{e : T 2

e is computably bounded} is Σ0
3 complete.
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5.1.3. Show that for any ∆0
2 function g ≥ 2, {e : T 2

e is g-bounded} is Π0
2 complete

and {e : T 2
e is highly bounded} is Σ0

4 complete. (Hint: relativize from
Theorems 5.1.5.

5.1.4. Give the details for the proofs of Theorem 5.1.8(4-7).

5.2 Cardinality

In this section we classify index sets corresponding to cardinality properties of
Π0

1 classes.

Theorem 5.2.1. Let g ≥ 2 be a computable function from N∗ to N.

(a) {e : Pe is g-bounded and nonempty} is Π0
1 complete;

(b) {e : Pe is g-bounded and empty} is D0
1 complete;

(c) ({e : Pe is g-bounded and nonempty}, {e : Pe is g-bounded and empty}) is
(Π0

1,Σ
0
1) complete.

Proof. We observe first that the relation σ ∈ Ext(Te) has a Π0
1 characterization.

That is,

σ ∈ Ext(Te) ⇐⇒ (∀n)(∃τ)[|τ | = n & σ ≺ τ & τ ∈ Te],

where the quantifier “(∃τ)” is bounded by g in the following sense. Let h(0) =
g(∅) and for each n, let h(n + 1) = max{g(σ) : σ ∈ {0, 1, . . . , h(n)}n}. Then
σ ∈ Te implies σ(n) ≤ h(n) for all n, so that the quantifier “∃τ” above may be
replaced by “(∃τ ∈ {0, 1, . . . , h(n− 1)}n)”.

(a,c) Now Pe is nonempty if and only if ∅ ∈ Ext(Te).
For the double completeness, define a reduction f for a given Π0

1 set A so
that Ph(e) is always g-bounded and is nonempty if and only if e ∈ A. Let R
be a computable relation so that e ∈ A ⇐⇒ (∀n)R(e, n). Then the map may
be defined by putting 0n ∈ Tf(e) ⇐⇒ R(e, n) and putting no other strings in
Th(e).

(b) We see that this set is D0
1 by part (a) and Theorem 5.1.5.

For the completeness, let C = B \ A, where A and B are Π0
1 sets and let R

and S be computable relations so that

e ∈ A ⇐⇒ (∀n)R(e, n) and e ∈ B ⇐⇒ (∀n)S(e, n).

Then a reduction f of C to our set is given by putting σ ∈ Tf(e) if and only if
either

(i) (∀i < |σ|)[R(e, i) & σ(i+ 1) < g(σdi))] or

(ii) σ = (1 + g(∅) + n) where not S(e, n) and (∀i < n)(S(e, i)).
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Clearly Tf(e) is g-bounded if and only if if e ∈ B. Similarly Tf(e) is non-
empty if and only if e ∈ A. Thus Tf(e) is g-bounded and empty if and only if
e ∈ B −A.

Theorem 5.2.2. For any computable g ≥ 2,

(a) {e : Pe is almost g-bounded and nonempty} is Σ0
2 complete;

(b) {e : Pe is almost g-bounded and empty} is D0
2 complete.

Proof. It follows from the proof of Theorem 5.1.5 that the relation “Te is g-
bounded above k” is Π0

1. Now modify the proof of Theorem 5.2.1 to define
h for σ ∈ Te with |σ| = k by h(σ, k) = max{σ(i) : i < k} and for all n,
h(σ, k + n+ 1) = max{g(σ) : σ ∈ {0, 1, . . . , h(k + n)}k+n}. Then for σ| = k,

σ ∈ Ext(Te) ⇐⇒ (∀n)(∃τ ∈ {0, 1, . . . , h(σ, k + n)}k+n)(σ ≺ τ & τ ∈ Te).

Thus the relation “σ ∈ Te” is Π0
1 when restricted to σ of length k when Te is

g-bounded above k. Then for g-bounded Te, Pe is nonempty if and only if there
exists k such that Te is g-bounded above k and there exists σ ∈ Te such that
σ ∈ Ext(Te). This gives the upper bound on the complexity for both parts.

(a) For the completeness, use the same reduction as in the proof of Theorem
5.1.5.

(b) For the completeness, let A = B ∩ C, where B is a Σ0
2 set and C is

a Π0
2 set. Suppose that b ∈ B ⇐⇒ (∃m)(∀n)R(b,m, n) and c ∈ C ⇐⇒

(∀m)(∃n)S(c,m, n), where R and S are computable. Define the function φ(b, n)
to be the least m < n such that R(b,m, n) for all n′ < n (or φ(b, n) = n if
there is no such m), so that b ∈ B if and only if φ(b, n) is eventually constant.
Define the tree Tf(b) recursively as follows. Every string (m) of length 1 is in
Tf(b). If σ ∈ Tf(b) is of odd length 2s+ 1, then σ_i ∈ Tf(b) if either i < g(σ) or
φ(b, s + 1) > φ(b, s). If σ ∈ Tf(b) is of even length 2s + 2 and σ(0) = m, then
σ_i ∈ Tf(e) if i = 0 and either s < m or, for all n ≤ s, ¬S(b,m, n). Observe
that allowing an extension when s < m in the second part of the definition of
Tf(b) means that we have always have arbitrarily long strings in Tf(b).

Suppose first that b ∈ B. Then there is some k such that φ(b, s+1) = φ(b, s)
for all s ≥ k. It follows that Tf(b) is g-bounded above k. Next suppose that
b ∈ C. Then, for any m, choose nm such that S(b,m, n). It follows that there
is no σ of length 2nm + 3 beginning with σ(0) = m in Tf(b). It follows that
Pf(b) is empty in this case. Thus if b ∈ A, then Pf(b) is g almost bounded and
is empty. If b /∈ B, then, since Tf(b) has arbitrarily long strings, it will not be
almost bounded by g. If b /∈ C, then Pf(b) will be nonempty, since for any m
such that ¬S(b,m, n) for all n, we will have m_0ω ∈ Pf(b).

Theorem 5.2.3. (a) {e : Pe is c. b. and empty} is Σ0
2 complete;

(b) {e : Pe is c. b. and nonempty} is Σ0
3 complete.
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Proof. (a) The case of c. b. empty classes is equivalent to bounded empty classes
and is treated in Theorem 5.2.10 below.

(b) This set is Σ0
3, since Pe is c. b. and nonempty if and only if

(∃a)[a ∈ Tot & e ∈ Pe is φa-bounded and nonempty)].

For the completeness, modify the reduction f from the proof of Theorem 5.1.6
as follows. For any σ = (s0, s1, . . . , sk−1) ∈ Tf(e), add σ_0k to Tf ′(e) whenever
there is no s < k such that σ_s ∈ Tf(e). It is clear that Pf ′(e) will contain
exactly one element for each e.

Theorem 5.2.4. (a) {e : Pe is bounded and empty} is Σ0
2 complete;

(b) {e : Pe is bounded and nonempty} is Π0
3 complete.

Proof. (a) The case of bounded empty classes is a special one, since [T ] is
bounded and empty if and only if T is finite, that is, if and only if

(∃n)(∀σ)[σ ∈ Te →< σ >< n].

For the completeness, define a reduction f of Fin to by letting

Tf(e) = {∅} ∪ {(〈n, s〉) : n ∈We,s+1 \We,s}.

(b) Recall that {e : Te is finite-branching} is Π0
3 complete. Now if Te is

finite-branching, then for any σ,

σ ∈ Ext(Te) ⇐⇒ (∀i)(∃τ)[σ ≺ τ & τ ∈ Te & |τ | ≥ i].

Thus our set is Π0
3. For the completeness, use the same reduction f as given in

the proof of Theorem 5.1.7, since Pf(e) = {0ω} for every e.

Theorem 5.2.5. {e : Pe is a. b. and empty} and {e : Pe is a. b. and nonempty}
are both Σ0

4 complete.

Proof. For the “nonempty” case, the set is Σ0
4, since Pe is a. b. and nonempty

if and only if
(∃k)(∃σ)[B(k, e) & |σ| ≥ k & σ ∈ Ext(Te)].

For the completeness, use the same reduction as given in Theorem 5.1.7(b).
For the “empty” case, the set is Σ0

4, since Pe is a. b. and empty if and only
if

(∃k)[B(k, e) & (∀σ)(|σ| = k → σ /∈ Ext(Te))].

For the completeness, modify the proof of Theorem 5.1.7(b). First define

Tg′(e,k) = {mi : i ≤ m+ k} ∪ {(mm+k)_s+ 1) : (0m)_s+ 1 ∈ Tg(e)}.

where g is the function defined in Theorem 5.1.7(b). Note that [Tg′(e,k)] is always
empty and that Tg′(e,k) is always almost bounded. Tg′(e,k) is never actually
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bounded because the empty string has infinitely many successors (m) for each
m. However, Tg′(e,k) clearly has the following properties.

(i) If e /∈ Cof , then every node except ∅ has finitely many successors.
(ii) If e ∈ Cof , then for some m, mm+k has infinitely many successors.
Now let S be any Σ0

4 set and suppose that a ∈ S ⇐⇒ (∃k)R(a, k), where
R is Π0

3. By the usual quantifier methods, we may assume that R(a, k) implies
that R(a, j) for all j > k. Since Cof is Σ0

3 complete set, it follows from the
above discussion above that there is a recursive function h′ such that Th′(a,k) is
almost bounded for all a, k, [Th′(a,k)] is empty for all a, k and

(iii) if R(a, k), then every node in Th′(a,k) except ∅ has finitely many succes-
sors and

(iv) if ¬R(a, k), then for some m, mm+k has infinitely many successors.
Now define Tψ(a) = {(k)_σ : σ ∈ Th′(a,k)}. [Tψ(a)] is empty since each

[Th′(a,k)] is empty. If a ∈ S, then for all but finitely many k, every node in
Th′(a,k) except ∅ has finitely many successors, and for the remainder, Th′(a,k) is
almost bounded. Thus Tψ(a) is almost bounded. If a /∈ S, then, for every k,
Th′(a,k) has a string of length ≥ k with infinitely many successors, so that Tψ(a)

is not almost bounded.

Theorem 5.2.6. ({e : Pe = ∅}, {e : Pe 6= ∅}) is (Σ1
1,Π

1
1) complete.

Proof. The upper bounds on the complexity follow from the fact that

Pe 6= ∅ ⇐⇒ (∃x)(∀n)xdn ∈ Te.

For the completeness, let A be a Σ1
1 set, so that, by the normal form theorem

(see Hinman [80, p. 84]), there is a primitive recursive relation R such that, for
all a,

a ∈ A ⇐⇒ (∃x)(∀n)R(a, x|n).

Then we may define Tf(a) = {σ : R(a, σ)} by the s-m-n Theorem. Then
a ∈ A ⇐⇒ Pf(a) 6= ∅, as desired.

Next we consider index sets for the cardinality of strong Π0
2 classes.

Theorem 5.2.7.

(i) ({e : P 2
e is g-bounded & empty}), {e : P 2

e is g-bounded & nonempty}) is
(Σ0

2,Π
0
2) complete for any computable g ≥ 2.

(ii) {e : P 2
e is c. b. and nonempty} is Σ0

3 complete and {e : P 2
e is c. b. and empty}

is Σ0
2 complete.

(iii) {e : P 2
e is bounded and nonempty} is Π0

3 complete and
{e : P 2

e is bounded and empty} is Σ0
2 complete.

(iv) {e : P 2
e 6= ∅}, {e : P 2

e = ∅}) is (Σ1
1,Π

1
1) complete.
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(v) ({e : P 2
e is g-bounded and empty}, {e : P 2

e is g-bounded and non empty})
is (Σ0

2,Π
0
2) complete for any g ≥ 2 which is computable in 0′.

(vi) {e : P 2
e is highly bounded and nonempty} is Σ0

4 complete and
{e : P 2

e is highly bounded and empty} is is Σ0
2 complete.

Proof. The upper bounds on the complexity are routine to check.
(i) For the completeness, we define a reduction f such that P2,f(e) is always

a class of sets and such that e ∈ Inf if and only if P2,f(e) is nonempty. Simply
let 0n ∈ T2,f(e) if and only if there exist a0 < · · · < an−1 each in We.

(ii,iii,iv) In each case, the completeness follows exactly as in Theorems 5.2.3,
5.2.4 .

(v.vi) These are simply relativizations of Theorems 5.2.1 and 5.2.4.

Next we consider finite cardinality. Results related to almost boundedness
are relegated to the exercises.

Theorem 5.2.8. For any positive integer c and any computable function g ≥ 2,

(a) ({e : Pe is g-bounded & |Pe| > c}, {e : Pe is g-bounded & |Pe| ≤ c}) is
(Σ0

2,Π
0
2) complete;

(b) {e : Pe is g-bounded and Card(Pe) = c+ 1} is D0
2 complete;

c) {e : Pe is g-bounded and Card(Pe) = 1) is Π0
2 complete.

Proof. {e : Pe is g-bounded and Card(Pe) > c} is Σ0
2, since if Pe is g-bounded,

then Card(Pe) > c) if and only if there exist k and incomparable
σ1, σ2, . . . , σc+1 ∈ ωk such that each σi ∈ Ext(Te). For c = 0, this set is in fact
Π0

1 by Theorem 5.2.1. These facts imply the upper bounds on the complexity.
To prove the Σ0

2 completeness for cardinality > c, we define a reduction f of
ω \ Tot, as follows. For each e, let σ = 0m01r0m11r . . . 0mk−11r0mk1t ∈ Tfc(e) if
and only if the following conditions are satisfied.

(i) 1 ≤ r ≤ c and t ≤ r.
(ii) for each i < k, if φe,|σ|(i) ↓, then φe,|σ|(i) = mi.
(iii) if φe,|σ|(k) ↓, then φe,|σ|(k) ≥ mk.

Thus if φe is total, then Pf(e) has exactly c elements, 0φe(0)1r0φe(1)1r . . . for
1 ≤ r ≤ c. On the other hand, if φe is not total, then Pfc(e) will be infinite.
Note that the tree Tfc(e) is always g-bounded, since it is a binary tree. This
reduction shows both the double completeness result as well as the completeness
for cardinality = 1. Note that since Tot is |Pi02 complete, it follows that for any
Π0

2 set C, there is a reduction hc of C so that card(Phc(e)) = c if e ∈ C and
Phc(e) is infinite otherwise.

To prove the D0
2 completeness for cardinal = c+ 1, let A = B ∩ C where B

is Σ0
2 and C is Π0

2, let h1 be a reduction of ω − B (as above) so that Ph1(e) is
infinite if e ∈ B and card(Pf(e)) = 1 otherwise. Let hc+1 be the reduction of C
described above. Then a reduction φ of A to {e : Pe is g-bounded = c+ 1} may
be given by defining Tφ(e) = Th1(e) ⊕ Thc+1(e).
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Remark. It follows from Theorem 5.2.8 that {e : card(Pe ∩{0, 1}ω) > c} is
Σ0

2 complete, that {e : card(Pe ∩ {0, 1}ω) = 1} and {e : card(Pe ∩ {0, 1}ω) ≤ c}
are both Π0

2 complete, and that {e : card(Pe ∩{0, 1}ω) = c+ 1} is D0
2 complete.

Theorem 5.2.9. For any positive integer c, {e : Pe is c. b. and Card(Pe) >
c}, {e : Pe is c. b. and Card(Pe) ≤ c}, and {e : Pe is c. b. and Card(Pe) =
c}, are all Σ0

3 complete.

Proof. The g-bounded case above is uniformly Σ0
2. Then

Pe is c. b. & |Pe| > c ⇐⇒ (∃a)[a ∈ Tot & Peis φa-bounded & |Pe| > c.

A similar argument gives the upper bound for cardinality ≤ c.
For the Σ0

3 completeness of cardinality > c, recall the modified function g
from the proof of Theorem 5.2.3 such that card(Pg(e)) = 1 for all e and such
that Pg(e) is c. b. if and only if e ∈ Rec. Fix c and let T be a binary tree such
that [T ] has exactly c + 1 elements. Then let Tk(e) = Tg(e) ⊗ T . Then k is a
reduction of Rec to {e : Pe is c. b. and Card(Pe) > c}. This same reduction k
also works for cardinality = c+ 1 and cardinality ≤ c+ 1. Note here that since
T is binary, Tg(e) ⊗ T will be r. b. if Tg(e) is r. b. and since [T ] is nonempty,
Tg(e) ⊗ T will be not r. b. if Tg(e) is not computably bounded.

Theorem 5.2.10. For any positive integer c,

(a) {e : Pe is bounded & |Pe| ≤ c} and {e : Pe is bounded & |Pe| = 1} are
both Π0

3 complete;

(b) {e : Pe is bounded & |Pe| > c} and {e : Pe is bounded & |Pe| = c + 1}
are both D0

3 complete.

Proof. Let us define here a Σ0
3 relation C(c, k, e) such that C(c, k, e) holds iff

there is a j ≥ k such that there exist distinct σ1, . . . , σc+1 ∈ ωj ∩ Te such
that for all n > j there exists τ1, . . . , τc+1 ∈ ωn ∩ Te which extend σ1, . . . , σc+1

respectively. Note that if Te is bounded above k, then C(c, k, e) implies that
card(Pe) ≥ c.
{e : Pe is bounded and Card(Pe) ≤ c} is Π0

3, since

(Pe is bounded & |Pe| ≤ c) ⇐⇒ Pe is bounded & ¬C(c, 0, e)].

The upper bounds on the complexity for the other cases follows easily.
For the completeness results, let A = B ∩ C, where B is a Π0

3 set and C is
a Σ0

3 set. It follows from Theorem 5.1.7 that there is a reduction f such that
card(Pf(e)) = 1 for all e and such that Tf(e) is bounded if and only if e ∈ B.
This gives the Π0

3 completeness in the cases of cardinality ≤ c and cardinality
= 1.

Suppose now that e ∈ C ⇐⇒ (∃m)(∀n)(∃k)R(e,m, n, k), where R is com-
putable. We will define, uniformly in e, a computable tree Tg(e) such that Tg(e)
is bounded for all e and such that Pg(e) has exactly 2 elements if e ∈ C and
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exactly one element (0ω) otherwise. Let Tg(e) consist of all strings 0m together
with all strings (0m)_(r + 1, k1, k2, . . . kn) such that

(i) either m = r = 0 or m > 0 and ¬R(e,m− 1, r, k) for all k < n;
(ii) for all i ≤ n, R(e,m, i, ki) and ¬R(e,m, i, j) for all j < ki.
Clearly Tg(e) is always bounded and has at least one element 0ω. There will

be another element (0m)_(r + 1, k1, k2), . . .) when m is the least number such
that (∀n)(∃k)R(e,m, n, k). Thus e ∈ C if and only if Pg(e) contains exactly two
elements and e /∈ C if and only if Pg(e) contains exactly one element. By taking
a disjoint union with a fixed set containing exactly c elements, we may obtain a
recursive function gc such that e ∈ C if and only if Pgc(e) contains exactly c+ 1
elements and e /∈ C if and only if Pgc(e) contains exactly c elements.

The reduction of A for cardinality > c is then given by Th(e) = Tf(e)⊗Tgc(e);
this also works for the case of cardinality = c+ 1.

Theorem 5.2.11. For any positive integer c,

(a) ({e : Card(Pe) > c}), ({e : Card(Pe) ≤ c}) (Σ1
1,Π

1
1) complete;

(b) {e : Card(Pe) = c} is Π1
1 complete.

Proof. IP (> c) is Σ1
1 uniformly in c since e ∈ IP (≥ c) if and only if there

exist distinct x1, . . . , xc ∈ Pe. It then immediately follows that IP (≤ c) is Π1
1

uniformly in c.
For IP (= c), we recall from Theorem 1.3 that any countable Π0

1 class contains
a hyperarithmetic member. Thus we have

e ∈ IP (= c) ⇐⇒ e ∈ IP (≤ c) & (∃x1, . . . , xc ∈ HY P )(xc ∈ Pe).

It then follows from the Spector-Gandy Theorem 1.14.5 that IP (= c) is Π1
1.

For the completeness, let A be a Σ1
1 set and let f be the function from

Theorem 5.2.6 which reduces A to {e : Pe 6= ∅} and its complement to {e :
Pe = ∅}. Let T be a primitive recursive tree such that card([T ]) = c. Then a
reduction of A to {e : Card(Pe) > c} may be defined by Tg(e) = Tf(e) ⊕ T and
this simultaneously reduces N \ A to {e : Card(Pe) ≤ c} and in fact reduces
N \A to {e : Card(Pe) = c}.

Theorem 5.2.12. Let c be a positive integer.

(a) For any computable function g ≥ 2,

(i) ({e : Pe is decidable, g-bounded and Card(Pe) > c} is D0
1 complete;

(ii) {e : Pe is decidable, g-bounded and Card(Pe) ≤ c} is Π0
1 complete;

(iii) {e : Pe is decidable, g-bounded and Card(Pe) = c + 1} is D0
1 com-

plete.

(b) {e : Pe is decidable & |Pe| ≤ c}, {e : Pe is decidable & |Pe| > c} and
{e : Pe is decidable & |Pe| = c} are all Π0

2 complete.
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Proof. For a decidable tree Te, Pe has > c members if and only if there Te
contains incomparable σ1, . . . , σc+1. The upper bounds on the complexity now
follow from Theorem 5.1.8.

(a) (i) For the D0
1 completeness of this set as well as the set in (iii), let

A = B ∩ C, where B is a Π0
1 set and C is a Σ0

1 set. Let R be a computable
relation so that e ∈ C ⇐⇒ (∃n)R(e, n). It follows from the proof of Theorem
5.1.5 that there is a computable function g such that if e ∈ B, then Pg(e) = {0ω}
and is 2-bounded and if e /∈ B, then Pg(e) is not g-bounded. Let Ph(e) =
Pg(e) ∪ {0n1i+10ω : i < c & R(e, n) & (∀m < n)¬R(e,m)}.

(ii) Let Q be a fixed decidable Π0
1 class having exactly c elements. For the

Π0
1 completeness of this set, just let Pg(e) = Ph(e) ⊗Q.

(iii) For the Π0
1 completeness, use the reduction h given in the proof of

Theorem 5.1.5.
(b) For the Π0

2 completeness when cardinality equals 1, modify the reduction
given for the Π0

2 set C in the proof of part (0) of Theorem 5.1.8 by putting ∅ in
Tf(e) and by putting (n0, n1, . . . , nk−1) ∈ Tf(e) if and only if, for all i < k, ni is
the least such that R(e, i, n). Then if e ∈ C, Tf(e) will be a decidable tree with
exactly one element and if e /∈ C, then Tf(e) will be a finite tree and hence will
not be decidable.

For the Π0
2 completeness in the other two sets, let Pg(e) = Pf(e) ⊗ Q as in

(ii) above.

There are five cases to consider when we examine the possible infinite car-
dinality of a Π0

1 class P . P may be finite, countably infinite, or uncountable.
Negations of two of these adds the notions of infinite and of countable. Our first
result deals with the problem of finite versus infinite sets.

Theorem 5.2.13.

(a) For any computable function g ≥ 2,
({e : Pe is g-bounded and infinite}, {e : Pe is g-bounded and finite}) is
(Π0

3,Σ
0
3) complete.

(b) {e : Pe is c. b. and infinite} is D0
3 complete and {e : Pe is c. b. and finite}

is Σ0
3 complete.

(c) ({e : Pe is bounded and infinite}, {e : Pe is bounded and finite}) is (Π0
4,Σ

0
4)

complete.

(d) ({e : Pe is infinite}, {e : Pe is finite}) is (Σ1
1,Π

1
1) complete.

Proof. In each case, the upper bound on these complexities follows from the
uniformity of previous results (Theorems 5.2.8, 5.2.9, 5.2.10 and 5.2.11, since
Pe is infinite if and only if Card(Pe) > c for all c.
(a) For the completeness, we define a reduction of Cof to {e : Pe is g-bounded and finite}
which simultaneously reduces ω\Cof to {e : Pe is g-bounded and infinite}. Let

Tf(e) = {0n : n ∈ ω} ∪ {0n10k : n /∈We,k}.
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Then Tf(e) is always a binary tree and it is easy to see that Pf(e) = {0ω} ∪
{0n10ω : n /∈We}, so that f(e) ∈ IP (g-bounded < ℵ0) ⇐⇒ e ∈ Cof}.
(b) For the Σ0

3 completeness in the finite case, use the same reduction f given
in part (a) above.

For the D0
3 completeness in the infinite case, let A = B ∩C where B is a Σ0

3

set and C is a Π0
3 set and let f be the reduction given above applied to ω \ C,

so that Tf(a) is always a binary tree and such that Pf(a) is finite if and only
if a /∈ C. It follows from the proof of Theorem 5.2.3 that there is a recursive
function g such that Pg(a) is always a singleton and is r. b. if and only if
a ∈ B. Then the reduction of A to {e : Pe is c. b. and infinite} is given by
Th(a) = Tf(a) ⊗ Tg(a).

(c) For the double completeness, let A be a Π0
4 set and let C be a Σ0

3 set
so that e ∈ A ⇐⇒ (∀m)〈e,m〉 ∈ C. We may assume that if e /∈ A, then
〈e,m〉 ∈ C for only finitely many m. Let the reduction f be given by the
proof of Theorem 5.2.13, so that Tf(e,m) is always bounded and Pf(e,m) has one
element if 〈e,m〉 /∈ C and has two elements if 〈e,m〉 ∈ C. Define the reduction
h by Th(e) = ⊗mTf(e,m). Then Th(e) is always bounded and card(Ph(e) =∏
m card(Pf(e,m), so that if e /∈ C, then Th(e) is finite, and, if e ∈ C, then Th(e)

is uncountable.
(d) For the completeness, just let f be the reduction of Theorem 5.2.6 and

let Th(a) = Tf(a) ⊗ T , where T is a primitive recursive tree such that [T ] is
infinite.

Remark. It follows from part (a) that {e : Pe ∩ {0, 1}ω is infinite} is Π0
3

complete and {e : Pe ∩ {0, 1}ω is finite} is Σ0
3 complete.

Again we give only two cases for decidable classes.

Theorem 5.2.14.

(a) For any computable function g ≥ 2, ({e : Pe is g-bounded, decidable}, {e :
Pe is g-bounded, decidable and finite}) is (Π0

2,Σ
0
2) complete.

(b) {e : Pe is decidable and infinite} is Π0
2 complete and

{e : Pe is decidable and finite} is D0
2 complete.

Proof. The upper bounds on the complexities of the classes in both parts easily
follow from the uniformity of the proof of Theorem 5.2.12 as in the previous
result.

For the Σ0
2 completeness in the g-bounded infinite case, we define a reduction

f so that Pf(e) is always 2-bounded and decidable and is finite if and only if We is
finite. Let Pf(e) contain 0ω and, for each m, contain 0m10ω if m = [k, s] where
k ∈ We,s+1 \ We,s. This also gives the Π0

2 completeness in the (unbounded)
infinite case.

For the D0
2 completeness in the finite case, let A = B ∩ C where B is Σ0

2

and C is Π0
2. Using the reduction f , it follows that there is a reduction k of B

such that Pk(e) is always 2-bounded and decidable and is finite if and only if
e ∈ B. Let h be the reduction from Theorem 5.2.12 so that Ph(e) is decidable
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and has cardinality 1 if e ∈ C and otherwise Ph(e) is not decidable. Then Pj(e) =
Pk(e) ⊗ Ph(e) defines a reduction of A to {e : Pe is finite and decidable}.

The other three notions of infinity produce the same level of complexity
independent of the level of boundedness and of the decidability.

Theorem 5.2.15. ({e : Pe is uncountable}, {e : Pe is countable}) is (Σ1
1,Π

1
1)

complete and {e : Pe is countably infinite} is Π1
1 complete and the same result

holds for bounded classes, for c. b. classes, and for g-bounded classes, and also
for decidable classes and for strong Pi02 class, under each possible notion of
boundedness.

Proof. Recall from Theorem 5.1.7 that in each case the underlying set of e such
that Pe is suitably bounded is a Σ0

4 set. (For strong Π0
2 classes, this also holds.)

Then the property of being uncountable is Σ1
1, since for any tree Te, Pe is

uncountable if and only if Pe has a perfect subset, i.e. if and only if there exists
an embedding f from {0, 1}<ω into Te which preserves the partial order ≺. It
follows that the property of being countable is Π1

1 and, by Theorem 5.2.13, that
the property of being countably infinite is also Π1

1.
For the completeness of {e : Pe is uncountable}, we define a reduction of {e :

Pe 6= ∅} to {e : Pe is 2-bounded and uncountable} as follows. Define the binary
tree Tf(e) to consist of all strings 0n0_τ_0 0n1_τ_1 · · · _ 0nk−1_τk−10n, where
(n0, . . . , nk−1) ∈ Ue and for i < k, τi = (1) or τi = (1, 1). Then for any path
x ∈ [Te], Tf(e) will contain uncountably many paths, so that if Pe is nonempty,
then Pf(e) will be uncountable. If Pe is empty, then every path in Pf(e) will end
in 0ω, so that Pf(e) will be countable. Note that f also reduces {e : Pe = ∅}
to {e : Pe is 2-bounded and countable}. A reduction g of {e : Pe = ∅} to
{e : Pe is 2-bounded and countably infinite} is then given by Tg(e) = Tf(e) ⊕ T ,
where T is some primitive recursive binary tree with [T ] countably infinite.

It is clear that these reductions work for each of the notions of boundedness
and also for decidable classes, since the trees constructed have no dead ends.

Exercises

5.2.1. A Π0
1class P is said to be intrinsically bounded by g if the tree TP = {σ :

P ∩ σ 6= ∅} is g-bounded. Show that {e : Pe is c. b.} is Π1
1 complete, and

similarly for all other notions of boundedness.

5.2.2. Show that {e : Pe is a. c. b. and empty} and {e : Pe is a. c. b. and nonempty}
are both Σ0

3 complete. Hint: For the completeness in the “empty” case,
modify the reduction f from the proof of Theorem 5.1.7 by letting Tf ′(e)
contain strings (n, s0, . . . , sk−1) such that (s0, . . . , sk−1) ∈ Tf(e) and k < n,
so that Tf ′(e) is a. r. b. if and only if Tf(e) is a. c. b. and Pf ′(e) is always
empty.

5.2.3. Let c be a positive integer and g ≥ 2 a computable function. Show
that {e : Pe is g-almost bounded and Card(Pe) > c} is Σ0

2 complete
and both {e : Pe is g-almost bounded and Card(Pe) ≤ c} and {e :
Pe is g-almost bounded and Card(Pe) = c} are D0

2 complete.
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5.2.4. For any positive integer c, show that {e : Pe is a. c. b. and Card(Pe) >
c}, {e : Pe is a. c. b. and Card(Pe) ≤ c}, and {e : Pe is a. c. b. and Card(Pe) =
c}, are all Σ0

3 complete.

5.2.5. For any positive integer c, show that {e : Pe is a. b. and Card(Pe) > c},
{e : Pe is a. b. and Card(Pe) ≤ c} and {e : Pe is a. b. and Card(Pe) =
c} are all Σ0

4 complete.

5.2.6. Show that (Σ0
1,Π

0
1) ≤m ({e : Pe is decidable, g-bounded and Card(Pe) >

c}, {e : Pe is decidable, g-bounded and Card(Pe) ≤ c}).

5.2.7. For any positive integer c and any computable function g ≥ 2,

(a) ({e : P 2
e is g-bounded and Card(Pe) ≤ c}) is Π0

3 complete.

(b) {e : P 2
e is g-bounded and Card(P 2

e ) = c+ 1} is D0
3 complete.

c) {e : P 2
e is g-bounded and Card(P 2

e ) = 1) is Π0
3 complete.

(a) ({e : P 2
e is g-bounded and finite}) is Σ0

4 complete

5.3 Computable Cardinality

The computable cardinality of a class P is the cardinality of the set of com-
putable members of P . Also, we say that P is computably nonempty if it has
a computable member and computably empty otherwise. In this section, we
classify the various index sets of classes with given computable cardinality con-
ditions. The first theorem extends the result of Gasarch and Martin [72] that
the property of being computably nonempty is Σ0

3 complete for c. b. Π0
1 classes.

Theorem 5.3.1. For any computable g ≥ 2,

(a) ({e : Pe is g-bounded and computably nonempty}, {e : Pe is g-bounded and computably empty})
is (Σ0

3,Π
0
3) complete

(b) {e : Pe is g-bounded, nonempty, and computably empty} is Π0
3 complete.

Proof. The upper bounds on the complexity follow from Theorem 5.2.1 and the
fact that Pe has a computable member if and only if

(∃a)[a ∈ Tot & (∀n)(φa|n ∈ Ue)].

For the completeness of the first two sets, we define a reduction of Ext2 by
letting Pf(a) equal

{x ∈ {0, 1}ω : φa ≺ x} = {x : (∀m)(∀s)(∀i)[φa,s(m) = i→ x(m) = i]}.

For the other completeness, let Q be a nonempty, binary Π0
1 class with no

computable members and let Ph(a) = Pf(a) ⊕Q.

Theorem 5.3.2. (a) {e : Pe is c. b. and computably nonempty} is Σ0
3 com-

plete;
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(b) {e : Pe is c. b. and computably empty} is D0
3 complete;

(c) {e : Pe is c. b., nonempty and computably empty} is D0
3 complete.

Proof. The upper bounds on the complexity are easily checked.
For the completeness in (a) use the reduction from Theorem 5.3.1. For the

completeness of the other two sets, let A = B ∩ C, where B is Π0
3 and C

is Σ0
3. It follow from the proof of Theorem 5.3.1 that there is a computable

function f such that Pf(a) is always c. b. nonempty and has a computable
member if and only if a /∈ B. It follows from the proof of Theorem 5.1.6
that there is a computable function g such that Pg(a) is c. b. if and only if
a ∈ C. Then a reduction h of A to the sets in (b) and (c) may be given by
Ph(a) = Pf(a) ⊗ (Pg(a) ∪ {0ω}).

Proofs of the next two theorems are left for the exercises.

Theorem 5.3.3. (a) {e : Pe is bounded and computably nonempty} is D0
3

complete;

(b) {e : Pe is bounded and computably empty} is Π0
3 complete;

(c) {e : Pe is bounded, nonempty and computably empty} is Π0
3 complete.

Theorem 5.3.4. (a) {e : Pe is and computably nonempty} is Σ0
3 complete;

(b) {e : Pe is computably empty} is Π0
3 complete;

(c) {e : Pe is nonempty and computably empty} is Σ1
1 complete.

Theorem 5.3.5. Let c be a positive integer and let g ≥ 2 be a computable
function.

(a) ({e : Pe is g-bounded and has computable cardinality > c},
{e : Pe is g-bounded and computable cardinality ≤ c}) is (Σ0

3,Π
0
3) com-

plete;

(b) {e : Pe is g-bounded, nonempty, and has computable cardinality = c} is
D0

3 complete.

Proof. The upper bounds on the complexity are easily checked.
(a) For the completeness, let f be the reduction from Theorem 5.3.1 such

that Tf(a) is always a binary tree and such that Pf(a) has a computable member
if and only if a ∈ Ext2. Let Tb be a fixed binary tree such that Pb consists of
exactly c+ 1 computable elements. Then let Ph(a) = Pf(a) ⊗ Pb.

(b) We begin with a construction for unbounded classes using the Σ0
3 com-

pleteness of Rec.
Define the modulus function µa for the c. e. set Wa by

µa(i) = (least s)[Wa ∩ {0, 1, . . . , i} = Wa,s ∩ {0, 1, . . . , i}].
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It is easy to see that Wa is computable if and only if µa is computable. We
shall define a tree Tf(a) so that Pf(a) = {µa} and hence Pa has exactly one
computable element if and only if a ∈ Rec.

The tree Tf(a) is defined so that a string σ of length n is in Tf(a) if and only
if each of the following three conditions is satisfied.

1. (∀i < n)(i ∈Wa,n ⇐⇒ i ∈Wa,σ(i)),

2. σ0 > 0→ 0 ∈Wa,σ(0) \Wa,σ(0)−1, and

3. (∀0 < m < n)[σ(m) > σ(m− 1)→ m ∈Wa,σ(m) \Wa,σ(m)−1)].

Now let A = B ∩ C, where B is Σ0
3 and C is Π0

3. It follows from the
completeness of Rec and the above construction that Pf(a) is a singleton for
each a and has a (unique) computable member if and only if a ∈ B. Let h be
the reduction from (a) such that Ph(a) has no computable members if a ∈ C
and has at least 2 computable members if a /∈ C. Let S be a fixed class with
exactly c computable members. Define the computable function ψ so that

Pψ(a) = S ⊗ (Pf(a) ⊕ Ph(a)).

This gives a reduction of A to {e : Pe has exactly c computable members}.
Finally, let k be the primitive recursive function given in Theorem 2.7.7

so that for any e, Pk(e) is a Π0
1 class of sets such that there is a one-to-one

correspondence between the members of Pe and the computable members of
Pk(e). Then the composite function k(ψ(a)) gives a desired reduction of A to

{e : Pe is g-bounded, nonempty, and has computable cardinality = c},

so that A is D0
3 complete.

The next three theorems essentially follow from the proof of Theorem 5.3.5.
Details are left for the exercises.

Theorem 5.3.6. Let c be a positive integer.

(a) {e : Pe is c. b. and has computable cardinality > c} is Σ0
3 complete;

(b) {e : Pe is c. b. and has computable cardinality ≤ c} is D0
3 complete;

(c) {e : Pe is c. b. and has computable cardinality = c} is D0
3 complete.

Theorem 5.3.7. Let c be a positive integer.

(a) {e : Pe is bounded and has computable cardinality ≤ c} is Π0
3 complete;

(b) {e : Pe is bounded and has computable cardinality > c} is Dp3 complete;

(c) {e : Pe is bounded and has computable cardinality = c} is D0
3 complete.

Theorem 5.3.8. Let c be a positive integer.
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(a) ({e : Pe has computable cardinality > c}, {e : Pe has computable cardinality ≤
c}) is (Σ0

3,Π
0
3) complete;

(b) {e : Pe has computable cardinality = c} is D0
3 complete.

For finite versus infinite computable cardinality, all versions of boundedness
produce index sets of the same complexity (excluding almost boundedness).

Theorem 5.3.9. ({e : Pe has finite computable cardinality}, {e : Pe has finite computable cardinality})
is (Σ0

4,Π
0
4) complete and the similar result is true for g-bounded, c. b. and

bounded classes and also for strong Π0
2 classes.

Proof. The upper bounds follow from the uniformity of Theorems 5.3.5, 5.3.6,
5.3.7 and 5.3.8.

For the completeness results, let A be a Π0
4 set, so that for some Σ0

3 relation
R,

a ∈ A ⇐⇒ (∀i)R(i, a).

As usual, R may be defined so that if a /∈ A, then R(i, a) for only finitely many
values of i. By the proof of part (i) of Theorem 5.3.1, there is a computable
function f so that for each a and i, R(i, a) if and only if Pf(i,a) has a computable
member and Pf(i,a) is a binary class. Now let

Tφ(a) = {0n : n ≥ 0} ∪ {0i1 _ σ : σ ∈ Uf(i,a).

Then it is clear that a ∈ A if and only if Pφ(a) has infinitely many computable
members and Pφ(a) is always a binary class.

Next we consider the problem of whether a Π0
1 class has a member com-

putable in 0′, or equivalently whether it has an element in ∆0
2. We omit the

almost computably bounded classes, since by Exercise 4.1.3, an a. c. b. Π0
1 class

has a member computable in 0′ if and only if it is nonempty.

Theorem 5.3.10. (a) ({e : Pe has a ∆0
2 member}, {e : Pe has no ∆0

2 member})
is (Σ0

4,Π
0
4) complete and {e : Pe is nonempty but has no ∆0

2 member} is
Σ1

1 complete.

(b) {e : Pe is bounded and has a ∆0
2 member} is Σ0

4 complete and

{e : Pe is bounded and has no ∆0
2 member}

and

{e : Pe is bounded and nonempty but has no ∆0
2 member}

are both Π0
4 complete.

Proof. (a) By relativization of Theorem 5.0.4, the set Tot(0′) = {e : φ0
′

e is total
is a Π0

3 complete set and

Pe has a ∆0
2 member ⇐⇒ (∃a)[a ∈ Tot(0′) & (∀n)(φ′adn ∈ Te)].
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The upper bounds on the complexity follow easily.
For the completeness of the first two sets, let S be an arbitrary Σ0

4 set and
suppose that

a ∈ S ⇐⇒ (∃m)(∀n)(∃i)(∀j)R(a, i, j,m, n),

for some recursive relation R. Define the reduction f so that

(m, i0, i1, . . .) ∈ Pf(a) ⇐⇒ (∀n)(∀j)R(a, in, j,m, n).

It is clear that if a /∈ A, then Pf(a) is empty and therefore has no member
computable in 0′. On the other hand, if a ∈ A, then we may choose m so that
(∀n)(∃i)(∀j)R(a, i, j,m, n) and define an infinite path (m, i0, i1, . . .) ∈ Pf(a)

which computable in 0′ by letting in be the least i such that (∀j)R(a, i, j,m, n).
For the Σ1

1 completeness result, let A be a complete Σ1
1 set and let f be the

reduction given in Theorem thm:iue so that Pf(a) is nonempty iff a ∈ A. Then
let g be the computable function such that Pg(a) = Pf(a) ⊕Q, where Q is a Π0

1

class with no members computable in 0′.
(b) The upper bounds on the complexity of the three sets follows as in part

(a). For the completeness of the first two sets, let h be the function given in
Theorem 2.7.7. Then Pe has a (respectively, no) ∆0

2 member if and only if Ph(e)

is bounded and has a (resp. no) ∆0
2 member.

For the Π0
4 completeness of the third set, let Q be a nonempty bounded Π0

1

class Q with no ∆0
2 members and let Pk(e) = Q⊕ Ph(e).

Finally, we consider the computable and ∆0
2 cardinality of strong Π0

2 classes.

Theorem 5.3.11. (i) For any g ≥ 2 which is computable in 0′,

({e : P 2
e is g-bounded and comp. empty}, {e : P 2

e is g-bounded and comp. nonempty})

is (Σ0
3,Π

0
3) complete and

{e : P 2
e is g-bounded, nonempty, and computably empty}

is Π0
3 complete.

(ii) {e : P 2
e is c. b. and computably nonempty is Σ0

3 complete and

{e : P 2
e is c. b. and computably empty}

and
{e : P 2

e is c. b., nonempty, and computably empty}
are D0

3 complete.

(iii) {e : P 2
e is bounded and computably nonempty is D0

3 complete and

{e : P 2
e is bounded and computably empty}

and
{e : P 2

e is bounded, nonempty, and computably empty}
are Π0

3 complete.
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(iv) ({e : P 2
e is computably nonempty}, {e : P 2

e is computably empty}) is (Σ0
3,Π

0
3)

complete and {e : P 2
e is nonempty but computably empty} is Π0

3 complete.

(v) {e : P 2
e is highly bounded and computably nonempty} is Σ0

4 complete,

{e : P 2
e is highly bounded and computably empty},

and

{e : P 2
e is highly bounded, nonempty and computably empty}

are all Σ0
4 complete.

Proof. The upper bounds on the complexity are routine. The completeness of
parts (i)–(iv) follow from previous results on Π0

1 classes. The completeness in
part (v) follows easily from the Σ0

4 completeness of the property of being highly
bounded.

Exercises

5.3.1. Prove Theorem 5.3.3. Hint: Combine the reductions from Theorems 5.1.7
and 5.3.1.

5.3.2. Prove Theorem 5.3.4. Hint: Combine the reductions from Theorems 5.2.6
and 5.3.1.

5.3.3. Prove Theorems 5.3.6, 5.3.7 and 5.3.8.

5.3.4. Show that the computable cardinality of a decidable class P is the same
as the cardinality of P , except when P is uncountable but has a count-
able infinite number of computable elements. Then formulate and prove
decidable versions of Theorems 5.3.5, 5.3.6, 5.3.7 and 5.3.8.

5.3.5. Prove Theorem 5.3.11(v).

5.3.6. Show that ({e : P 2
e has a ∆0

2 member, {e : P 2
e has no ∆0

2 member}) is
(Σ0

4,Π
0
4) complete and likewise for g-bounded, c. b. and bounded classes.

5.3.7. Show that {e : P 2
e is bounded and nonempty but has no ∆0

2 member is
Π0

4 complete and likewise for g-bounded and c. b. classes. However, for
unbounded classes the corresponding set is Σ1

1 complete.

5.4 Index Sets and Lattice Properties

In this section, we consider in particular the complexity of the inclusion relation
and the lattice operations on the family of Π0

1 classes.

Lemma 5.4.1. There are primitive recursive functions ψi, ψu, ψs and ψp such
that, for all a and b, (a) Pψi(a,b) = Pa∩Pb; (b) Pψu(a,b) = Pa∪Pb; (c) Pψs(a,b) =
Pa ⊕ Pb; (d) Pψp(a,b) = Pa ⊗ Pb
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Proof. (a) Here we define ψi so that Tψi(a,b) = Ta ∩ Tb, that is, πψi(a,b)(σ) =
πa(σ) · πb(σ).

(b) Similarly, Tψi(a,b) = Ta ∪ Tb.
(c) Here Tψi(a,b) = {∅}∪{0_τ : τ ∈ Ta}∪{1_τ : τ ∈ Tb}, so that π = πψu(a,b)

is defined by π(∅) = 1 and

π(σ) =

{
πa(σ(1), . . . , σ(|σ| − 1)), if σ(0) = 0

πb(σ(1), . . . , σ(|σ| − 1)), if σ(0) = 1

A formal definition of ψu can now be obtained by the s-m-n Theorem.
(d) Here T = Tψp(a,b) is defined to contain σ if and only if (σ(0), σ(2), . . . ) ∈

Ta and σ(1), σ(3), · · · ∈ Tb. Details are left to the reader.

Next we consider some aspects of the Verification Problem for Π0
1 classes,

that is, {〈i, j〉 : Pi ⊆ Pj}. This problem has been studied for various families of
ω-languages by Klarlund [96], Staiger [188] and others. More generally, Cenzer
and Remmel [39] investigated index set problems concerning the size of the
difference of two classes.

Theorem 5.4.2. (Staiger) Let g ≥ 2 be a computable function.

(i) {〈a, b〉 : Pa, Pb are g-bounded and Pa ⊆ Pb} and
{〈a, b〉 : Pa, Pb are g-bounded and Pa = Pb} are Π0

2 complete.

(ii) {〈a, b〉 : Pa, Pb are g-bounded and P 2
a ⊆ P 2

b } and
{〈a, b〉 : P 2

a , P
2
b are g-bounded and P 2

a = P 2
b } are Π0

3 complete.

Proof. (i) The first set is Π0
2 (and hence also the second set), since

Pa ⊆ Pb ⇐⇒ (∀σ)(σ ∈ Ext(Ta)→ σ ∈ Tb).

For the completeness, let b be given so that Pb = {0ω}. Let A be a Π0
2 set and

let R be a computable relation such that, for all i

i ∈ A ⇐⇒ (∀m)(∃n)R(i,m, n)

Define the tree Tf(i) to contain 0m for all m and also

0m1n ∈ Tf(i) ⇐⇒ (∀j < n)¬R(i,m, j)

Then it is clear that

Pf(i) ⊆ Pb ⇐⇒ Pf(i) = Pb ⇐⇒ i ∈ A.

(ii) Recall that σ ∈ T 2
e ⇐⇒ (∀τ � σ)τ ∈We), which is a Σ0

1 relation. Now let
Gn = {σ : |σ| = n & (∀m < n)σ(m) < g(m)}. Then

σ ∈ Ext(T 2
e ) ⇐⇒ (∀n)(∃τ ∈ Gn)(σ � τ& τ ∈ T 2

e ),

and this relation is Π0
2, since the quantifier (∃τ ∈ Gn) is bounded. It follows

as in (i) that the two sets are Π0
3. For the completeness, simply relativize the

argument from (i). That is, let R now be a Π0
1 relation and note that the

corresponding class P 2
f(i) will indeed by a strong Π0

2 class.
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The complexity of being “almost equal” or “almost a subset” is covered by
considering differences of classes. The following results are taken from [39].

Theorem 5.4.3. For any computable function g and any finite k ≥ 1:

(i) {〈a, b〉 : Pa and Pb are g-bounded and card(Pa−Pb) ≤ k} is Π0
2 complete.

[(ii)] {〈a, b〉 : P 2
a and P 2

b are g-bounded and card(P 2
a − P 2

b ) ≤ k} is Π0
2

complete.

Proof. The completeness follows from Theorem 5.2.8 in (i) and from Exercise
7 in (ii). Thus we need only see that index sets have the appropriate complexity.

(i) To see that (i) is Π0
2, we claim that

card(Pa − Pb) ≤ k ⇐⇒ (∀e)[Pb ∩ Pe = ∅ → card(Pa ∩ Pe) ≤ k].

Certainly if the condition is false, then card(Pa − Pb) > k. On the other hand,
suppose that card(Pa − Pb) > k. Then there are k + 1 elements x0, x1, . . . , xk
in Pa − Pb. For each i, there is a basic open set Ui such that xi ∈ Ui and
Ui ∩ Pb = ∅. Then Pe = U0 ∪ · · · ∪ Uk contradicts the condition.

(ii) The argument is similar to (i).

Theorem 5.4.4. For any computable function g ≥ 2:

(i) {〈a, b〉 : Pa and Pb are g-bounded and Pa − Pb is finite} is Σ0
3 complete.

[(ii)] {〈a, b〉 : P 2
a and P 2

b are g-bounded and P 2
a −P 2

b is finite} is Π0
4 com-

plete.

Proof. In each case, the upper bound on the complexity follows from the uni-
formity of Theorem 5.4.3. The completeness follows from Theorem 5.2.13 and
Exercise 3.7.

Theorem 5.4.5. For any computable function g ≥ 2 and any finite k ≥ 0:

(i) {〈a, b〉 : Pa and Pb are g-bounded and Pa−Pb has ≤ k computable members}
and {〈a, b〉 : P 2

a and P 2
b are g-bounded and P 2

a−P 2
b has ≤ k computable members}

are Π0
3 complete.

(ii) {〈a, b〉 : Pa, Pb are g-bounded and Pa−Pb has < ℵ0 computable members}
and {〈a, b〉 : P 2

a , P
2
b are g-bounded and P 2

a−P 2
b has < ℵ0 computable members}

are Σ0
4 complete.

Proof. (i) The completeness follows from Theorem 5.3.5. For the upper bounds
on the complexity, we claim that

Pa−Pb has ≤ k computable members ⇐⇒ (foralle)[Pb∩Pe = ∅ → card(Pa∩Pe) ≤ k].

The key here is that if there are k + 1 computable elements x0, x1, . . . , xk in
the difference, then {x0, . . . , xk} is a Π0

1 class. Details are left to the reader. A
similar argument covers strong Π0

2 classes.
(ii) The upper bounds follow from the uniformity of (i) and completeness

follows from Theorem 5.3.9.
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Theorem 5.4.6. {e : Pe ⊆ {0, 1}N & Pe is thin} and {e : Pe ⊆ {0, 1}N & Pe is thin}
are Π0

4 complete sets.

Proof. First observe that Pe is minimal if and only if, for all a, either Pe ∩Pa is
finite or Pe−Pa is finite. Thus the property of being minimal is Π0

4 by Theorem
5.4.4. Pe is thin if and only if, for every a, there exist σ1, . . . , σk such that
Pe ∩ Pa = Pe ∩ (I(σ1) ∪ · · · ∪ I(σk)). Thus the property of being thin is Π0

4 by
Theorem 5.4.2.

For the completeness, the proof of Theorem 2.8.3 may be modified for a
given Π0

4 set C to define a reduction f so that Pf(c) is thin and minimal if c ∈ C
and otherwise is neither. The modification uses a uniform version of Theorem
5.2.13 that {e : Pe is finite} is Σ0

3 complete to add a new limit point to P if
c /∈ C and otherwise to add only isolated points. That is, let c ∈ C if and only
if Pg(c,e) is finite for all e. Now define the computable function f so that, at
each stage s of the construction of Tf(c), there is a copy of T sf(c,e) below τse but
not below τse+1. If τse is abandoned, we just extend the finitely many branches
with 0’s. Now if c ∈ C, then only finitely many new points have been added
below any τe, so that no new limit point has been added. Then Pf(c) will be a
minimal thin class as before. If c /∈ C, then for some e, we have attached an
infinite Π0

1 class, a copy of Pg(c,e) below τe. Thus there is a second limit point
below τe. It follows that Pf(c) is not minimal or thin.

Exercises

5.4.1. Show that {e : {0, 1}N ⊆ Pe} is Π0
1 complete.

5.4.2. Give the details in the proof of Lemma 5.4.1.

5.4.3. Show that for any cardinal c, {〈a, b〉 : card(Pa ∩ Pb) ≤ c} has the same
complexity as {a : card(Pa) ≤ c} and similarly for cardinality = c.

5.4.4. Show that {〈a, b〉 : Pa, Pb are g-bounded and Pa ∩Pb 6= ∅} is Π0
1 complete

and {〈a, b〉 : P 2
a , P

2
b are g-bounded and P 2

a ∩ P 2
b 6= ∅} is Π0

2 complete.

5.4.5. Show that {〈e, 〈σ〉〉 : I(σ) ⊆ Pe} and {〈e, 〈σ〉〉 : Pe is g-bounded and I(σ) ⊆
Pe} are Π0

1 complete (for any computable g).

5.4.6. Show that {〈e, 〈σ〉〉 : I(σ) ⊆ P 2
e } and {〈e, 〈σ〉〉 : P 2

e is g-bounded and I(σ) ⊆
Pe} are Π0

2 complete (for any computable g).

5.4.7. Show that {〈a, b〉 : Pa ⊆ Pb} is Π1
1 complete.

5.4.8. For any computable function g and any finite k:

(i) {〈a, b〉 : Pa and Pb are g-bounded and card(Pa − Pb) = 1} is Π0
2

complete. [(ii)] {〈a, b〉 : Pa and Pb are g-bounded and card(Pa −
Pb) = k + 1} is D0

2 complete.

5.4.9. For any computable function g and any finite k:
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(i) {〈a, b〉 : P 2
a and P 2

b are g-bounded and card(P 2
a − P 2

b ) = 1} is Π0
3

complete. [(ii)] {〈a, b〉 : P 2
a and P 2

b are g-bounded and card(P 2
a −

P 2
b ) = k + 1} is D0

3 complete.

5.4.10. For any computable function g ≥ 2, {〈a, b〉 : Pa and Pb are g-bounded and Pa−
Pb is countable } and {〈a, b〉 : P 2

a and P 2
b are g-bounded and P 2

a−P 2
b is countable}

are Π1
1 complete.

5.5 Separating Classes

Recall that, for any two sets A andB, the class S(A,B) contains those separating
sets C such that A ⊂ C and B ∩C = ∅. When A and B are c. e. sets, S(A,B)
is a Π0

1 class of sets. There are twp special cases here. The class of supersets of
We is S(We, ∅) and the class of sets disjoint from We, is S(∅,We). Note that the
class S(A,B) of separating sets has the following property, which we shall refer
to as being closed under between-ness, that, for any sets X,Y, Z, if X ⊂ Y ⊂ Z
and X,Z ∈ P , then Y ∈ P .

Lemma 5.5.1.

1. For any nonempty Π0
1 class P ⊆ {0, 1}N, the following are equivalent.

(a) P is the class of subsets of a Π0
1 set A.

(b) P is the class of subsets of some set A.

(c) P is closed under subsets and under union.

2. For any nonempty Π0
1 class P ⊆ {0, 1}N, the following are equivalent.

(a) P is the class of supersets of a Σ0
1 set A

(b) P is the class of supersets of some set A

(c) P is closed under supersets and under intersection.

3. For any Π0
1 class P ⊆ {0, 1}N, the following are equivalent.

(a) P is the class of separating sets of some pair A,B

(b) P is the class of separating sets of some pair A,B of r. e. sets.

(c) P is closed under union, intersection and between-ness.

Proof. (i) Certainly (a) implies (b) and (b) implies (c). To show that (c) implies
(a), suppose that P is closed under subsets and under union and let

A = {n : (∃x)[x ∈ A & x(n) = 1]}.

We claim that P = P(A). First we show by induction that A∩{0, 1 . . . , n−1} ∈
P for all n. For n = 0, this follows from the subset property and the fact that
A is nonempty. Now suppose that A ∩ {0, . . . , n − 1} ∈ P . If n /∈ A, then



5.5. SEPARATING CLASSES 167

A ∩ {0, . . . , n} = A ∩ {0, . . . , n − 1} ∈ P by assumption. If n ∈ A, then by
definition there is some B ∈ P with n ∈ B and then, by closure under union,
A ∪ B ∈ P and by closure under subset, A ∩ {0, . . . , n} ∈ P . Finally P is a
closed set and limn→∞A ∩ {0, . . . , n} = A, so that A ∈ P as desired.

Now let P = P(A) = [T ] for some computable tree and recall that Ext(T )
is a Π0

1 set. Then observe that A may be defined by:

n ∈ A ⇐⇒ ⇐⇒ (∃σ ∈ {0, 1}n + 1)[σ ∈ Ext(T ) & σ(n) = 1].

(ii) This is left as an exercise.
(iii) Observe that S = S[A,B] if and only if S is the intersection of the class

of supersets of A with the class of subsets of {0, 1}N −B. Details are left as an
exercise.

Lemma 5.5.2. Suppose that P = [T ] where T is a tree with no dead ends.
Then

1. P is closed under subsets if and only if for every σ ⊂ τ , if τ ∈ T , then
σ ∈ T .

2. P is closed under supersets if and only if for every σ ⊂ τ , if σ ∈ T , then
τ ∈ T .

3. P is closed under union if and only if, for every σ and τ in T , σ ∪ τ ∈ T .

4. P is closed under intersection if and only if, for every σ and τ in T ,
σ ∩ τ ∈ T .

Proof. The proof is left as an exercise.

Theorem 5.5.3. 1. Sub = {e : Pe = S(∅,Wb) for some b} is Π0
2 complete.

2. Sup = {e : Pe = S(Wa, ∅) for some a} is Π0
2 complete.

3. Sep = {e : Pe = S(Wa,Wb) for some a, b} is a Π0
2 complete set.

Proof. (i) By Lemma 5.5.1, e ∈ Sub if and only if Pe is closed under subsets
and under intersection. Thus, by Lemma 5.5.2, e ∈ Sub if and only if Pe is
2-bounded and

(∀σ, τ ∈ {0, 1}∗)[[(σ ⊂ τ & τ ∈ Ext(Te))→ σ ∈ Ext(Te)] &

[(σ ∈ Ext(Te) & τ ∈ Ext(Te))→ σ ∩ τ ∈ Ext(Te)]].

For the completeness, let A be a Π0
2 set and R a recursive relation so that

a ∈ A ⇐⇒ (∀m)(∃n)R(a,m, n).

Define the Π0
1 class Pf(a) as follows:

x ∈ Pf(a) ⇐⇒ (∀m)[x(2m) = x(2m+1) = 0 ∨ (x(2m) = x(2m+1) = 1 & (∀n)¬R(a,m, n).
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Now if a ∈ A, then Pf(a) = {0ω} and f(a) ∈ Sub. If a /∈ A, then choose m
such that (∀n)¬R(a,m, n). Then {2m, 2m + 1} ∈ Pf(e), but {2m} /∈ Pf(e), so
f(e) /∈ Sub.

(ii) For any sets B,C,

C ∈ S(∅, B) ⇐⇒ C ∩B = ∅ ⇐⇒ B ⊂ ω \ C.

Thus e ∈ Sub ⇐⇒ f(e) ∈ Sup, where φf(e)(n) = 1 − φe(n) and similarly
e ∈ Sup ⇐⇒ f(e) ∈ Sub. The result now follows from (i).

(iii) It follows easily from Lemma 5.5.1 that Sep is a Π0
2 set and the com-

pleteness follows from part (i).

Theorem 5.5.4. (i) {e ∈ Sep : Pe 6= ∅} is Π0
2 complete.

(ii) {e ∈ Sep : Pe is nonempty but has no computable members} is Π0
3 com-

plete.

(iii) {e ∈ Sep : Pe has a computable member} is Σ0
3 complete.

Proof. (i) This set is Π0
2 by Theorem 5.5.3 and Theorem 5.2.1. The completeness

follows by the proof of part (i) of Theorem 5.5.3.
(ii) This set is Π0

3 by Theorem 5.5.3 and Theorem 5.3.1. For the complete-
ness, we define a reduction of Rec to Sep. This is done by uniformizing the
proof from Odifreddi [151] of Shoenfield’s theorem that every noncomputable
c. e. Turing degree contains a recursively inseparable pair of c. e. sets. That is,
define computable functions f(e) and g(e) so that

n ∈Wf(e) ⇐⇒ (∃s)(n)1 ∈We,s+1 \We,s & φ(n)2,s(n) ' 0, and
n ∈Wg(e) ⇐⇒ (∃s)(n)1 ∈We,s+1 \We,s & φ(n)2,s(n) ' 1.
Then Wf(e) and Wg(e) are a disjoint pair of c. e. sets with the following two

properties:

(a) Wf(e) and Wg(e) have the same Turing degree as We;

(b) For any separating set D such that Wf(e) ⊂ D and Wg(e) ∩ D = ∅, we
have We computable in D.

It follows from (a) that if We is computable, then the pair Wf(e) and Wg(e)

have the computable separating set Wf(e). It follows from (b) that if We is
not computable, then there is no computable separating set for Wf(e),Wg(e).
Finally, define the computable function h by letting φh(e)(σ) = 1 if and only if

(∀i < |σ|)[(i ∈Wf(e),|σ| → σ(i) = 1) & (i ∈Wg(e),|σ| → σ(i) = 0)]/.

Then we have Ph(e) = S(Wf(e),Wg(e)). It then follows from the discussion above
that

e ∈ Rec ⇐⇒ e ∈ Sep & Ph(e) has a computable member.

(iii) This follows from the proof of (ii), since Ph(e) is always a nonempty class
of separating sets.
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For many applications of Π0
1 classes, one demonstrates the difficulty of find-

ing a solution to a certain type of computable problem by constructing c. e.
sets Wa and Wb and a corresponding separating class Pe = S(Wa,Wb) such
that the set of solutions to the given problem corresponds to the class Pe. Thus
we want to consider for a given property R of classes, such as the property of
being finite, {e ∈ Sep : Pe has property R}. We note that there is a primi-
tive recursive function ψ such that S(Wa,Wb) = Pψ(a,b) for each a and b and
conversely, there is a partial computable function φ such that for all e ∈ Sep,
Pe = S(W(φ(e))0 ,W(φ(e))1).

Theorem 5.5.5.

(i) ({〈a, b〉 : S(Wa,Wb) = ∅}, {〈a, b〉 : S(Wa,Wb) 6= ∅}) is (Σ0
1,Π

0
1) complete.

(ii) For any positive integer c,
({〈a, b〉 : card(S(Wa,Wb)) > c}, {〈a, b〉 : card(S(Wa,Wb) ≤ c}) is (Σ0

2,Π
0
2)

complete, {〈a, b〉 : card(S(Wa,Wb)) = c + 1} is D0
2 complete and {〈a, b〉 :

card(S(Wa,Wb)) = 1} is Π0
2 complete.

(iii) ({〈a, b〉 : S(Wa,Wb) is finite}, {〈a, b〉 : S(Wa,Wb) is infinite}) is (Σ0
3,Π

0
3)

complete.

Proof. In each case, an upper bound on the complexity is given by the reduction
ψ noted above together with previous results, Theorems 5.2.1, 5.2.8, 5.2.13 and
5.3.1. For the rest of the proof, we set Wb = ∅.

(i) Observe that S(We,Wb) is empty if and only if We is empty.
(ii) Observe that card(S(We,Wb)) = 2c if and only if card(N\We) = c. Thus

only powers of 2 need to be considered. Now e ∈ Tot ⇐⇒ N\We = ∅, which is
⇐⇒ Card(S(We,Wb)) = 1 and also ⇐⇒ Card(S(We,Wb)) ≤ 1, which gives
the completeness for cardinality > 1 as well. If we let Wφ(e,c) = {n + c : n ∈
We}, then card(N \We) = c + card(N \We). Thus card(S(We,Wb) ≤ 1 ⇐⇒
card(Wφ(e, c), b) ≤ 2c and similarly for SS(> 2c).

Next we show the D0
2 completeness for cardinality 2c+1. It follows from the

reduction above that, for a given Π0
2 set A, there is a computable function f

such that if a ∈ A, then card(N \Wa) = c and if a /∈ A, then card(N \Wa) > c.
Let B be a Σ0

2 set. We will obtain a reduction g such that if e ∈ B, then
card(N \We) = 0 and if e /∈ B, then card(N \We) = 1. Of course it suffices
to define such a reduction for the Σ0

2 complete set Fin, which we do as follows.
Given an index e, construct the c. e. set Wg(e) in stages Wg(e),s along with a
number xs which is intended to be the unique member of N \We, if any. We
assume as usual that at most one element comes into We at any stage s. The
construction begins with Wg(e),0 = ∅ and x0 = 0. At stage s+ 1, there are two
cases.

(Case 1) If no element comes into We, or if an element x < xs comes into We,
then we let xs+1 = xs and we put s + 1 ∈ Wg(e),s+1. In this case, Wg(e),s+1 =
{0, 1, . . . , s+ 1} \ {xs}.
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(Case 2) If an element x ≥ xs comes into We, then we put xs ∈ Wg(e),s+1

and let xs+1 = s+ 1; in this case Wg(e),s+1 = {0, 1, . . . , s}.
If We is finite, then at some stage, we obtain xs greater than every element

of We, so that Case 1 applies at every later stage t. Thus xt = xs for all t > s
and ω \ Wg(e) = {xs}. If We is infinite, then Case 2 applies infinitely often
and Wg(e) = ω. Finally, we define a reduction of the D0

2 set A ∩ B by letting
Wh(e) = Wf(e) ⊕Wg(e).

(iii) Observe that S(Wa,Wb) is finite if and only if Wa is cofinite and apply
Theorem 5.0.4.

Exercises

5.5.1. Prove Lemma 5.5.2.

5.5.2. Give the details in the proof of Lemma 5.5.1.

5.5.3. Show that that there is a primitive recursive function ψ such that S(Wa,Wb) =
Pψ(a,b) for each a and b and there is a partial computable function φ such
that for all e ∈ Sep, Pe = S(W(φ(e))0 ,W(φ(e))1).

5.5.4. Show that {e ∈ Sep : card(Pe) = c + 1} is D0
2 complete and similarly for

the Sep versions of cardinality 1, finite or infinite from Theorem 5.5.5.

5.6 Measure and Category

In this section, we consider properties such as being perfect, being meager, and
having measure > r or ≥ r for some fixed real r.

Recall that a closed set C is perfect if every element of C is a limit point
of C, that is, if D(C) = C. In particular, ωω, {0, 1, . . . , k}ω (for any k) and ∅
are all perfect; some authors exclude the empty set. We can use the method of
Theorem 5.2.15 to classify index sets of perfect classes.

Theorem 5.6.1. (i) For any computable function g ≥ 2,
{e : Pe is g-bounded and perfect} and {e : Pe is g-bounded, nonempty and perfect}
are Π0

3 complete.

(ii) {e : Pe is c. b. and perfect} and {e : Pe is c. b. , nonempty and perfect}
are D0

3 complete.

(iii) {e : Pe is bounded and perfect} and {e : Pe is bounded, nonempty and perfect}
are Π0

4 complete.

(iv) {e : Pe is perfect} and {e : Pe is nonempty and perfect} are Σ1
1 complete.

Proof. We first observe that if P = [T ] where U is a tree with no dead ends,
then P is perfect if and only if d(T ) = T . Thus Pe is perfect if and only if

(∗)(∀σ)[σ ∈ Ext(Te)→ (∃τ)(∃i, j)(σ ≺ τ & τ_i ∈ Ext(Te) & τ_j ∈ Ext(Te))].
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We also observe that there is a Π0
2 relation B ⊂ N × N∗ such that if Te is

finite branching, then σ ∈ Ext(Te) ⇐⇒ B(e, σ). (This is left as an exercise.)

(i) The upper bounds now follow easily from (*) and Theorem 5.2.1.

For the completeness of both index sets, modify the proof of part (i) of
Theorem 5.2.13 by letting Th(e) contain {0n : n ∈ ω} together with all strings
0n1_σ1 . . . σk where n /∈ We,k and each σi is either (010) or (011). It is then
easy to see that Th(e) is perfect if and only if e /∈ Cof .

(ii) It follows from Theorem 5.1.6 and the uniform proof of part (i) that
{e : Pe is c. b. and not perfect} is Σ0

3. The upper bounds on the complexity
now follow from (*).

For the completeness of each set, let A = B ∩ C be a D0
3 set where B is Σ0

3

and C is Π0
3. It follows from the proof of part (iii) of Theorem 5.2.3 that there

is a computable function g′ such that Pg′(e) is always a singleton and is c. b. if
and only if e ∈ B.

It follows from our proof of part (i) above that there is a comptable function
h′ such that Ph′(e) is always c. b. and e ∈ C if and only if Ph′(e) is nonempty
perfect. For each e, let

Pφ(e) = Pg′(e) ⊗ Ph′(e).

Then the desired reduction is given by

e ∈ A ⇐⇒ Pφ(e) is c. b. and perfect.

and this also works for nonempty perfect.

(iii) The upper bound on the complexity follows from (*) and Theorem 5.2.4
as above.

For the completeness results, let A be an arbitrary Π0
4 set and let R be a

computable relation such that for all a,

a ∈ A ⇐⇒ (∀m)(∃n)(∀j)(∃k)R(a,m, n, j, k).

We assume as usual that R(a,m, n, j, k)→ R(a,m, n+ 1, j, k). The desired
reduction of A is defined as follows. First, for each m, n, and a, let Tf(m,n,a)

consist of all strings (k0 + 1, k1 + 1, . . . , kt + 1), where for each j ≤ t, kj is the
least k such that R(a,m, n, j, k). Then let Tf(a) contain all strings of the form
0n together with all strings of the form 0n0 ∗σ_0 0∗σ_1 0∗ · · · ∗σr, where for each
m ≤ r, σm ∈ Uf(m,nm,a) and nm+1 = |σm|. Each Tf(m,n,a) is finite-branching,
so that Tf(a) is always finite-branching. 0ω ∈ Uf(a), so that Pf(a) is always
nonempty. Elements of Pf(a), other than 0ω, have one of two forms:

(a) 0n0 ∗ σ_0 0 ∗ σ_1 0 ∗ . . . σ_t 0 ∗ x, where for each m ≤ t, σm ∈ Tf(m,nm,a)

and nm+1 = |σm| and x ∈ Pf(m+1,nm+1,a).

(b) 0n0∗σ_0 0∗σ_1 0∗. . . , where for eachm, σm ∈ Tf(m,nm,a) and nm+1 = |σm|.
Suppose that a ∈ A. Then for infinitely many n, there exists xn ∈ Pf(0,n,a)

and we have 0n ∗ xn ∈ Pf(a). Thus 0ω is not isolated. Similarly any string
σ = 0n0 ∗σ_0 0∗σ_1 0∗ · · · ∗σr ∈ Ext(Uf(a)), will have infinitely many extensions
0n0 ∗ σ_0 0 ∗ σ_1 0 ∗ · · · ∗ σ_r 0 ∗ xn in Pf(a).
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On the other hand, suppose that a /∈ A and let M be the least m such that
¬(∃n)(∀j)(∃k)R(a,m, n, j, k). Then there will be an isolated path 0n0 ∗ σ_0 0 ∗
σ_1 0 ∗ · · · ∗ σ_M−20 ∗ x in Pf(a), where x ∈ Pf(M−1,|σM−2|,a).

Thus we have

a ∈ A ⇐⇒ Pf(a) is bounded, nonempty perfect.

The same reduction applies for bounded, perfect.
(iv) First define the Π1

1 relation Isol(x, e) which says that x is isolated in Pe
by

Isol(x, e) ⇐⇒ x ∈ Pe & (∃n)(∀y)[(xdn = ydn & x 6= y)→ y /∈ Pe].

Next recall from Theorem 4.2.2 that every isolated point in Pe must be hy-
perarithmetic. Thus {e : Pe is perfect is seen to be Σ1

1 by the Spector-Gandy
Theorem 1.14.5, since

Pe is perfect ⇐⇒ (∀HY Px)¬Isol(x, e).

It follows from Theorem 5.2.6 that {e : Pe is nonempty perfect} is also Σ1
1.

For the completeness in the nonempty perfect case, let f be the reduction
given in Theorem 5.2.6 so that, for an arbitrary Σ1

1 set A, Pf(a) is nonempty if
and only if a ∈ A, and let Tg(a) = Tf(a) ⊗ {0, 1}<ω. Then Pg(a) is nonempty
perfect if a ∈ A and is empty otherwise. For the other case, let g be as above
and let

Th(a) = {0n_(σ(0) + 1, . . . , σ(k − 1) + 1) : n ∈ ω & σ ∈ Tg(a)}.

Thus

Ph(a) = {0ω} ∪ {0n_(x(0) + 1, x(1) + 1, . . .) : n ∈ N & x ∈ Pg(a)}.

For a ∈ A, Ph(a) is clearly a perfect set, and for a /∈ A, Ph(a) = {0ω}.

Next we consider the notions of category. We begin with a few definitions.
A set K ⊂ NN is said to be dense in another set M if M ⊂ Cl(K). For a closed
set K, K is dense in M if and only if M ⊂ K. K is said to be nowhere dense
in ωω if there is no string σ such that K is dense in the interval I(σ). Similarly,
K ⊂ {0, 1}ω is nowhere dense if there is no σ ∈ {0, 1}<ω such that K is dense in
I(σ)∩{0, 1}ω. Thus a closed set K is nowhere dense if and only if it includes no
interval. Note that a nonempty open set can never be nowhere dense. A set is
said to be meager or first category if it is the countable union of nowhere dense
sets. A meager set includes no interval, by the Baire Category Theorem, and
thus a closed meager set is itself nowhere dense. Thus a closed set K is meager
if and only if it includes no interval. A set is said to be non-meager or second
category if it is not meager. Thus a closed set K is second category if and only
if it includes an interval. Note that a nonempty open set always contains an
interval and thus is always non-meager. Finally, a set is said to be comeager if
it is the complement of a meager set. It follows that a closed set K is comeager
if and only if K = ωω (or {0, 1}ω).
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Theorem 5.6.2.

(i) For all σ ∈ ω<ω, {e : I(σ) ⊂ Pe} is Π0
1 complete and for all σ ∈ {0, 1}<ω,

{e : I(σ) ∩ {0, 1}ω ⊂ Pe ∩ {0, 1}ω} is Π0
1 complete.

(ii) {e : Pe is meager} and {e : Pe is meager in {0, 1}N} are both Π0
2 complete.

Proof. (i) is left as an exercise.
(ii) The upper bound on the complexity follows from the fact that Pe is

non-meager if and only if I(σ) ⊂ Pe for some σ.
For the completeness, let A be a Σ0

2 set and let R be a computable relation
so that

a ∈ A ⇐⇒ (∃m)(∀n)R(m,n, a).

Then a reduction of A to {e : Pe is meager} given by
Tf(a) = {0m : m ∈ ω} ∪ {(0m)_1_τ : τ ∈ {0, 1}<ω & (∀n < |τ |)R(m,n, a)}.

It follows that, for example, {e : Pe 6= NN} is Σ0
1 complete and {e :

Pe is non-meager} is Σ0
2 complete. Also note that

{e : Pe is co-meager} = {e : NN = Pe} and is Π0
1 complete.

Next we consider the complexity of index sets associated with measure.
Recall that the measure on {0, 1}N is defined by setting µ(I(σ) = 2−|σ| and
the measure on NN is defined (with λ(NN) = 1) by setting the measure of
{x : x(m) = n} to be 2−n−1, so that I(σ) has measure 2−(m0+m1+···+mk−1+k).
Recall from section II.1.8 that a real number r is said to be Π0

1 (respectively,
Σ0

1, etc.) if {q ∈ Q : q < r} is a Π0
1 (resp. Σ0

1, etc.) set. We note that the
ordered ring Q of rationals is a computable structure and can be coded into N
for computability purposes.

Lemma 5.6.3.

(a) For any Π0
1 class P , µ(P ) is a Π0

1 real number.

Proof. Let T be a computable tree such that P = [T ], let τ0, τ1, . . . be a com-
putable enumeration of N∗ − T . For each n ∈ N, let Kn = NN −

⋃
i≤n I(τi).

The result now follows from the fact that µ(P ) is the decreasing limit of the
computable sequence 〈µ(Km)〉m∈ω of dyadic rationals.

It is an exercise to show that µ(P ) need not be computable.

Theorem 5.6.4. (i) For any Σ0
1 real r ∈ (0, 1], ({e : µ(Pe) < r}, {e : µ(Pe) ≥

r}) is (Σ0
1,Π

0
1) complete if r is not computable, then {e : µ(Pe) ≤ r) is Σ0

1

complete.

(ii) For any Π0
1 real r < 1, ({e : µ(Pe) > r}, {e : µ(Pe) ≤ r}) is (Σ0

2,Π
0
2)

complete and {e : µ(Pe) = r) is Π0
2 complete. If r is Π0

1 complete, then
({e : µ(Pe) < r}, {e : µ(Pe) ≥ r}) (Σ0

2,Π
0
2) complete.
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(iii) For any Σ0
1 real r ∈ (0, 1], ({e : µ(Pe∩{0, 1}N) < r}, {e : µ(Pe∩{0, 1}N) ≥

r}) is (Σ0
1,Π

0
1) complete if r is not computable, then {e : µ(Pe∩{0, 1}N) ≤

r) is Σ0
1 complete.

(iv) For any Π0
1 real r < 1, ({e : µ(Pe∩{0, 1}N) > r}, {e : µ(Pe∩{0, 1}N) ≤ r})

is (Σ0
2,Π

0
2) complete and {e : µ(Pe ∩ {0, 1}N) = r) is Π0

2 complete. If r is
Π0

1 complete, then ({e : µ(Pe ∩ {0, 1}N) < r}, {e : µ(Pe ∩ {0, 1}N) ≥ r}) is
(Σ0

2,Π
0
2) complete.

Proof. (i) Let σ0, σ1, . . . enumerate N∗ and let

Pe,n = NN −
⋃
{I(σi) : i < n & σi /∈ Te}.

Then the function µ(Pe,n) is computable and we have for any rational q:

µ(Pe) ≥ q ⇐⇒ (∀n)µ(Pe,n) ≥ q.

If r is Σ0
1 and not rational, then

µ(Pe) ≥ r ⇐⇒ µ(Pe) > r ⇐⇒ (∀q ∈ Q)[q < r → µ(Pe,n) ≥ q.

For the completeness, let A be a Π0
1 set and R a computable relation such that

a ∈ A ⇐⇒ (∀n)R(n, a).

The necessary reduction f of A is defined so that Pf(a)) = {0, 1}N when a ∈ A
and Pf(a) = ∅ if a /∈ A. Just let The reduction f is defined by Tf(a) = {σ :
(∀n < |σ|)R(n, a)}.

(ii) Let r be a Π0
1 real. Then we have

µ(Pe) ≤ r ⇐⇒ (∀q ∈ Q)(q ≤ µ(Pe)→ q ≤ r)

and similarly

µ(Pe) ≥ r ⇐⇒ (∀q ∈ Q)(q ≤ r → q ≤ µ(Pe)).

It follows that {e : µ(Pe) ≤ r}, {e : µ(Pe) ≥ r}, and {e : µ(Pe) = r} are all Π0
2

sets. Next we show the completeness of the latter two sets. Let B be a Π0
1 set

so that r =
∑
i∈B 2−i−1 and let PB = {0ω} ∪

⋃
i∈B I(0i1), so that µ(PB) = r.

Since r 6= 1, we may assume that B is co-infinite. Let A be a Π0
2 set and R a

computable relation so that

a ∈ A ⇐⇒ (∀m)(∃n)R(m,n, a).

Here we assume as usual that if a /∈ A, then (∃n)R(m,n, a) for only finitely
many m. Now define the reduction g by

Pg(a) = {0ω} ∪
⋃
{I(0m1) : i ∈ B or (∀n)¬R(m,n, a)}.



5.7. DERIVATIVES 175

If a ∈ A, then clearly Pg(a) = PB so that µ(Pg(a)) = r. If a /∈ A, then Pg(a)

includes PB together with cofinitely many intervals I((m)), so that µ(Pg(a)) > r.
For the completeness of measure ≥ r when r is Π0

1 complete, let B be a Π0
1

set such that µ(PB) = r. Let A be a Π0
2 set and, by the completeness, let f be

a computable functions such that, for any a,

a ∈ A ⇐⇒ (∀m)f(a,m) /∈ B.

Define the uniformly Π0
1 set Ca = B \ {f(a,m) : m ∈ N}, so that for any a, we

have a ∈ A ⇐⇒ C(a) = B and otherwise, Ca is a proper subset of B. Then
define

Pg(a) = {0ω} ∪
⋃
{I((0n1)) : n ∈ C(a)}.

If a ∈ A, then Pg(a) = PB , so that µ(Pg(a)) = r and if a /∈ A, then Pg(a) is a
subset of PB − I(0n1) for some n ∈ B and thus µ(Pg(a)) < r.

Parts (iii) and (iv) follow immediately.

Exercises

5.6.1. Define a Π0
2 relation B ⊂ N× N∗ such that if Te is finite branching, then

σ ∈ Ext(Te) ⇐⇒ B(e, σ).

5.6.2. For any computable function g ≥ 2, show that {e : Pe is g-a.b. and perfect}
and {e : Pe is g-a.b., nonempty and perfect} are Π0

3 complete.

5.6.3. {e : Pe is a.c.b. and perfect} and {e : Pe is a.c.b., nonempty and perfect}
are D0

3 complete.

5.6.4. {e : Pe is a.b. and perfect} and {e : Pe is a.b., nonempty and perfect} are
D0

4 complete.

5.6.5. Prove part (i) of Theorem 5.6.2.

5.6.6. Define a Π0
1 class P such that µ(P ) is a Π0

1 complete real.

5.7 Derivatives

In this section we consider the uniform (arithmetic) complexity of Dα(Pe) and
the complexity of various cardinality properties of Dα(Pe). These problems were
first studied in the context of Polish spaces by Kuratowski, see [109], where the
Cantor-Bendixson derivative is viewed as a mapping from the space of compact
subsets of {0, 1}ω to itself. Kuratowski showed that the derivative is a Borel
map of class exactly two. In particular, he showed that the family D−1({∅}) of
finite closed sets is a universal Σ0

2 class and posed the problem of determining
the exact Borel class of the iterated operator Dα. Cenzer and Mauldin showed
in [26, 27] and that the iterated operator Dn is of Borel class exactly 2n for
finite n and that for any limit ordinal λ and any finite n, Dλ+n is of Borel class
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exactly λ + 2n + 1. In particular it is shown that for any α, the family Tα of
closed sets K such that Dα(K) = ∅ is a universal Σ0

2α set. Lempp [115] gives
an effective version of this result.

We first observe that the basic results on the cardinality of Π0
1 classes can

be relativized. For any fixed set X, let PXe enumerate the binary classes which
are Π0

1 in X. That is, let PXe = [TXe ], where

TXe = {σ : (∀τ � σ)(〈e, τ〉 /∈WX
e }.

Theorem 5.7.1. For any set X,

1. ({e : PXe is empty}, {e : PXe is nonempty}) is (Σ0
1
X
,Π0

1
X

) complete,

2. {e : card(PXe ) = 1} is Π0
2
X

complete.

3. For any positive integer c, ({e : card(PXe ) > c}, {e : card(PXe ) ≤ c}) is

(Σ0
2
X
,Π0

2
X

) complete and {e : card(PXe ) = c+ 1} is D0
2
X

complete.

4. ({e : PXe is finite}, {e : PXe is infinite}) is (Σ0
3
X
,Π0

3
X

) complete.

Proof. This follows from the proofs of Theorems 5.2.1, 5.2.8 and 5.2.13.

The strong Π0
n classes were defined in Section III.2.3. Here we need a uniform

definition of the strong Π0
β classes for any computable ordinal β. Let

Te,α = {σ : (∀τ � σ)(〈e, τ〉 /∈ Oα}.

and let
Pe,α = [Te,α].

Then a closed set P is said to be Π0
α if it equals Pe,α for some index e. It follows

that P is Π0
α+1 if and only if P is Π0

1 in Oα. Furthermore, for any ordinal β, P
is a strong Π0

β class if and only if TP is a Π0
β set. (See the exercises.)

The following result from [35] is now immediate for successor ordinals.

Theorem 5.7.2. For any computable ordinal α,

1. ({e : Pe,α+1 is empty}, {e : Pe,α+1 is nonempty}) is (Σ0
α+1,Π

0
α+1) com-

plete,

2. {e : card(Pe,α+1) = 1} is Π0
α+2 complete.

3. For any positive integer c, ({e : card(Pe,α+1) > c}, {e : card(Pe,α+1) ≤ c})
is (Σ0

α+2,Π
0
α+2 complete and {e : card(Pe,α+1) = c+1} is D0

α+2 complete.

4. ({e : Pe,α+1is finite}, {e : Pe,α+1is infinite}) is (Σ0
α+3,Π

0
α+3) complete.

We need a uniform version of Lemma V.4.4.1.

Lemma 5.7.3. [[35]] For any computable limit ordinal λ and any finite n > 0,

(a) {〈e, σ〉 : σ ∈ dn(Te ∩ {0, 1}∗)} is Σ0
2n;
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(b) {〈e, σ〉 : σ ∈ dλ(Te ∩ {0, 1}∗)} is Π0
λ+1;

(c) {〈e, σ〉 : σ ∈ dλ+n(Te ∩ {0, 1}∗)} is Σ0
λ+2n.

By the uniform proof of Theorem V.4.4.8, we have the following.

Theorem 5.7.4. There is a primitive recursive function φ such that, for any
computable ordinal α, if Q is the Π0

2α+1 class with index e, then Pφ(e) is the
index of a Π0

1 class P of sets such that there is a homeomorphism H from Q
onto Dα(P ) with x ≤T H(x) ≤ x⊕ 02α−1 for all x ∈ Q.

Theorem 5.7.5. For any recursive ordinal α,

1. ({e : Dα(Pe) is empty}, {e : Dα(Pe) is nonempty}) is (Σ0
2α+1,Π

0
2α+1)

complete.

2. {e : card(Dα(Pe)) = 1)} is Π0
2α+2 complete.

3. For any positive integer c, ({e : card(Dα(Pe)) ≤ c), {e : card(Dα(Pe)) >
c}) is (Σ0

2α+2,Π
0
2α+2) complete and {e : card(Dα(Pe)) = c + 1) is D0

2α+2

complete.

4. ({e : Dα(Pe) is finite}, {e : Dα(Pe) is infinite}) is (Σ0
2α+3,Π

0
2α+3) com-

plete.

Proof. The upper bound on the complexity follows from Lemma 5.7.3 and The-
orem 5.7.2. That is, for example, fix α = λ + n, where λ is a limit and n > 0.
Then Dα(Pe) = [dλ+n(Te)] and it follows from Lemma 5.7.3 that this equals
Pf(e),λ+2n+1] for some computable function f . Since λ + 2n + 1 = 2α + 1, the
complexity follows from Theorem 5.7.2.

The completeness follows from Theorems 5.7.2 and 5.7.5. That is, for exam-
ple, Pe,λ+1 is finite if and only if Dλ(Pf(e)) is finite, and {e : Pe,λ+1 is finite} is

Σ0
λ+3 complete, therefore {e : Dλ(Pf(e)) is finite} is also Σ0

λ+3 complete.

Lempp used different methods in [115] to prove parts (i) and (iv). He gave
weaker versions of parts (ii) and (iii), showing that

(Σ0
2α+1,Π

0
2α+1) ≤ (I

(α)
P (empty), I

(α)
P (= 1)).

We now consider the complexity of the perfect kernel K(Pe). It follows from
Theorem 5.2.15 that {e : K(Pe) = ∅} is Π1

1 complete. It follows from Theorem
5.7.5 that, for every computable ordinal α, there exists e such that Dα(Pe) is
nonempty but Dα+1(Pe) = ∅. This gives us the following.

Theorem 5.7.6. There is a Π0
1 class P ⊆ {0, 1}N such that

(i) rk(P ) = ωC−K1 .

(ii) TK(P ) is Σ1
1 complete, that is, {σ : K(P ) ∩ I(σ) 6= ∅} is Σ1

1 complete.
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Proof. Let

P =
⋃
e

{0e1x : x ∈ Pe}.

Then

K(Pe) = {0ω ∪
⋃
e

{0e1x : x ∈ K(Pe)}

and, for each α,

Dα(P ) = {0ω ∪
⋃
e

{0e1x : x ∈ Dα(Pe)}.

We know that rk(P ) ≤ ωC−K1 by Theorem V.4.1.4 and it now follows from
Theorem 5.7.5 that rk(P ) = ωC−K1 . It also follows from TheoremV.4.1.4 that
K(P ) is a Σ1

1 class, so that TK(P ) is a Σ1
1 set. For the completeness, observe

that K(Pe) 6= ∅ if and only if Pe is uncountable and that {e : Pe is uncountable}
is Σ1

1 complete by Theorem 5.2.15. Then we have

K(Pe) 6= ∅ ⇐⇒ K(P ) ∩ I(0e1) 6= ∅,

which shows that K(P ) is Σ1
1 complete.

Exercises

5.7.1. Give a careful proof of Lemma 5.7.3.

5.7.2. Show that, for any ordinal β, P is a strong Π0
β class if and only if TP is a

Π0
β set.

5.8 Index Sets for Logical Theories

In this section we define index sets for (propositional) logical theories and con-
sider the complexity of properties associated with the consistency and complete-
ness of such theories.

Let Sent denote the set of sentences {γ0, γ1, . . . } of the propositional lan-
guage with variables {A0, A1, . . . }, enumerated first by length and then lexico-
graphically. The e’th axiomatizable theory Γe ⊆ Sent may be defined as the
set of consequences of {γi : i ∈We}. The following lemma is left as an exercise.

Lemma 5.8.1. {i : γi ∈ Γe} is a c. e. set and in fact there is a computable
function f such that {i : γi ∈ Γe} = Wf(e).

As in section III.2.9, a Π0
1 class P ⊆ {0, 1}N represents a class G of subsets

of Sent if, for any x ∈ TN , x ∈ P if and only if {Ai : x(i) = 1} ∈ G.
The next result now follows easily from the uniformity of the proof of The-

orem 2.9.1.
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Lemma 5.8.2. There is a primitive recursive function f such that, for all e,
Pf(e) represents the set of complete consistent extensions of Γe. Furthermore,
if Γe is a decidable theory, then Pf(e) is a decidable Π0

1 class, that is, {σ :
Pf(e) ∩ I(σ) 6= ∅} is a computable set.

Note here that when Γe is decidable, we do not necessarily have Tf(e) to be
a tree without dead ends; there simply exists a tree T without dead ends such
that Pf(e) = [T ].

On the other hand, Theorem 2.9.3 may be uniformized as follows.

Lemma 5.8.3. There is a primitive recursive function g such that, for all e,
Pe represents the set of complete consistent extensions of Γg(e). Furthermore, if
Pe is a decidable Π0

1 class, then Γg(e) is a decidable theory.

Note again that when Pe is decidable (which is true whenever Te has no dead
ends), then Γg(e) is a decidable theory but it not necessarily true that Wg(e) is
a computable set.

We can now apply the index set result sets of this chapter to obtain some
complexity results for axiomatizable theories.

Theorem 5.8.4. 1. {e : Γe is consistent} is Π0
1 complete.

2. {e : Γe is consistent and complete} is Π0
2 complete.

3. {e : Γe is essentially undecidable} is Π0
3 complete.

Proof. (1) Using the function f from Lemma 5.8.2, Γe is consistent if and only
if Pf(e) is nonempty, and this is a Π0

1 condition by Theorem 5.2.1. For the
completeness, Pe is nonempty if and only if Γg(e) is consistent, where g is the
function from Lemma 5.8.3. The completeness now follows from Theorem 5.2.1.

(2) Γe is consistent and complete if and only if it has a unique complete
consistent extension, that is, if and only if card(Pf(e)) = 1, which is a Π0

2

condition by Theorem 5.2.8. The completeness follows from Theorem 5.2.8
since card(Pe) = 1 if and only if Γg(e) is consistent and complete.

(3) Γe is essentially undecidable if and only if it has no computable complete
consistent extension, that is, if and only if Pf(e) has no computable element,
which is a Π0

3 complete condition by Theorem 5.3.1. The completeness follows
from Theorem 5.3.1 since Pe has no computable element if and only if Γg(e) is
essentially undecidable.

We can also classify the index sets of theories with a given number of com-
plete consistent extensions (and similarly for computable complete consistent
extensions). The next theorem follows from Theorems 5.2.8, 5.2.13 and 5.2.15
as above. Let us abbreviate “computable consistent extensions” by CCEs.

Theorem 5.8.5. Let c > 0 be finite.

1. ({e : Γe has > c CCEs}, {e : Γe has ≤ c CCEs} is (Σ0
2,Π

0
2) complete.

2. {e : Γe has exactly c CCEs} is D0
2 complete.
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3. ({e : Γe has finitely many CCEs}, {e : Γe has infinitely many CCEs} is
(Σ0

3,Π
0
3) complete.

4. {e : Γe has exactly ℵ0 CCEs} is Π1
1 complete.

5. ({e : Γe has uncountably many CCEs}, {e : Γe has countably many CCEs}
is (Σ1

1,Π
1
1) complete.

For a given number of computable complete consistent extensions, we apply
Theorems 5.3.5 and 5.3.9.

Theorem 5.8.6. Let c > 0 be finite.

1. ({e : Γe has > c computable CCEs}, {e : Γe has ≤ c computable CCEs} is
(Σ0

3,Π
0
3) complete.

2. {e : Γe has exactly c computable CCEs} is D0
3 complete.

3. ({e : Γe has < ℵ0 computable CCEs}, {e : Γe has ≥ ℵ0 computable CCEs})
is (Σ0

4,Π
0
4) complete.

Finally, we consider thin Martin–Pour-El (MPE) theories.

Theorem 5.8.7. {e : Γe is MPE} is a Π0
4 complete set.

Proof. Let f be the function from Lemma 5.8.2 so that Pf(e) represents the set
of complete consistent extensions of Γe. Then Γe is MPE if and only if Pf(e)

is thin, and this is a Π0
4 condition by Theorem 5.4.6. For the completeness,

let g be the function from Lemma 5.8.3 such that Pe represents the class of
complete consistent extensions of Γg(e). Then Pe is thin if and only if Γe is
Martin–Pour-El and the Π0

4 completeness now follows from Theorem 5.4.6.

.
Exercises

5.8.1. Prove Lemma 5.8.1

5.8.2. Prove Lemma 5.8.3.

5.8.3. Prove Lemma 5.8.2.

5.8.4. Let f be the function from Lemma 5.8.1. Show that {e : Wf(e) = We} is
Π0

2 complete. That is, the property of being a logical theory is Π0
2 complete

for sets of sentences.



Chapter 6

Reverse Mathematics

There is a close connection between Π0
1 classes and certain subsystems of second

order arithmetic which are used in the so-called Reverse Mathematics developed
by Friedman and Simpson (see [176]). In particular, the system WKL0 (Weak
Konig’s Lemma) corresponds roughly to the statement that every infinite tree
in {0, 1}∗ has an infinite. The system ACA0 arithmetic comprehension) corre-
sponds to the statement that every infinite, finitely branching tree has an infinite
path. Thus the representation theorems from Part B may be used to show that
certain standard infinite combinatorial theorems are logically equivalent, over
the base theory RCA0, to either WKL0 or to ACA0.

For example, consider the completeness theorem for (countable) proposi-
tional logic. Given a consistent theory Γ, the set of complete consistent exten-
sions of Γ can be viewed as the infinite paths through a certain infinite binary
tree and thus Weak Konig’s Lemma can be used to prove that a complete con-
sistent extension exists. On the other hand, given an arbitrary infinite tree
T ⊂ {0, 1}∗, we showed that there exists a consistent theory Γ such that T
represents the class of complete consistent extensions of Γ. The completeness
theorem tells us that a complete consistent extension exists and therefore T pos-
sesses an infinite path. This gives an (informal) proof of Weak Konig’s Lemma
from the completeness theorem and demonstrates that the two are logically
equivalent.

We also present in this chapter the reverse mathematics of propositional
logic. Later, in Part B, we will we will consider the proof-theoretic strenth of
theorems from various areas of algebra, analysis and combinatorics. This will
includee the Cantor-Schroder-Bernstein Theorem and related theorems about
symmetric marriages in a highly computable society which are equivalent, var-
iously, to Weak Konig’s Lemma or to Arithmetic Comprehension. We also
examine several results on infinite partially ordered sets, including Dilworth’s
theorem that any poset of width n can be covered by n chains.

181
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6.1 Subsystems of Second Order Arithmetic

In this section, we discuss the language of second order arithmetic, models of
second order arithmetic and the basic axiom system for second order arithmetic
as well as certain subsystems closely related to Π0

1 classes. These are RCA0,
WKL0 and ACA0. For details, see Simpson’s [176].

A second order structure includes both objects and sets of objects. Thus a
model of second order arithmetic includes a model of first order arithmetic, with
a set of objects intended as natural numbers together with the usual operations
of addition and subtraction, as well as a collection of sets of numbers and the
membership relation (n ∈ X) between the objects and the sets.

The language L2 of second order arithmetic thus includes the usual language
of first order arithmetic, with constant symbols 0 and 1, intended to denote the
corresponding natural numbers, with binary function symbols + and ·, intended
to denote the addition and multiplication functions on the natural, and with a
relation symbol < intended to denote the ordering of the natural numbers, as
well as the usual equality symbol = from predicate logic.

There is also a relation symbol ∈ which denotes the membership relation.
There are two sorts of variables intended to range over numbers and over
sets. Number variables i, j, k,m, n, . . . are intended to range over the set N =
{0, 1, . . . } of natural numbers and set variables X,Y, Z, . . . are intended to range
over subsets of N.

Terms are defined as in first order arithmetic to compose the smallest set
of strings containing the two constant symbols and all number variables and
closed under t = t1 + t2 and t = t1 · t2. Atomic formulas are t1 = t2, t1 < t2
and t1 ∈ X, where t1 and t2 are terms and X is a set variable. Formulas
compose the smallest set containing all atomic formulas and closed under the
propositional connectives, number quantifiers (∀n) and ∃n) and also under set
quantifiers (∀X) and (∃X).

A model for the language L2 has the form

M = 〈M,SM ,+M , ·M , 0M , 1M , <M 〉,

where M is the universe of M, SM is a set of subsets of M , +M and ·M are
binary operations on M , 0M and 1M are distinguished elements of M and <M
is a binary relation on M .

The intended model for L2 is 〈N,P(N),+, ·, 0, 1, <〉.
An ω-model M is a model of L2 with universe N and with the standard

operations + and ·, constants 0 and 1, and binary relation <, but with SM
merely a subset of P(N). In this case, we simply identify M with the family
S = SM . In addition to the intended model, we will be interested in the
following.

(1) REC is the ω-model with S the set of recursive sets of natural numbers.

(2) ARITH is the ω-model with S the set of arithmetical sets of natural num-
bers.
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These definitions can be relativized to RECB and ARITHB for any fixed
B ⊂ N.

The axioms of second order arithmetic include the eight axioms of Robinson
Arithmetic (see Section IV.3.4).

For the induction axiom, we can now discuss sets rather than formulas, so
we have

IS (∀X)[(0 ∈ X ∧ (∀n)(n ∈ X → n+ 1 ∈ X))→ (∀n)n ∈ X]

To ensure that some sets exist, we have a Comprehension Axiom for each
formula φ(n) of L2:

C (∃X)(∀n)[n ∈ X ⇐⇒ φ(n)].

Here we allow number and set parameters in the formula φ. These last
two axioms imply the induction scheme IP of Peano Arithmetic and in fact a
stronger, full second order induction scheme where the formula φ in IP may be
any formula of L2. Note also that any ω-model also satisfies full second order
induction.

These axioms compose the formal system Z2 of second order arithmetic.
By a subsystem of second order arithmetic, we mean a theory included in Z2,
generally obtained by weakening the axioms of induction and comprehension.

6.1.1 Recursive Comprehension

The fundamental system RCA0 consists of the basic axioms of Robinson Arith-
metic together with Σ0

1 induction and ∆0
1 comprehension. Some definitions are

required to define the hierarchy of formulas.
If t is a numerical term not containing n and φ is any formula of L2, then

the bounded quantifiers ∀n < t) and (∃n < t) are defined by

(∀n < t)φ ≡ (∀n)(n < t→ φ) and

(∃n < t)φ ≡ (∃n)(n < t & φ)

A formula φ of L2 is said to be a bounded quantifier (or Σ0
0) formula if all of

its quantifiers are bounded. φ is said to be Σ0
1 if it is of the form (∃m)ψ where ψ

is a bounded quantifier formula and φ is said to be Π0
1 if it is of the form (∀m)θ

where θ is a bounded quantifier formula. More generally, φ is Σ0
k if it is of the

form (∃n1)(∀n2) . . . nkθ where θ is a bounded quantifier formula, and simlarly
for the Π0

k formulas.

Definition 6.1.1. A Σ0
k (respectively Π0

k) induction scheme has the form

[φ(0) & (∀n)(φ(n)→ φ(n+ 1))] =⇒ (∀n)φ(n),

where φ is any Σ0
k (resp. Π0

k) formula of L2. Here φ may have other number
and set variables.
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Definition 6.1.2. 1. A Σ0
k (respectively Π0

k) comprehension scheme has the
form

(∃X)(∀n)(n ∈ X ⇐⇒ φ(n)),

where φ is any Σ0
k (resp. Π0

k) formula of L2.

2. A bounded Σ0
k comprehension scheme has the form (∀n)(∃X)(∀i)(i ∈

X ⇐⇒ (i < n & φ(n)).

3. A ∆0
k comprehension scheme has the form

(∀n)(φ(n) ⇐⇒ ψ(n)) =⇒ (∃X)(∀n)(n ∈ X ⇐⇒ φ(n)),

where φ is a Σ0
k formula and ψ is a Π0

k formula.
As above, φ and ψ may have other number and set variables.

The ω-models of RCA0 may be characterized as follows.
S is an ω-model of RCA0 if and only if

S 6= ∅;

A ∈ S and B ∈ S imply A⊕B ∈ S;

A ∈ S and B ≤T A imply B ∈ S.

It follows that RCA0 has a minimum ω-model,

REC = {A ∈ P(N) : A is recursive}

Simpson [176] outlines the development of ordinary mathematics within
RCA0. In particular the coding function 〈n1, . . . nk〉 are definable in RCA0 and
Gödel numbering of propositional and also first-order logic may be done there.
Functions may be defined by primitive recursion and also by minimization.

Here are some other important results from [176].

Lemma 6.1.3. The following are provable in RCA0.

1. For any infinite set X ⊆ N, there exists a strictly increasing function
π : N→ N such that X is the range of π.

2. Let φ(n) be a Σ0
1 formula in which X and f do not occur freely. Then

either there exists a finite set X such that (∀n)(n ∈ X ⇐⇒ φ(n)), or
there exists a one-to-one function f : N → N such that (∀n)(φ(n) ⇐⇒
(∃m)(f(m) = n)).

Proof. (1) Let π(0) be the least n ∈ X and for each k, let π(k + 1) be the least
k > π(n) such that k ∈ X.

(2) Suppose no finite set X exists as stated. Let θ be Σ0
0 such that φ(n) ⇐⇒

(∃j)θ(j, n) and let Y = {〈j, n〉 : θ(j, n) & (∀i < j)¬θ(i, n)}. Then Y is infinite,
so by part (1), there is a function π which enumerates Y in increasing order.
Let f(m) = π2(π(m)), where π2 is the projection of 〈x, y〉 onto y.
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Theorem 6.1.4. RCA0 proves bounded Σ0
1 comprehension.

Corollary 6.1.5. RCA0 proves Π0
1 induction.

Here is the basic results for trees.

Theorem 6.1.6. The following is provable in RCA0. If T ⊆ {0, 1}∗ is a tree
with no dead ends, then T has an infinite path.

Proof. The leftmost path through T may be defined by primitive recursion.

On the other hand, König’s Lemma is not provable in RCA0, since REC
will contain a computable tree with no computable infinite path and therefore
no path in REC.

6.1.2 Weak König’s Lemma

In this section we consider the stronger system WKL0 and its relation to Π0
1

classes.

Definition 6.1.7. 1. Weak König’s Lemma is the statement that every in-
finite subtree of {0, 1}∗ has an infinite path.

2. WKL0 is the subsystem of Z2 consisting of RCA0 plus Weak König’s
Lemma.

It is clear that REC is not a model of WKL0 so that WKL0 is a proper
extension of RCA0. The formal system WKL0 was first introduced by Friedman
[65]. ω-models of WKL0 are sometimes known as Scott systems in the literature,
referring to [171]. The development of ordinary mathematics inWKL0 is carried
out in great detail by Simpson in [176].

The following equivalent forms of Weak König’s Lemma are frequently used
in the applications.

Theorem 6.1.8. The following are equivalent are equivalent over RCA0

1. WKL0, i.e. every infinite tree T ⊂ {0, 1}<N has an infinite path.

2. (Σ0
1 separation) Let φi(n), i = 0, 1 be Σ0

1 formulas in which X is does not
occur freely. If ¬∃n(φ0(n) ∧ φ1(n)), then

∃X∀n((φ0(n)→ n ∈ X) ∧ (φ1(n)→ n /∈ X)).

3. If f, g : N→ N are one-to-one with (∀m,n)f(m) 6= g(n), then there exists
a set X such that, for all m, f(m) ∈ X ∧ g(m) /∈ X.

Proof. It is clear that (2) implies (1).
(1) =⇒ (2). Assume (1) and let T ⊂ NN and g be given as stated

and define T ∗ ⊂ {0, 1}∗ as follows. For any τ ∈ T with |τ | = n, let τ∗ =
0τ(0)10τ(1) . . . 0τ(n−1. Then define T by ∆0

1 Comprehension so that σ ∈ T ∗ if
and only if σ � τ∗ for some τ ∈ T with |τ | ≤ g(0) + g(1) + . . . g(|σ|).
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Then T ∗ is an infinite subtree of {0, 1}∗ and therefore possesses an infinite
path f∗. Now define an infinite path f ∈ [T ] by primitive recursion so that
f(0) = the least k < g(0) such that f∗(k) = 0 and for each n, f(n + 1) is the
least k < g(n+ 1) such that f∗(k + g(n)) = 1.

Theorem 6.1.9. The following are equivalent are equivalent over RCA0

1. WKL0, i.e. every infinite tree T ⊂ {0, 1}<N has an infinite path.

2. (Bounded Konig’s Lemma) If T ⊂ NN is an infinite tree and there is a
function g such that for all τ ∈ T and all m < |τ |, τ(m) < g(m), then T
has an infinite path.

Proof. (1) =⇒ (2). Assume (1) and let φ0, φ1 be given as stated and let θ0, θ1

be bounded quantifier formulas so that φi(n) ⇐⇒ (∃m)θi(m,n). Now define
T ⊆ {0, 1}∗ by ∆0

1 Comprehension so that

σ ∈ T ⇐⇒ (∀i < 2)(∀m,n < |σ|)[θi(m,n) =⇒ σ(n) 6= i].

T is an infinite tree and therefore has an infinite path X by Weak König’s
Lemma, which will satisfy the conclusion of (3).

(2) =⇒ (1). Let T ⊆ {0, 1}∗ be an infinite tree. Define the Σ0
1 formulas φi

so that

φi(σ) ⇐⇒ (∃n)(∃τ ∈ {0, 1}n)[σ_(i)_τ ∈ T & (∀σ ∈ {0, 1}n)¬(σ_(1−i)_σ ∈ T )].

Then φ0, φi satsify the hypothesis of (3), so there exists a set X such that for
all σ, φ0(σ)→ σ ∈ X and φ1(σ)→ σ /∈ X. We can now define an infinite path
through T as follows. Let σ0 = ∅ and for each k, let σk+1 = σk

_0 if σk ∈ X
and otherwise σk+1 = σk

_1. Then f = ∪kσk belongs to [T ].

(2) =⇒ (3). Assume (2) and let f and g be given as stated. Let φ0(n) ⇐⇒
(∃m)f(m) = n and φ1(n) ⇐⇒ (∃m)g(m) = n. The hypothesis of (2) is
satisfied by assumption and therefore there exists X as in the conclusion of (3),
which will also satisfy the conclusion of (3).

(3) =⇒ (2). Assume (3) and let φi be given as stated. Apply Lemma
6.1.3 to obtain two cases. First there may exist finite sets Xi = {n : φi(n)}.
If this holds for i = 0, let X = X0 and if this holds for i = 1, let X =
N −X1. If neither set exists, then there are one-to-one functions fi such that
φi(n) ⇐⇒ (∃m)(fi(m) = n). It follows from the hypothesis of (3) that
(∀m,n)f(m) 6= g(n). Hence by the conclusion of (2), we obtain a set X such
that, for allm, f(m) ∈ X and g(m) /∈ X. This setX then satisfies the conclusion
of (3).

Scott [171] characterized the countable ω-models of WKL0 as those M ⊆
P(N) such that there exists a complete extension Γ of Peano Arithmetic such
that M is the family of subsets of N which are representable in Γ.
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6.1.3 Arithmetic Comprehension

In this section we consider the system ACA0 and its relation to Π0
1 classes. A

formula is said to be arithmetical if it is Σ0
k for some k.

Definition 6.1.10. 1. Arithmetical Comprehension The arithmetical com-
prehension scheme is (∃X)[n ∈ X ⇐⇒ φ(n)] where φ is an arithmetical
formula of L2 in which X does not occur freely.

2. ACA0 is the subsystem of Z2 whose axioms are arithmetical comprehen-
sion, full induction and the basic axioms of Robinson arithemtic.

The ω-models of ACA0 may be characterized as follows.

S is an ω-model of ACA0 if and only if

S 6= ∅;

A ∈ S and B ∈ S imply A⊕B ∈ S;

A ∈ S and B ≤T A imply B ∈ S.

A ∈ S implies A′ ∈ S.

It follows that ARITH is the minimum ω-model for ACA0.

Theorem 6.1.11. The following are equivalent over RCA0.

1. ACA0.

2. Σ0
1 comprehension.

3. If f : N→ N is an injection, then the range of f is a set.

Proof. The implications (1) Implies (2) and (2) =⇒ (3) are trivial. The
implication (2) =⇒ (3) follows easily from Lemma 6.1.3. For the impli-
cation (1) =⇒ (2) we prove by induction that Σ0

k comprehension implies
Σ0
k+1 comprehension. Let φ(n) ⇐⇒ (∃j)ψ(n, j) where ψ is Π0

k. By Σ0
k

comprehension, let Y = {(n, j) : ¬ψ(n, j)}. Then by Σ0
1 comprehension let

X = {n : (∃j)(n, j) /∈ Y }.

Theorem 6.1.12. The following are equivalent over RCA0.

1. ACA0.

2. (König’s Lemma) If T is an infinite, finitely branching tree, then there is
an infinite path through T .

3. König’s Lemma restricted to trees T such that each σ ∈ T has at most two
immediate successors in T .
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Proof. (1) =⇒ (2). Let T be an infinite, finite-branching tree. By arithmetic
comprehension, there is a subtree T ∗ of T consisting of all σ ∈ T such that σ
has infinitely many extensions in T . Since T is finite branching, every σ ∈ T ∗
has at least one immediate successor in T ∗. Clearly ∅ ∈ T ∗ and for each n, we
may define g(k) to be the least n such that (g(0), . . . , g(k − 1), n) ∈ T ∗. Then
g ∈ [T ] as desired.

(2) =⇒ (3) is immediate, so it remains to prove (3) =⇒ (1). Let f : N→ N
be one-to-one. Use Σ0

0 comprehension to define the tree T by τ ∈ T if and only
if

(∀m,n < |τ |)[f(m) = n ⇐⇒ τ(n) = m+ 1]

and
(∀n < |t|)[τ(n) > 0 =⇒ f(τ(n)− 1) = n].

Each σ ∈ T has at most two possible immediate successors, σ_0 and σ_(m+1)
where f(m) = |σ|. T is infinite by the following argument. Fix k and define
Y by bounded Σ0

1 comprehension to be {n < k : (∃m)f(m) = n}. Now let
σ(n) = 0 if n /∈ Y and σ(n) = m + 1 if n ∈ Y ∧ f(m) = n for n < k. Then
|σ| = k and σ ∈ T . Hence by (3), there exists g ∈ [T ]. By ∆0

1 comprehension
let X = {n : g(n) > 0}. Then X is the range of f as desired.

6.2 Mathematical Logic

In this section, we consider the connection between logical theories, infinite trees
and subsystems of second order arithmetic.

A weak form of the completeness theorem can be proved even for first-order
logic. Here is the propositional version.

Theorem 6.2.1. [[176]] The following is provable in RCA0. If Gamma is a
consistent propositional theory, then there exists a countable model M for X
such that M ` φ for all φ ∈ Γ.

Proof. Recall from Theorem III.2.9.3 that, for each finite sequence σ = (σ(0), . . . , σ(n−
1)), we defined Pσ = C0∧C1∧· · ·∧Cn−1, where Ci = Ai if σ(i) = 1 and Ci = ¬Ai
if σ(i) = 0. Given the theory Γ, define the tree T without dead ends by

σ ∈ T ⇐⇒ ¬Pσ /∈ Γ}.

Since Γ is a theory, σ ∈ T if and only if Pσ is consistent with Γ. T has no dead
ends since Γ is consistent. That is, if |σ| = n and Pσ is consistent with Γ, then
either Pσ ∧ Ai is consistent with Γ or Pσ ∧ ¬Ai is consistent with Γ. It follows
from Theorem 6.1.6 that T has an infinite path X and the model M is defined
by letting M ` Ai if X(i) = 1 and M ` ¬Ai if X(i) = 0.

Using Weak König’s Lemma, we can prove the completeness theorem and
the reverse is also true. (See [176].) We note first that the representation
theorem III.2.9.1 for propositional logic can be proved in RCA0, that is, for



6.2. MATHEMATICAL LOGIC 189

any countable set Γ of sentences, there exists a tree T ⊆ {0, 1}∗ such that [T ]
represents the set of complete consistent extensions of Γ. Likewise the reverse
representation theorem III.2.9.3 can be proved in RCA0. That is, given the tree
T , define the set Γ(T ) to consist of all Pσ → An such that σ ∈ T and σ_0 /∈ T
and all Pσ → ¬An such that σ ∈ T and σ_1 /∈ T , where |σ| = n. Then there is
a one-to-one correspondce between the complete consistent extensions of Γ(T )
and the infinite paths through T .

Theorem 6.2.2. The following are equivalent are equivalent over RCA0

1. WKL0, i.e. every infinite tree T ⊂ {0, 1}<N has an infinite path.

2. Lindenbaum’s Lemma: every countable consistent set of sentences has a
complete consistent extension.

3. The completeness theorem for propositional logic with countably many
variables.

4. The compactness theorem for propositional logic with countable many vari-
ables.

Proof. (1) =⇒ (2) follows from the representation theorem as discussed above.
That is, given a consistent set Γ, we can build in RCA0 an infinite tree repre-
senting the set of complete consistent extensions of Γ and then use Weak König’s
Lemma to find an infinite path X through T and hence a complete consistent
extension of Γ.

(2) =⇒ (3). For propositional logic, this is immediate. Just let ∆ be a
complete consistent extension of Γ and let M(Ai) = 1 if and only if Ai ∈ ∆.

(3) =⇒ (4). Suppose that every finite subset of Γ is satisfiable. Then Γ is
consistent and hence has a model M by (3) and is therefore satisfiable.

(4) =⇒ (1). Assume (4) and let T ⊆ {0, 1}∗ be an infinite tree. Let Γ(T )
be constructed as above. Then Γ(T ) is finitely satisfiable and hence has a model
(and therefore a complete consistent extension) by (4). But this implies that T
has an infinite path.

Exercises

6.2.1. Show that a set of natural numbers is c. e. if and only if it is definable
by a Σ0

1 formula over the standard model of arithmetic and therefore is
computable if and only if it is ∆0

1 definable.

6.2.2. Show that S ⊆ P(N) is a model of RCA0 if and only if

(i) S 6= ∅;
A ∈ S and B ∈ S imply A⊕B ∈ S;

A ∈ S and B ≤T A imply B ∈ S.
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Chapter 7

Complexity Theory

In this chapter, we examine the notions of computable trees and effectively
closed sets in a resource-bounded setting. We consider the complexity of the
members of effectively closed sets as in Chapter 3 from this point of view. We
show that for any Π0

1 class P ⊂ NN, there is a polynomial time tree T such
that P = [T ]. Resource-bounded variations on the notions of boundedness for
trees and classes are defined, such as locally p-time, highly p-time, and p-time
bounded are defined and basis and antibasis results given. For example, every
locally p-time tree possesses an infinite path which is computable in double
exponential time and also, there is a p-time bounded Π0

1 class with a unique
element which is not p-time computable.

We also look at the representation problem and show that for essentially
all of the problems from Part 2, polynomial time presented problems suffice
to represent all Π0

1 classes. This is based on the result that any computable
relational structure is computably isomorphic to a polynomial time structure.

Let Σ be a (usually finite) alphabet. Then Σ∗ denotes the set of finite strings
of letters from Σ and Σω denotes the set of infinite sequences. In particular, each
natural number n may be represented in unary form by the string tal(n) = 1n

if n > 0 and tal(n) = 0 if n = 0 and in (reverse) binary form by the string
bin(n) = i0 · · · ik, where n = i0 + i1 · 2 + · · ·+ ik · 2k.

We let Tal(ω) = {tal(n) : n ∈ ω} and Bin(ω) = {bin(n) : n ∈ ω}. Both
sets are included in {0, 1}∗. The tally and binary representation of the natural
numbers will be essential for our study of feasible structures, problems and
solutions. The main reason is due to the fact the feasibility of an algorithm is
usually measured in terms of the computation time as a function of the length of
the input to the algorithm. Note that since the tally representation of a number
is of exponential length in comparison to the binary representation, it follows
that a function which is polynomial time computable in the tally representation
of the natural numbers is not necessarily polynomial time computable in the
binary representation of the natural numbers. Indeed, we can only conclude
that such a function is exponential time computable in the binary representation.

191



192 CHAPTER 7. COMPLEXITY THEORY

Thus it is essential that a definite representation be given for a feasible structure.
A related reason is that two feasible sets need not be feasibly isomorphic. In
particular, Tal(ω) and Bin(ω) are not p-time isomorphic. Thus we may have a
p-time structure, say a graph, with universe Tal(ω), which is not isomorphic to
a p-time structure with universe Bin(ω).

Our basic computation model is the standard multitape Turing machine of
Hopcroft and Ullman [82]; see also Papadimitriou [154]. Note that there are dif-
ferent heads on each tape and that the heads are allowed to move independently.
This implies that a string σ can be copied in linear time. An oracle machine is
a multitape Turing machine M with a distinguished work tape, a query tape,
and three distinguished states QUERY, YES, and NO. At some step of a com-
putation on an input string σ, M may transfer into the state QUERY. In state
QUERY, M transfers into the state YES if the string currently appearing on the
query tape is in an oracle set A. Otherwise, M transfers into the state NO. In
either case, the query tape is instantly erased. The set of strings accepted by M
relative to the oracle set A is L(M,A) = {σ| there is an accepting computation
of M on input σ when the oracle set is A}. If A = ∅, we write L(M) instead of
L(M, ∅).

Let t(n) be a function on natural numbers. A Turing machine M is said
to be t(n) time bounded if each computation of M on inputs of length n where
n ≥ 2 requires at most t(n) steps. A function f(x) on strings is said to be in
DTIME(t) if there is a t(n)-time bounded deterministic Turing machine M
which computes f(x). For a function f of several variables, we let the length
of (x1, . . . , xn) be |x1|+ · · ·+ |xn|. A set of strings or a relation on strings is in
DTIME(t) if its characteristic function is in DTIME(t). A Turing machine
M is said to be t(n) space bounded if each computation of M on inputs of
length n where n ≥ 2 the work space required to carry out the computation is
bounded by t(n) . A function f(x) on strings is said to be in DSPACE(t) if
there is a t(n)-space bounded deterministic Turing machine M which computes
f(x). For a function f of several variables, we let the length of (x1, . . . , xn) be
|x1| + · · · + |xn|. A set of strings or a relation on strings is in DSPACE(t) if
its characteristic function is in DSPACE(t).

We let

LOGTIME =
⋃
c≥1DTIME(c · log2(n)),

LOG =
⋃
c≥1DSPACE(c · log2(n)),

LIN =
⋃
c>0DTIME(cn),

P =
⋃
i∈ωDTIME(ni),

PSPACE =
⋃
i∈ωDSPACE(ni),

DEXT =
⋃
c≥0DTIME(2c·n),
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EXPSPACE =
⋃
c≥0DSPACE(2c·n),

DOUBEXT =
⋃
c≥0DTIME(22c·n),

DOUBEXPSPACE =
⋃
c≥0DSPACE(22c·n),

EXPTIME =
⋃
c≥0DTIME(2n

c

),

DOUBEXPTIME =
⋃
c≥0DTIME(22n

c

), and in general,

DEX(S) =
⋃
t(n)∈S DTIME(2t(n))}.

We say that a function f(x) is polynomial time if f(x) ∈ P , is exponential
time if f(x) ∈ DEXT , and is double exponential time if f(x) ∈ DDOUBEXT .

A function f(x) on strings is said to be in NTIME(t) if there is a t(n)-time
bounded nondeterministic Turing machine M which computes f(x). A set of
strings or a relation on strings is in NTIME(t) if its characteristic function is
in NTIME(t). We let

NLOG =
⋃
c≥1NSPACE(C · log2(n)),

NP =
⋃
i∈ω NTIME(ni),

NEXT =
⋃
c≥0{NTIME(2c·n)},

NEXPTIME =
⋃
c≥0NTIME(2n

c

),

A function f is said to be non-deterministic polynomial time (NP) if there is
a finite alphabet Σ, a polynomial p, a p-time relation R and a p-time function
g such that, for any σ and τ ,

f(σ) = τ ⇐⇒ (∃ρ ∈ Σp(σ))[R(ρ, σ) & g(ρ, σ) = τ ].

Similar definitions apply to other complexity classes.

We fix enumerations {Pi}i∈N and {Ni}i∈N of the polynomial time bounded
deterministic oracle Turing machines and the polynomial time bounded non-
deterministic oracle Turing machines respectively. We may assume that pi(n) =
max(2, n)i is a strict upper bound on the length of any computation by Pi or
Ni with any oracle X on inputs of length n. PXi and NX

i denote the oracle
Turing machine using oracle X.

For A, B ⊂ Σ∗, we shall write A ≤Pm B if there is a polynomial-time function
f such that for all x ∈ Σ∗, x ∈ A iff f(x) ∈ B. We shall write A ≤PT B if A
is polynomial time Turing reducible to B. For r equal to m or T , we write
A ≡Pr B if A ≤Pr B and B ≤Pr A and we write A |Pr B if not A ≤Pr B and not
B ≤Pr A.
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7.1 Complexity of Trees

We think of a computable tree T as a set of finite sequences (n0, . . . , nk−1) of
natural numbers and of an infinite path (n0, n1, . . . ) through T as a function
from the natural numbers into the natural numbers which maps i to ni. We
shall define two natural representations of T which will be useful for the study
of the complexity of trees and paths through trees. First we define the binary
representation of T , bin(T ), as the set of finite strings {(bin(n0), . . . , bin(nk−1)) :
(n0, . . . , nk−1) ∈ T}. We also define the tally representation of T , tal(T ), to be
the set of strings {(tal(n0), . . . , tal(nk−1) : (n0, . . . , nk−1) ∈ T}. The strings
in bin(T ) and tal(T ) are over the finite alphabet {0, 1,′ ,′ ,′ (′,′ )′} which has
symbols for the comma and the left and right parentheses. We say that T
is p-time in binary if bin(T ) is a polynomial time subset of Σ∗. Similarly we
say T is p-time in tally if tal(T ) is p-time subset of Σ∗. Since bin(n) can be
computed in polynomial time from tal(n), it follows that if bin(T ) is p-time,
then tal(T ) is also p-time. Given an infinite path x = (n0, n1, . . . ) through T ,
the binary representation of x is the function bin(x) from Tal(ω) to Bin(ω)
defined by bin(x)(tal(i)) = bin(ni). The tally representation of x, tal(x), is
similarly defined by tal(x)(tal(i)) = tal(ni). Then we say that x is a polynomial
time path in binary if the function bin(x) is the restriction of p-time function
from {0, 1}∗ to {0, 1}∗; we say that x is p-time in tally if tal(x) is the restriction
of a p-time function from {0, 1}∗ to {0, 1}∗. It is clear that if x is p-time in
tally, then x is also p-time in binary, since bin(x)(tal(i)) can be computed from
tal(x)(tal(i)) for each i. The reason for using Tal(ω) for the domain of bin(x) is
the following. For any path x, x is computable if and only if the initial segment
function x is computable, where x(i) = (n0, . . . , ni−1). We want to have a
similar result for p-time paths, and this would be impossible if x had to map
bin(i), which has length roughly log2(i), to a string which must have length at
least i. Similar definitions can be given for other notions of complexity, such as
exponential time, non-deterministic polynomial time (NP), etc.

Recall that a tree T ⊂ ω<ω is highly computable if there is a recursive
function f such that, for any node σ ∈ T , f(σ) is the number of immediate
successors σ_i of σ in T . Now given the number of successors of a node, we
can search through all the possible immediate successors and find the largest
one. Thus we can find a computable function g such that g(σ) is the largest
i such that if σ = (σ0, . . . , σn) ∈ T , then (σ0, . . . , σn, i) is in T . Finally, we
can also compute recursively the sequence h(σ) = (i1, . . . , id) which lists all
i such that (σ0, . . . , σn, i) is in T in increasing order. It is clear that f is
computable if and only if g is computable and if and only if h is computable.
The situation is different for polynomial time complexity. Consider first the
binary representation of T so that we identify a node σ ∈ T with a sequence of
numbers in Bin(ω). It is not hard to see that if h is p-time, then both f and g
are p-time. However, these are the only relations which are guaranteed to hold
between the three functions. To see this, consider the following three examples.

Example 7.1.1. Define the sequence x0, x1, . . . of natural numbers by letting
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x0 = 1 and, for each n, xn+1 = 2xn and let T = {(x0, . . . , xi−1) : i ∈ ω}. Then
the tree T is p-time and f is p-time, since f(σ) = 1 for all σ ∈ T . However,
the function g cannot be p-time since, for if σ = (x0, . . . , xn), then in the binary
representation |σ| ≤ 3|xn| whereas |xn+1| = 2|xn|.

Example 7.1.2. Define the tree T1 computably by putting ∅ ∈ T1 and, for any
σ = (x0, . . . , xn−1) ∈ T1, putting σ_i ∈ T1 if and only if i ≤ 1+x0 + · · ·+xn−1.
T1 is clearly p- time and the function g is also p-time since g((x0, . . . , xn−1)) =
1+x0+· · ·+xn−1. However, the function h which lists the immediate successors
of any node is not p-time because, for any n, if σ = (1, 2, 4, . . . , 2n), then h(σ) =
(0, 1, . . . , 2n+1), so that in the binary representation |h(σ)| > 2n+1, whereas
|σ| = (n+ 2)(n+ 3)/2.

Example 7.1.3. For this example, we will appeal to the intractability of the
well-known P = NP conjecture. That is, we will define a p-time tree T2 for
which the function g is p-time and such that if the associated function f were p-
time, then the P = NP conjecture would be true. The tree T2 will be defined so
that σ = (n0, n1, . . . , n2k+1) ∈ T2 if and only if, for each i ≤ k, bin(n2i) codes a
graph on i vertices and bin(n2i+1) either codes a Hamiltonian path on the graph
coded by bin(n2i) or is a string of 1’s of the appropriate length. Now a graph
Gi on i vertices v1, . . . , vi is determined by a set of unordered pairs (vr, vs) of
vertices (the edges of the graph). There are

(
i
2

)
= i(i − 1)/2 possible edges in

Gi and these may be lexicographically ordered so that a sequence e1, e2, . . . , e(i2)

codes the graph Gi where, for all t ≤
(
i
2

)
, et = 1 if Gi has the t’th edge and

et = 0 otherwise. Of course the (reverse) binary representation bin(ni) must
end with a 1, so the graph Gi will actually be coded by the string (e0, . . . , e(i2)

, 1).

Observe that this code for Gi will always be a string of length 1 +
(
i
2

)
and that

any binary number bin(n) of length 1 +
(
i
2

)
will code a graph on i vertices. Now

a Hamiltonian path on Gi is a permutation (vr0 , vr1 , . . . , vri) of the vertices such
that there is an edge joining vrt with vrt+1 for all t < i. Such a path will be coded
by the binary sequence 0r010r11 . . . 0ri1, which will always be a binary number
of length

(
i+1
2

)
and binary number bin(n) of length

(
i+1
2

)
will code a possible

Hamiltonian path on a graph of i vertices if and only if bin(n) has exactly i 1’s.
It is easy to see that there is a p-time algorithm which will decide, given two
binary numbers bin(n) and bin(m), whether bin(n) has length

(
i
2

)
+ 1 for some

i < |bin(n)| and therefore codes a graph G on i vertices and whether bin(m) codes
a Hamiltonian path on that graph. The tree T2 can now be defined by putting
σ = (bin(n0), . . . , bin(n2k+1) ∈ T2 if and only if, for each i < k, bin(n2i) codes a
graph Gi on i vertices and bin(n2i+1) either codes a Hamiltonian path on Gi or
equals tal(

(
i+1
2

)
). It follows from the discussion above that T2 is a p-time tree.

Now the function g for this tree is p-time since, for any σ = (σ0, . . . , σt) ∈ T2,

we have g(σ) = 2(i+1
2 ) − 1 if t = 2i and g(σ) = 21+(i2) − 1 if t = 2i − 1.

(In each case, g(σ) is just a string of 1s of the right length.) On the other
hand, the function f associated with the tree T2 has the property that for any
σ = (σ0, . . . , σ2i) ∈ T2, f(σ) = 1 if and only if the graph Gi coded by σ2i has
no Hamiltonian path. Now suppose that f were p-time and let bin(n) be a code
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for a finite graph on k vertices. For all i < k, let n2i = 2(i+1
2 ) − 1 and let

n2i+1 = 21+(i+1
2 ) − 1. Finally, let σ = (bin(n0), . . . , bin(n2k−1), bin(n)). Then

the sequence σ can be computed from bin(n0) in polynomial time and G has a
Hamiltonian path if and only if f(σ) > 1. It follows that if f were p-time, then
the Hamiltonian path problem would be p-time. But it is well-known that the
Hamiltonian path problem is NP-complete. (See Garey and Johnson [6] for an
explanation of NP-completeness and the P = NP problem.) Thus we have
demonstrated that if the function f associated with the tree T2 were p-time, then
P = NP would true.

Now the situation is slightly different for tally representation of T where
we identify a σ ∈ T with a sequence of numbers in Tal(ω). Once again it is
easy to see that if h is p-time, then f and g are p-time. Moreover, example (1)
above will still show that f may be p-time without g being p-time. However
in this case, if T is p-time in tally and g is p-time, then h is also p-time. To
see this, suppose σ = (σ0, . . . , σn). Note that to find h(σ), we need only check
whether (σ0, . . . , σn, i) ∈ T for i ≤ g(σ). Now in the tally representation,
|(σ0, . . . , σn, 0)| < |(σ0, . . . , σn, 1)| < . . . < |(σ0, . . . , σn, g(σ))|. Then if it takes
q(|σ|) steps to check whether σ ∈ tal(T ) for each σ = (tal(σ0), . . . , tal(σn)),
than it will take approximately

|(σ0,...,σn,g(σ))|∑
i=0

q(i) ≤ q(|(σ0, . . . , σn, g(σ))|)2

steps to check whether (σ0, . . . , σn, i) ∈ T for i ≤ g(σ). Thus it is easy to see
that we can find h(σ) in polynomial time in the tally representation of σ.

We say that a tree T is locally p-time in binary (respectively in tally) if all
three of the functions defined above are p-time in binary (resp. tally). In the
case that T is not itself p-time, then we will say that T is locally p-time if each
of the functions is the restriction to T of a function which is p-time (in binary
or tally).

Next we will show that if T is locally p-time, then T is also p-time. The
same argument works for both binary and tally. Let Q be either bin(T ) or
tal(T ) and suppose that the function h associated with Q is p-time. Given a
sequence σ = (σ0, . . . , σk), here is the procedure for testing whether σ ∈ tal(T ).
Begin by computing h(∅) = (tau1, . . . , taud) and checking whether σ0 = τi for
some i ≤ d. Then, for j < k in turn, compute h(σ0, . . . , σj) and check to see
that σj+1 is in this list. Suppose that h(τ) may be calculated in time p(|τ |),
where p is some polynomial, then since each (σ0, . . . , σj) is a substring of σ, we
see that we can do each of the h computations in time no greater than p(|σ|).
To read the resulting list of possible successors of (σ0, . . . , σj) and compare each
one with σj+1 can then be done in time at most (c − 1)p(|σ|) for some fixed
constant c. Thus each step of the procedure takes time at most cp(|σ|). Now
there are k such steps and k ≤ |σ|, so that the entire procedure takes time at
most c|σ|p(|σ|), which is again a polynomial function of |σ|.
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The functions f , g and h describe the behavior of the tree at a particular
node. Now sometimes we need to have a global bound as well. Note that for
a computably bounded tree, there is a computable function p such that, for all
natural numbers k and all σ = (n0, . . . , nk) ∈ T , nk ≤ p(k). We will say that
a tree T is p-time bounded in binary if there is a p-time function p such that,
for all natural numbers k and all σ = (n0, . . . , nk) ∈ T , |bin(nk)| ≤ p(1k). A
tree T is p-time bounded in tally if there is a p-time function p such that for
any σ = (n0, . . . , nk) ∈ T , we always have nk = |tal(nk)| ≤ p(1k). Since we can
compute bin(n) from tal(n) in polynomial time, it follows that any tree which
is p-time bounded in tally is also p-time bounded in binary. Note that any tree
T ⊂ {0, 1}<ω is p-time bounded, so that a tree may be p-time bounded without
being p-time. One additional observation is worth making at this point. If T is
p-time bounded in tally, then there will also be a p-time function q such that,
for any τ = (n0, . . . , nk) ∈ T , |tal(τ)| ≤ q(1k). To see this, note that τ consists
of the strings tal(ni) for i ≤ k, separated by commas and with parentheses at
the beginning and end. Thus

|τ | = 2 + k + |n0|+ · · ·+ |nk| ≤ 2 + k + p(10) + · · ·+ p(1k).

Thus we can define a p-time bound q(1k) = 2 + k+ p(10) + · · ·+ p(1k), which is
clearly p-time computable. The same observation holds for p-time bounded in
binary.

Now suppose that T is p-time bounded in tally and that Tal(T ) is p-time.
This implies that there are at most p(1k) possible choices for tal(nk), that is, the
strings 1e for e < p(1k). To compute h(σ), where σ = (tal(n0), . . . , tal(nk−1)),
we simply use the p-time algorithm for membership in tal(T ) to test whether
σ ∗ tal(i) ∈ tal(T ) for all i ≤ p(1k) and compile the list (tal(i1), . . . , tal(id)) =
h(σ) of all tal(i) such that σ ∗ tal(i) ∈ T . This shows that the function h is
p-time in tally. It then follows by the discussion above that g and f are also
p-time in tally. Hence in the tally representation, any p-time bounded, p-time
tree is also locally p-time.

Let us say that a tree T is highly p-time in binary if T is p-time, locally
p-time and also p-time bounded in binary. Similarly, T is highly p-time in tally
if T is p-time, locally p-time and also p-time bounded in tally. Then we have
shown that in tally, p-time plus p-time bounded implies highly p-time. On the
other hand, we have also seen that these notions are distinct for the binary
representation.

Similar definitions can be given for other notions of complexity. Our next
theorem shows that any Π0

1-class can be realized as the set of infinite paths
through a p-time tree.

Theorem 7.1.4. Let T be a computable tree. Then there is a polynomial time
tree P such that [T ] = [P ]. Furthermore, if T is computably bounded, then P
is also computably bounded and if T is p-time bounded, then P is also p-time
bounded.

Proof. The same argument works for the binary and for the tally representation.
We will give the binary argument for the first part and the tally argument for
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the second part, since these are the stronger results. Let φ be a computable
function from ω<ω into {0, 1} such that σ ∈ bin(T ) ⇐⇒ φ(σ) = 1. Let φs

denote the partial computable function which results by computing φ for exactly
s steps on any input and let T s be the s’th approximation to T , given by

σ ∈ T s ⇐⇒ φs(bin(σ)) = 1 or is undefined .

Thus T 0 ⊃ T 1 ⊃ · · · and, for any σ, σ ∈ T ⇐⇒ (∀s)(σ ∈ T s).
Now define the p-time tree P by letting

σ ∈ P ⇐⇒ (∀τ ≺ σ)τ ∈ T |bin(σ)|.

Note that P is a p-time tree in binary since to compute whether τ ∈ T |bin(σ)|

requires |bin(σ)| steps for all τ so that to compute whether σ ∈ P requires
roughly
|bin(σ)|(|bin(σ)|+ 1) steps.

It follows from the definition of P that T ⊂ P , so that [T ] ⊂ [P ]. Now
suppose that x /∈ [T ]. Then there is some initial segment τ = x � n which is not
in T. This means that, for some s, τ /∈ T s. Since the sequence T s is decreasing,
we may assume that s > n. Now let σ = x � s, so that |bin(σ)| ≥ s. It follows
from the definition of P that σ /∈ P . This implies that x /∈ [P ]. Thus [T ] = [P ].

Now suppose that T is computably bounded in tally and let p be the com-
putable function which computes, for each k, an upper bound p(1k) (in tally)
for the possible value of nk for any node σ = (n0, . . . , nk) ∈ T .

Suppose first that p is actually p-time. Then we can recursively define a tree
Q such that T ⊂ Q ⊂ P by putting σ = (n0, . . . , nk) ∈ Q if and only if σ ∈ P
and, for all i ≤ k, ni ≤ p(1i). It is clear that [Q] = [T ] and that Q is p-time
since P and p are p-time.

Finally, suppose only that p is recursive and let ps be the usual result of
computing p for s steps. Once again we can define a highly recursive tree Q
such that T ⊂ Q ⊂ P by putting σ = (n0, . . . , nk) ∈ Q if and only if σ ∈ P and,
for all i ≤ k, either pk(1i) is undefined or ni ≤ pk(1i). Then again it is easy to
check that Q is p-time in binary and that [Q] = [T ].

Next we would like to consider conditions which might force the tree T
to have a p-time (exponential time, etc.) path. Recall that a Π0

1 class P is
decidable if P = [T ] for a computable tree with no dead ends (or with Ext(T )
computable) and that a decidable Π0

1 class always has a computable member.
Recall also that any Π0

1 singleton is necessarily computable. Next we show that
the obvious p-time analogues of these results fail for p-time decidable trees.

Theorem 7.1.5. For any computable x ∈ {0, 1}ω, there is a tree T which is
polynomial time in binary and in tally and such that [T ] = {x}.

Proof. This follows from Theorem 7.1.4, since for x ∈ {0, 1}ω, the tree T =
{(x(0), . . . , x(n− 1) : n < ω} is computable
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Theorem 7.1.5 shows that even if a polynomial time bounded p-time tree
has a unique infinite path Π, Π may not be polynomial time. However there
are some natural conditions which we can put on T which will ensure that in
such situations we can at least get double exponential time paths or winning
strategies and in some cases actually guarantee the existence of polynomial time
paths or winning strategies.

Theorem 7.1.6. (a) Let Ext(T ) be a locally p-time tree in tally (respectively
binary) and let [T ] be nonempty. Then [T ] contains an infinite path which
is double exponential time computable in tally (resp. binary). Further-
more, if Ext(T ) is locally p-time in tally (resp. binary) and [T] is finite,
then every element of [T ] is computable in double exponential time in tally
(resp. binary).

(b) Let Ext(T ) be a locally p-time tree in tally (respectively binary) and let
[T ] be nonempty. Moreover, assume that there is a linear time function
h such that for all σ = (n0, . . . , nk) ∈ T , h(b(σ)) lists all b(n) such that
(n0, . . . , nk, n) ∈ T where b() = tal() if T is p-time in tally and b() = bin()
if T is p-time in binary. Then [T ] contains an infinite path which is
exponential time computable in tally (resp. binary). Furthermore, if [T ]
is finite, then every element of [T ] is computable in exponential time in
tally (resp. binary)

(c) If Ext(T ) is a highly p-time tree in tally (resp. binary) and [T ] is nonempty,
then [T ] contains an infinite path which is p-time time in tally (resp. bi-
nary). Furthermore, if [T ] is finite, then every element of [T ] is p-time in
tally (resp. binary).

(d) If Ext(T ) is a p-time bounded, p-time tree in binary and [T ] is nonempty,
then [T ] contains an infinite path which is EXPTIME in binary. Fur-
thermore, if [T ] is finite, then every element of [T ] is NP in binary.

Proof. To simplify the discussion, we will assume in all cases that T = Ext(T ),
that is, that T has no dead ends. Thus the conditions set out for Ext(T ) will
become the conditions for T .

(a) We give the proof for the binary representation of T . The proof for the
tally representation is exactly the same except for replacing bin(...) with tal(...)
at appropriate locations throughout. Let h be the p-time function such that for
all σ = (n0, . . . , nk) ∈ T , h(bin(σ)) lists all bin(n) such that (n0, . . . , nk, n) ∈ T .
Then we can recursively define the p-time path x through T by letting x(k) be
the number n such that bin(n) is the first entry of h(bin(x � k)). It remains to
be checked that the computation of bin(x(n)) from 1n can be done in double
exponential time. Let c be a number such that h(τ) can be computed from τ
in time bounded by |τ |c−1 for all τ ∈ Bin(Ext(T )) with |τ | ≥ 2. For each k, let
τk = (bin(x(0), . . . , bin(x(k − 1)). Then τ0 = ∅ and, for each k > 0, τk+1 can
be computed from τk in time bounded by |τk|c. (Just start the computation
of h(τk), stop it as soon as you have the first element ρ = bin(x(k)) in the list
and then append ρ to the end of τk). Thus in particular |τk+1| ≤ |τk|c for all
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k > 0. Now choose c large enough so that |τ1| ≤ 2c. It then follows by induction

that, for all k, |τk| ≤ 2c
k

. It follows that the computation of τk+1 from τk can

be done in time bounded by (2c
k

)c−1 ≤ 2c
k+1

. Thus the entire computation of
τn = (bin(x(0)), . . . , bin(x(n))) from 1n takes time bounded by

Σk<n2c
k+1

< 2c
n+1 < 2(c+1)n ,

which shows that x is computable in double exponential time in binary.
(b) Now suppose that [T ] is finite and let x ∈ [T ]. By resticting T to the

extensions of x � n for sufficiently large n, we may assume that x is the unique
infinite path through T . The result now follows immediately from the first part
above.

(c) The proof is essentially the same as the proof of (a). Again we shall only
give the proof in the case that T is p-time in binary. The point is that if h is
linear time then it follows that for all k ≥ 1, τk+1 can be computed from τk
in time c · |τk| for some fixed constant c. If we pick c so that c ≥ |τ0|, then it
is easy to prove by induction that |τk| ≤ ck+1 for all k ≥ 0. Thus the entire
computation of τn = (bin(x(0)), . . . , bin(x(n))) from 1n takes time bounded by

Σk<nc
k+2 < (n+ 1)cn+1 < c2n+2,

which shows that x is computable in exponential time in binary.
Now if [T ] is finite and x ∈ [T ], then again by resticting T to the extensions

of x � n for sufficiently large n, we may assume that x is the unique infinite path
through T . Then by the above argument if follows that x ∈ DEXT .

(d) The proof will be a minor modification of the proof of (a) above. Again
the proofs are the same for tally and for binary so we will just give a binary
version. Let q be a p-time function such that for any τ = (bin(n0), . . . , bin(nk) ∈
bin(T ), |τ | ≤ q(1k). Since |1k| = k, it follows that for some constant b and all
k > 1, we have |τk| ≤ kb. Let c be a number such that h(τ) can be computed
from τ in time bounded by |τ |c−1 for all τ ∈ Bin(Ext(T )) with |τ | > 1. Then
the computation of τk+1 from τk can be done in time bounded by |τk|c ≤ kbc

for all k > 1. Now let a be large enough so that a > bc and also large enough
so that τ0 and τ1 can both be computed in time bounded by a. Then the entire
computation of τn = (bin(x(0)), . . . , bin(x(n))) from 1n takes time bounded by

a+ 2a + 3a + · · ·+ (n− 1)a ≤ Σk<nak ≤ n2a,

which shows that x is computable in polynomial time in binary.
If we assume further that [T ] is finite, then the same argument as given in (a)

and (b) above shows that every element of [T ] is polynomial time computable.
(d) As in (c), we may assume that if τ = (bin(n0), . . . , nk) ∈ T and k > 1,

then |τ | ≤ kb so that in particular nk ≤ kb. In this case, we are not assuming
that T is locally p-time, so that we need a different algorithm for producing an
infinite path x in [T ]. We will define x(k) recursively by making x(k) be the least
number n such that (x(0), . . . , x(k − 1), n) ∈ T . This means that we may have
to check whether (x(0), . . . , x(k− 1), x) ∈ T for all x with |bin(x)| ≤ kb. This is
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where the binary representation differs from the p-time representation, because

there will now be 2k
b

different strings to check. Each check will require time at
most (kb)c, so that the computation of bin(x(k)) from (bin(x(0)), . . . , bin(x(k−
1)) will require time less than 2k

bc+b

for k > 1. Now let a be large enough so that
a ≥ bc+b and also large enough so that bin(x(0)) and bin(x(1)) can be computed
in time ≤ a. Then the entire computation of τn = (bin(x(0)), . . . , bin(x(n)))
from 1n takes time bounded by

a+ 22a + 23a + · · ·+ 2n−1)a ≤ Σk<na2k ≤ 2n
2a

,

which shows that x ∈ EXPTIME.
If we assume further that [T ] is finite, then the same argument as given in

(a) above shows that every element of [T ] is EXPTIME. However, it is easy
to show that the infinite paths through T are actually NP computable.

As above, we may assume that T has no dead ends and has a unique infinite
path x. Thus for any k, x(0), x(1), . . . , x(k)) is the unique finite path in T with
k + 1 entries. Furthermore, since T is p-time bounded, we know as above that
|(bin(x(0)), . . . , bin(x(k)))| ≤ kb for some fixed b. Thus to compute x(k) non-
deterministically, we simply guess a string σ = (bin(n0), . . . , bin(nk)) of length
≤ kb and then use the p-time algorithm for T to test whether σ ∈ T . When the
answer is yes, we read the value of x(k) from the end of σ. Since there is only
one possible correct guess for σ, this procedure will compute x(k).

Next we shall give two examples to show that the bounds given in parts (a)
and (b) of Theorem 7.1.6 can not be improved. Consider the following.

Example 7.1.7. A locally p-time tree T with a unique infinite path x such that
T = EXT (T ) and x is double exponential time.

Let x(n) = 22n for all n and let the tree T consist of all initial segments of
x. Then (n0, . . . , nk) ∈ T if and only if n0 = 1 and, for all i < k, ni+1 = n2

i .
It is clear that both tal(T ) and bin(T ) are p-time. Furthermore, for any σ =
(n0, . . . , nk) ∈ T , we have h(σ) = n2

k, so that T is locally p-time in both binary
and tally.

Example 7.1.8. A locally p-time tree T with a unique infinite path x such
that T = EXT (T ), there is a linear time function h such that for all σ =
(n0, . . . , nk) ∈ T , h(b(σ)) lists all b(n) such that (n0, . . . , nk, n) ∈ T where
b() = tal() if T is p-time in tally and b() = bin() if T is p-time in binary, and
x is exponential time.

Let x(n) = 2n for all n and let the tree T consist of all initial segments of x.
Then (n0, . . . , nk) ∈ T if and only if n0 = 1 and, for all i < k, ni+1 = 2ni. It
is clear that both tal(T ) and bin(T ) are p-time and that the function h is linear
time in both cases, so that T is locally p-time in both binary and tally.

For Π0
1 classes in {0, 1}N, boundedness conditions are not needed and tally

and binary representations are identical. Here are the basis results for classes
of various complexity. These will be applied later to logical theories and other
mathematical examples.
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Theorem 7.1.9. Let P = [T ] be a Π0
1 class in {0, 1}N, where T has no dead

ends.

(a) If T is computable in time nlog(n)O(1), then P has a member which is
computable in time nlog(n)O(1).

(b) If T is LIN , then P has a member which is computable in time O(n2).

(c) If T is PTIME, then P has a PTIME member.

(d) If T is DEXT , then P has a DEXT member.

(e) If T is EXPTIME, then P has an EXPTIME member.

Proof. Part (c) follows from Theorem 7.1.6. We give the proof of (d) and leave
the others as an exercise 2.

As in the proof of Theorem 7.1.6, we compute the desired path recursively
so that x(k) = 1 if (x(0), . . . , x(k − 1), 0) ∈ T and x(k) = 1 otherwise. By
assumption, there exists c so that this last step in the computation of x(k)
takes time ≤ 2c(k+1) and thus the total computation requires time

≤ 2c + 22c + · · ·+ 2c(k+1) ≤ 2c(k+2) = 22c · 2ck,

plus a little time for bookkeeping.

Theorem 7.1.10. Let P = [T ] be a Π0
1 class in {0, 1}N, where T has no dead

ends.

(a) If T is LINSPACE, then P has a member which is computable in LINSPACE.

(b) If T is PSPACE, then P has a PSPACE member.

(c) If T is EXPSPACE, then P has an EXPSPACE member.

Proof. We just sketch the proof of (a) and leave the others to the reader. To
compute x(k), we need to have stored x(0), . . . , x(k − 1), whoch requires space
k and then test whether x(0), . . . , x(k − 1), 0) ∈ T , which requires additional
space ck, where c is fixed. This additional space may be reused, so that we can
stay in LINSPACE.

xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx
Exercises

7.1.1. Show that there is a highly computable tree T with no dead ends such
that there is not highly p-time tree wihout dead ends such that [T ] = [S].

7.1.2. Show that if T is decidable in time nlog(n)O(1), then T has an infinite
path which is computable in time nlog(n)O(1), if T is decidable in linear
space, then T has a infinite path which is computable in time O(n2) and
if T is EXPTIME, then [T ] has an EXPTIME member.
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7.2 Complexity of Structures

Complexity theoretic or feasible model theory is the study of resource-bounded
structures and isomorphisms and their relation to computable structures and
computable isomorphisms. This subject has been developed during the 1990’s
by Cenzer, Nerode, Remmel and others. See the survey article [34] for an intro-
duction. Complexity theoretic model theory is concerned with infinite models
whose universe, functions, and relations are in some well known complexity
class such as polynomial time, exponential time, polynomial space, etc. By
far, the complexity class that has received the most attention is polynomial
time. One immediate difference between computable model theory and com-
plexity theoretic model theory is that it is not the case that all polynomial time
structures are polynomial time equivalent. For example, there is no polynomial
isomorphism f with a polynomial time inverse f−1 which maps the binary rep-
resentation of the natural numbers Bin(N) = {0} ∪ {1}{0, 1}∗ onto the tally
representation of the natural numbers Tal(N) = {1}∗. This is in contrast with
computable model theory where all infinite computable sets are computably
isomorphic so that one usually only considers computable structures whose uni-
verse is the set of natural numbers N.

There are two basic types of questions which have been studied in polynomial
time model theory. First, there is the basic existence problem, i.e. whether a
given infinite computable structure A is isomorphic or computably isomorphic
to a polynomial time model. That is, when we are given a class of structures C
such as a linear orderings, Abelian groups, etc., the following natural questions
arise.

(1) Is every computable structure in C isomorphic to a polynomial time struc-
ture?

(2) Is every computable structure in C computably isomorphic to a polynomial
time structure?

For example, the authors showed in [30] that every computable relational struc-
ture is computably isomorphic to a polynomial time model and that the standard
model of arithmetic (ω,+,−, ·, <, 2x) with addition, subtraction, multiplication,
order and the 1-place exponential function is isomorphic to a polynomial time
model. The fundamental effective completeness theorem says that any decidable
theory has a decidable model. It follows that any decidable relational theory has
a polynomial time model. These results are examples of answers to questions
(1) and (2) above. However, one can consider more refined existence questions.
For example, we can ask whether a given computable structure A is isomorphic
or computably isomorphic to a polynomial time model with a standard universe
such as the binary representation of the natural numbers, Bin(N), or the tally
representation of the natural numbers, Tal(N). That is, when we are given a
class of structures C, we can ask the following questions.

(3) Is every computable structure in C isomorphic to a polynomial time struc-
ture with universe Bin(N) or Tal(N)?
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(4) Is every computable structure in C computably isomorphic to a polynomial
time structure with universe Bin(N) or Tal(N)?

It is often the case that when one attempts to answer questions of type (3)
and (4) that the contrasts between computable model theory and complexity
theoretic model theory become more apparent. For example, Grigorieff [75]
proved that every computable linear order is isomorphic to a Ptime linear order
which has universe Bin(N). However Grigorieff’s result can not be improved
to the result that every computable linear order is computably isomorphic to a
Ptime linear order over Bin(N). For example, Cenzer and Remmel [30] proved
that for any infinite polynomial time set A ⊆ {0, 1}∗, there exists a computable
copy of the linear order ω + ω∗ which is not computably isomorphic to any
polynomial time linear order which has universe A. Here ω + ω∗ is the order
obtained by taking a copy of ω = {0, 1, 2, . . .} under the usual ordering followed
by a copy of the negative integers under the usual ordering.

The general problem of determining which computable models are isomor-
phic or computably isomorphic to feasible models has been studied by the au-
thors in [30], [31], and [33]. For example, it was shown in [31] that any com-
putable torsion Abelian group G is isomorphic to a polynomial time group A
and that if the orders of the elements of G are bounded, then A may be taken
to have a standard universe, i.e. either Bin(N) or Tal(N). It was also shown in
[31] that there exists a computable torsion Abelian group which is not isomor-
phic, much less computably isomorphic, to any polynomial time (or even any
primitive recursive) group with a standard universe. Feasible linear orderings
were studied by Grigorieff [75], by Cenzer and Remmel [30], and by Remmel
[162, 163]. Feasible vector spaces were studied by Nerode and Remmel in [146]
and [147]. Feasible Boolean algebras were studied by Cenzer and Remmel in
[30] and by Nerode and Remmel in [145]. Feasible permutation structures and
feasible Abelian groups were studied by Cenzer and Remmel in [31] and [33].
By a permutation structure A = (A, f), we mean a set A together with a unary
function f which maps A one-to-one and onto A.

General conditions were given in [34] which allow the construction of models
with a standard universe such as Tal(N) or Bin(N) and these conditions were
applied to graphs and to equivalence structures. For example, it was shown
that any computable graph with all but finitely many vertices of finite degree
is computably isomorphic to a polynomial time graph with standard universe.
On the other hand, a computable graph was constructed with every vertex
having either finite degree or finite co-degree (i.e. joined to all but finitely many
vertices) which is not computably isomorphic to any polynomial time graph with
a standard universe. An equivalence structure A = (A,RA) consists of a set A
together with an equivalence relation. It was also shown that any computable
equivalence structure is computably isomorphic to a polynomial time structure
with a standard universe.

In this section, we want to consider the connection between computable
structures and resource-bounded structures and the corresponding connection
between computable trees and resource-bounded trees as developed in section
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7.1.
A relational structure is simply a structure which has no functions. We

will present an improved version of the theorem (first due to Grigorieff [75])
from [30] that every computable relational structure is computably isomorphic
to a polynomial time structure. This theorem will be our primary tool in the
analysis of computable combinatorial structures. It is important to note that
the polynomial time structure provided will have for its universe a polynomial-
time set possibly different from {1}∗ or {0, 1}∗. An example is constructed in
[30] which shows that the theorem fails if any fixed polynomial time set A is
specified in advance as the universe of the structure. The improved version
of the theorem presented here applies to structures with two distinct types of
objects, the first type being the normal universe of the structure, and with
functions which map the first type into the second type. The type of example
that we have in mind is a function from the vertices of a graph into the natural
numbers which computes the degree of a vertex. The universe of the graph is
now expanded by adding a p-time set which represents the natural numbers
and the degree function now becomes part of the structure. Naturally, the new
objects are not vertices and therefore are not joined to any other objects by
edges.

Theorem 7.2.1. Let

C = (C,A,B, {RCi }i∈S , {fCi }i∈T , ),

be a computable structure such that

(i) A and B are disjoint subsets of C with C = A ∪ B and B is a polynomial
time set.

(ii) there is a computable isomorphism from Bin(ω) onto a subset of Bin(ω)\B
with a p-time inverse.

(iii) for each i ∈ T , fi maps C into B.

(iv) for each i ∈ S, the relation Ri is independent of B, that is, for any
(x1, . . . , xn) ∈ Cn, where n = s(i), any j ≤ n such that xi ∈ B, and
any b ∈ B, RCi (x1, . . . , xn) if and only if RCi (x1, . . . , xj−1, b, xj+1, . . . , xn).

(v) for each i ∈ T , the function fi is independent of B, that is, for any
(x1, . . . , xn) ∈ Cn, where n = t(i), any j ≤ n such that xi ∈ B, and
any b ∈ B, fCi (x1, . . . , xn) = fCi (x1, . . . , xj−1, b, xj+1, . . . , xn).

Then there is a computable isomorphism φ of C onto a p-time structureM such
that φ(b) = b for all b ∈ B.

Proof. The idea of the proof is that we will replace each element x of A by a
string y which codes x and is long enough to allow us to compute whether x ∈ A
in time |y| and also to compute the relations and functions on A in time |y| for
all inputs which are less than or equal to x. These new strings may accidentally
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be in the set B, which must be kept disjoint from AM. This is the reason for the
p-time mapping which takes an arbitrary string to one which is not in B. Let
ψ be a p-time map from Bin(ω) into Bin(ω) \B such that ψ−1 is also p-time.
We can assume that A is an infinite set, since, if A is finite, then C is p-time
itself. Let σ0, σ1, . . . be an effective enumeration of A in the usual order. Let b0
be the shortest element of B. For any x ∈ A, we let ν(x) denote the number of
steps needed to run the following algorithm.

First start to list σ0, σ1, . . . until we find an s such that σs = x. Next
for each i ≤ s such that i ∈ S ∪ T , list all sequences (x1, . . . , xn)
from {b0, σ0, . . . , σs}n for n = s(i) or t(i) and then, for i ∈ S,
compute whether Ri(x1, . . . , xn) holds and, for i ∈ T , compute
fCi (x1, . . . , xn).

Observe that the algorithm is completely uniform in x because our definition
of computable structure ensures that there is a computable relation R such that
R(i, 〈x1, . . . , xt(i)〉) ⇐⇒ Ri(x1, . . . , xt(i)) and a computable function f such
that f(i, 〈x1, . . . , xt(i)〉) = fi(x1, . . . , xt(i)) Note that in order to obtain the list
σ0, . . . , σs, we have to test whether a ∈ A for all a ≤ x. We then define a
structure

M = (M, {RMi }i∈S , {fMi }i∈T )

as follows. For each a ∈ A, let φ(a) = ψ(a_0_1ν(a)) and, for each b ∈ B, we
let φ(b) = b. It is clear that φ is a computable isomorphism from C onto a
subset M of Bin(ω), that φ(B) = B and that φ(A) is disjoint from B. The
structure M is the image of C under the isomorphism φ. This means that
AM = {φ(a) : a ∈ A}, BM = B, and M = AM ∪ BM. For each i ∈ S and
(x1, . . . , xn) ∈ C, RMi is defined by

RMi (φ(x1, . . . , φ(xn)) ⇐⇒ RAi (x1, . . . , xn),

where s(i) = n. For each i ∈ T , fMi is defined by

fMi (φ(x1), . . . , φ(xn)) = φ(fAi (x1, . . . , xn)),

where t(i) = n.
It is clear that the function φ is a computable isomorphism from A ontoM.

It remains to be seen thatM is a polynomial time structure, that is, that M is
a polynomial time set and that each relation RM and function fM is p-time.

We show that M is p-time as follows. It clearly suffices to show that AM is
p-time, since BM = B is p-time. The procedure for testing whether an input
y is in AM is to compute ψ−1(y), check to make sure that it has a 0 in it, and
then determine x and n such that ψ−1(y) = x_0_1n. Then we simply run the
algorithm outlined above to input x for n steps. Then y ∈ AM if and only if
the algorithm terminates in exactly n steps and gives the answer that x ∈ A.

We show that the function fMi is p-time as follows. Fix i and let f = fi,
let n = t(i) and let c be the maximum amount of time required to compute
fC(x1, . . . , xn) when {x1, . . . , xn} ⊆ {b0, σ0, σ1, . . . , σi−1}. Now given input
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(y1, . . . , yn), where each yi ∈ M , the procedure for computing fM(y1, . . . , yn)
is the following. First replace every xi ∈ B with x′i = b0 and let x′i = xi
for xi ∈ A. Then compute fC(x′1, . . . , x

′
n). We claim that this computation

takes time at most c + max{|yj | : 1 ≤ j ≤ n}. There are two cases of this
claim to consider. First, if {x′1, . . . , x′n} is a subset of {b0, σ0, . . . , σi−1}, then,
by the definition of c, the computation takes at most c steps. On the other
hand, if at least one of the x′j = xj = σs for some s ≥ i, then by the definition
of ν, the computation takes less than ν(xj) steps for some j; but of course
ν(xj) < |yj | ≤ max{|yj | : 1 ≤ j ≤ n}.

The argument for the relations is similar. This completes the proof of The-
orem 7.2.1.

For an example, let (N, R, 0, f) be a computable structure where R is a
binary relation defining a tree with root 0 on the set of even numbers and f is
an injection mapping the even numbers onto the odd numbers so that f(0) = 1
and, for each n, R(f−1(2n + 1), f−1(2n + 3)). That is, f defines an infinite
computable path through T . (We assume that R(m,n) implies that both m
and n are even.) Then the theorem provides a polynomial time tree with a
polynomial time infinite path starting from the root.

7.3 Propositional Logic

In this section, we shall consider the complexity of theories in propositional
logic and of the corresponding Π0

1 class of complete consistent extensions of the
theory.

It is first necessary to define the length |φ| of a formula φ. Suppose that the
underlying set of propositional letters in our propositional language is {A0, A1, . . .}.
In the standard or binary representation of a sentence φ, the numeral i in
a propositional letter Ai is written in binary representation bin(i) so that
the length |Ai| in binary is 1 + |bin(i)|. That is, |bin(Ai)| = r + 2 when
2r ≤ i < 2r+1. In the tally representation, the numeral i is written as 1i

so that |tal(Ai)| = i + 1. A complete consistent theory Γ is represented by a
subset of ω, S(Γ) = {i : Ai ∈ ∆}, or, equivalently, by the characteristic function
in {0, 1}ω of S(Γ). The set of all complete consistent extensions of a consis-
tent set ∆ of sentences is denoted as CC(∆). We shall let a finite sequence
σ ∈ {0, 1}n represent the sentence B(σ) = B0 ∧ B1 ∧ . . . Bn, where Bi = Ai if
σ(i) = 1 and Bi = ¬Ai if σ(i) = 0.

We note that there is a lower limit on the complexity of non-trival propo-
sitional theories. To be more precise, the set SAT of consistent, or satisfiable,
sentences is the classic NP complete set. Now a sentence φ is valid if and only
if ¬φ is not satisfiable. Thus the smallest theory, the set of valid sentences
is Co-NP complete. On the other hand, any complete propositional theory is
determined by its underlying set of literals. That is, let V = {A0, A1, . . . } be
a set of propositional variables, S be any subset of V and Γ(S) be the conse-
quences of {Ai : i ∈ S} ∪ {¬Ai : i /∈ S}. Then S is computable from Γ(S) in
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constant time. On the other hand, given any sentence φ containing variables
Ai1 , . . . , Aik , we can decide whether φ ∈ Γ(S) by first making each At true if
it is in S and false if not, and then evaluating φ. That is, φ ∈ Γ(S) if and
only if the value of φ is true. Thus Γ(S) is computable from S in linear time
and linear space. Thus there are complete propositional theories in any of the
standard complexity classes such as linear time, linear space, polynomial time,
polynomial space, etc.

Lemma 7.3.1. tal(B(σ)) has length O(n2) and may be computed in time O(n2)
and Bin(B(σ)) has length O(n · log n) and may be computed in time O(n log n).

Proof. The sentence B(σ) contains the atoms A0, A1, . . . , An−1, n− 1 conjunc-
tion symbols ∧ and between 0 and n negation symbols ¬. The total length of
the atoms in tally is

2 + 2 + 3 + 4 + · · ·+ n =
n2

2
+
n

2
+ 1,

so that
n2

2
+

3n

2
≤ |tal(B(σ)| ≤ n2

2
+

5n

2

In binary, suppose first that n = 2k+1 − 1. Then the total length of the
atoms is

2 · 2 +

k∑
j=1

(j + 1)2j−1

so that the total length of the atoms is strictly between (k + 1)2k−1 + 1 and
(k + 1)2k and the length of bin(B(σ)) is between (k + 5)2k−1 and (k + 5)2k.
Now suppose that k ≤ log(n) ≤ k + 1, so that 2k ≤ n < 2k+1. It follows that
(5 + log(n))n/2 ≤ (k+ 5)2k−1 ≤ |bin(B(σ))| ≤ (k+ 5)2k ≤ (5 + log(n)) · 2n.

A set ∆ of sentences is said to be P -decidable in binary (in tally) if there
is a polynomial time Turing machine which given as input the binary (tally)
representation of a formula φ, computes 1 if ∆ ` φ and computes 0 otherwise.
We say that ∆ is weakly P -decidable in binary (in tally) if there is a polynomial
time Turing machine which given as input the binary (tally) representation
of a conjunction φ of literals, computes 1 if φ ∈ SAT (∆) and computes 0
otherwise. One can define the notion of ∆ being (weakly) C-decidable in binary
or tally for any complexity class C in a similar manner. A theory Γ is said to
be P -axiomatizable if it possesses a polynomial time set ∆ of axioms such that
Γ = Cn(∆). Again similar definitions apply to other notions of complexity.

Recall that the tree T represents CC(∆), the set of complete consistent
extensions of ∆, if the set [T ] of infinite paths through T equals the family of
sets S ⊆ {A0, A1, . . .} such that Γ(S) is a complete consistent extension of ∆.
The canonical tree T which represents CC(∆) is given by σ ∈ T ⇐⇒ B(σ) ∈
SAT (∆).

Theorem 7.3.2. Let ∆ be a propositional theory.
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(a) If ∆ is weakly DTIME(n log(n)O(1)) decidable in binary, then CC(∆)
may be represented as the set of paths through a tree in DTIME(n log(n)O(1)).

(b) If ∆ is weakly P -decidable (respectively PSPACE decidable) in either
binary or tally, then CC(∆) may be represented as the set of paths through
a P -tree (resp. PSPACE-tree).

(c) If ∆ is weakly DEXT -decidable (respectively, EXPSPACE-decidable) in
tally or binary, then CC(∆) may be represented as the set of paths through

an EXPTIME-tree (resp.
⋃
k∈ωDSPACE(2n

k

)-tree).

Proof. In each case, we shall let T be the canonical tree which represents CC(∆).
That is, σ ∈ T ⇐⇒ B(σ) ∈ SAT (∆).

(a) Suppose that ∆ is weakly DTIME(n log(n)O(1)) decidable in binary.
By Lemma 7.3.1, we can compute bin(B(σ)) from σ in time O(n log n), so that
T is in DTIME(n log(n)O(1)).

(b) It easily follows from Lemma 7.3.1 that we can compute bin(B(σ)) and
tal(B(σ)) in polynomial time and space from σ. Thus if ∆ is weakly P -decidable
(weakly PSPACE-decidable), then T is a P -tree (PSPACE-tree).

(c)If ∆ is weakly DEXT -decidable in tally (EXPSACE-decidable), it will

require on the order of 2|σ|
2

time (space) to determine if B(σ) ∈ SAT (∆) so

that T is an EXPTIME-tree (
⋃
k∈ωDSPACE(2n

k

)-tree). Similarly if ∆ is
weakly DEXT -decidable in binary (EXPSACE-decidable), it will require on
the order of 2|σ|log(|σ|) time (space) to determine if B(σ) ∈ SAT (∆) so that

again T is an EXPTIME-tree (
⋃
k∈ωDSPACE(2n

k

)-tree).

Thus we have the following corollary.

Corollary 7.3.3. Let ∆ be a propositional theory.

(a) If ∆ is weakly P -decidable (respectively PSPACE decidable) in tally or
binary, then ∆ has a P -decidable (resp. PSPACE-decidable) complete
consistent extension in tally

(b) If ∆ is weakly DEXT -decidable (respectively, EXPSPACE-decidable)
in tally or binary, then ∆ has a complete consistent extension which is
EXPTIME decidable (resp. EXPSPACE decidable) in tally.

Proof. (a) Let ∆ be weakly PTIME decidable in tally or binary. By Theorem
7.3.2, CC(∆) may be represented as the set of paths through a P -decidable
tree T . It follows from Theorem 7.1.9 that T has an infinite PTIME path
x ∈ {0, 1}N. The complete consistent extension Γ corresponding to x has ax-
ioms Ai for x(i) = 1 and ¬Ai for x(i) = 0. Thus given an arbitrary sentence
φ(A0, . . . , An) of length geqn, we can first compute x(0), . . . , x(n)) in polyno-
mial time and then use this to substitute true and false for the occurrences of
the propositional variables in φ to compute the value of φ. This can certainly
be done in polynomial time in tally. The proof for PSPACE is similar.

(b) The proof is similar to (a).
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For the binary representation, note that |An| is of order logn and hence it
may take exponential time to decide An from a polynomial time x ∈ {0, 1}N.
Thus we have

Corollary 7.3.4. Let ∆ be a propositional theory.

(a) If ∆ is weakly P -decidable (respectively PSPACE decidable) in either
binary or tally, then ∆ has a DEXT -decidable (resp. EXPSPACE-
decidable) complete consistent extension in binary.

(b) If ∆ is weakly EXPTIME-decidable (respectively, EXPSPACE-decidable)
in tally or binary, then ∆ has a complete consistent extension which is
DOUBEXT decidable (resp. DOUBEXPSPACE decidable) in binary.

Since any PTIME decidable theory is certainly weakly PTIME decidable
and likewise for other comlexity classes, these results hold with the “weakly”
removed from the hypothesis.

It was shown in [40] that this difference in the complexity of the complete
consistent extension between the tally and binary representations is necessary.
That is,

(1) There is a propositional theory which is NP -decidable in binary but has
no P -decidable complete consistent extension in binary.

(2) There is a propositional theory which is DEXT -decidable in binary but
has no EXPTIME-decidable complete consistent extension in binary.

There are no nice basis results for axiomatiable theories. The corresponding
representation results for axiomatizable theories do not require any restriction
on the complexity of the set of axioms. In fact, our next result strengthens
Theorem 4.1 of [32] which showed that any Π0

1 class may be represented as the
set of paths through a polynomial time tree.

A computable function f is said to be time constructible if and only if there
is a Turing machine which on every input of size n halts in exactly f(n) steps.
In particular, the functions logk2 (n) are time constructible for k ≥ 1 where
we define logk2 (n) by induction as log1(n) = log(n) and for k > 1, logk2 (n) =
log2(logk−1

2 (n)).
It was shown in [40] that for any time constructible function f which is

nondecreasing and unbounded and any axiomatizable propositional theory Γ, Γ
has a DTIME(O(f)) set of axioms and may be represented as the set of paths
through a DTIME(O(f))-tree. Note that this is not necessarily a decidable
tree.

The results for decidable trees are somewhat surprising. Let us first give a
few definitions. Recall that SAT is the set of satisfiable, or consistent, proposi-
tional sentences and is the standard NP -complete set.

Theorem 7.3.5. The following are equivalent:

(a) P = NP ;
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(b) Every P -decidable tree represents the set of complete consistent extensions
of some theory which is P -decidable in tally.

(b) → (a). Let T = {0, 1}∗ and suppose that ∆ is a theory which is P -decidable
in tally such that {0, 1}ω = [T ] represents the set of complete consistent exten-
sions of ∆. Then it is easy to see that SAT (∆) = SAT . But this means that

φ ∈ SAT ⇐⇒ ¬[∆ ` ¬φ]. (7.1)

Since ∆ is P -decidable in tally, (7.1) would imply that SAT is polynomial time
and hence P = NP .

[(a) → (b)] Next suppose that P = NP and let T be a P -decidable tree.
Let φ(A0, . . . , An) be a propositional formula whose propositional letters are a
a subset of {A0, . . . , An} and which contains An. The canonical theory ∆ such
that [T ] represents the set of complete consistent extensions of ∆ is defined by

∆ ` φ(A0, . . . , An) ⇐⇒ (∀σ ∈ T ∩ {0, 1}n)(B(σ) ` φ(A0, . . . , An)).

We will show that SAT (∆) is NP and hence in P by our assumption. In
tally, n ≤ |B(σ)| ≤ 2n2, so that for each σ ∈ {0, 1}n, we can test whether
B(σ) ` ¬φ(A0, . . . , An) in polynomial time in the length of φ(A0, . . . , An). Thus
we can test φ(A0, . . . , An) ∈ SAT (∆) in the usual NP fashion, by guessing a
string σ of length n and checking that σ ∈ T and B(σ) implies φ(A0, . . . , An).
Thus SAT (∆) is in P .

The corresponding result does not follow relative to the binary representation
of theories. That is, the direction [(ii) → (i)] still holds, since the SAT problem
is NP -complete in either tally or binary. However, the argument given for
the reverse direction only shows that SAT (∆) is DTIME(2O(1))-decidable in
binary. This is due to the fact that a short formula φ with a high numbered
variable, such as a propositional variable A2n−1 requires us to check whether
B(σ) ` φ(A0, . . . , An) for |σ| = 2n − 1 which would require time of order 2n

since |B(σ)| ≥ 2n. Thus since |A2n−1| = n + 1, such a check would require
exponential time in |φ|.



212 CHAPTER 7. COMPLEXITY THEORY



Part B

Applications of Π0
1 Classes

213





215

Effectively closed sets arise naturally in the study of computable mathemat-
ics. In many problems associated with mathematical structures, such as the
problem of finding a 4-coloring of a planar graph, the family of solutions may
be viewed as a closed set under some natural topology. Thus for a computable
structure, the set of solutions may be viewed as a Π0

1 class. For another exam-
ple, the set of zeroes of a continuous real function on the unit interval is a closed
set and the set of zeroes of a computable real function will be a Π0

1 class.
We will say that the Π0

1 class P represents the set of solutions to a given
problem if there is a one-to-one degree preserving correspondence between the
elements of the class P and the solutions to the problem. It will be important
whether the class P is bounded, or computably bounded. For example, the set
of 4-colorings of a given computable graph G may be represented as a subclass
of {0, 1, 2, 3}N and is therefore computably bounded. Then we may apply the
basis results surveyed in Chapter 3, for example, Theorem 2.2.15, and conclude
that if G has a 4-coloring, then it has a 4-coloring of c.e. degree.

Now a fundamental observation is that computable problems, such as the
graph-coloring problem, often do not have computable solutions. The results
from Chapter 3 on special Π0

1 classes strengthen in various ways the basic result
that a computably bounded Π0

1 class may not have any computable members. In
order to be able to transfer these results to results about the degrees of solutions
to a given computable mathematical problem of a given type, one must establish
that every computably bounded Π0

1 class represents the set of solutions to some
computable problem of that type. For example, Remmel [161] showed that, up
to a permutation of the colors, every computably bounded Π0

1 class represents
the set of 3-colorings of some computable graph. It then follows from Theorem
3.2.4 that for any c.e. degree c, there is a computable, 3-colorable graph G such
that every 3-coloring of G has degree ≥ c.

It is very important to make the representation effective. For each type of
mathematical problem, we shall establish a natural enumeration of the com-
putable (and sometimes the c.e.) problems and then use the effective corre-
spondence between solution sets and Π0

1 classes to transfer results on index sets
from Chapter 5. For example, we will show that the set of indices of computable
graphs which have a computable 3-coloring is a Σ0

3 complete set.
Many important problems in the history of Π0

1 classes come from mathemat-
ical logic. The problem associated with a logical theory Γ is to find a complete
consistent extension of Γ. For any effectively presented language L, the set of
sentences of L may be effectively listed as {φn : n ∈ N}. Then Γ is said to be
decidable if {n : φn ∈ Γ} is a computable set and Γ is said to be axiomatizable
if {n : φn ∈ Γ} is a c.e. set.

Shoenfield [174] showed in 1960 that the set of complete consistent extensions
of a axiomatizable first theory can always be represented by a Π0

1 class. The
classical undecidability theorem of Turing and Church may be viewed as showing
that the Π0

1 class of complete consistent extensions of Peano Arithmetic has no
computable element. The complete consistent extensions of a decidable theory
Γ may be represented by a decidable Π0

1 class.
Ehrenfeucht [63] showed in 1961 that, conversely, every computable bounded
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Π0
1 class P represents the set of complete consistent extensions of some axiom-

atizable theory Γ. In particular, Γ may be a theory of propositional logic or a
theory for the language with a single, binary relation symbol. If P is decidable,
then we may take Γ to be a decidable theory.

The chapters below include proofs of the theorems cited above, together
with applications of results on members of Π0

1 classes and on index sets for Π0
1

classes.



Chapter 8

Algebra

Three types of computable and computably enumerable algebraic structures
are considered: Boolean algebras, abelian groups, and commutative rings with
unity. The associated problems are to find proper, prime and maximal ideals
of rings and Boolean algebras and to find proper and maximal subgroups of
abelian groups.

The set of prime ideals of a c. e. Boolean algebra or commutative ring with
unity may always be represented by a c. b. Π0

1 class, and the set of maximal
ideals of a computable Boolean algebra may be represented by a decidable c. b.
Π0

1 class. The set of maximal ideals of a c. e. commutative ring with unity or
of a c. e. Boolean algebra may always be represented by a Π0

2 class.
For the reverse direction, any c. b. Π0

1 class P may be represented by the
set of maximal ideals of a c. e. Boolean algebra B and if P is decidable, then
B may be taken to be computable. Finally, any Π0

1 class of separating sets may
be represented as the set of prime ideals of some c. e. commutative ring with
unity [66].

A recursively presented group, ring, or field consists of a recursive subset U
of ω, the universe of the structure, together with appropriate partial recursive
functions over U for addition, subtraction, multiplication and/or division func-
tions as required. Unless, explicitly stated otherwise, we will assume that all our
structures are countably infinite so that there is no loss in generality in assum-
ing that the underlying universe is ω. A c. e. ring is the quotient of a recursive
ring modulo an r.e. ideal, a c. e. group is the quotient of a computable group
modulo a c. e. normal subgroup and a c. e. Boolean Algebra is the quotient of
a recursive Boolean Algebra modulo a c. e. ideal.

We will show that the set of prime ideals of c. e. commutative ring with unity
and the set of prime ideals of a c. e. Boolean algebra can always be represented
by a c. b. Π0

1 class. We will show that the set of maximal ideals of a c. e.
commutative ring with unity and the set of maximal subgroups of a c. e. group
can always be represented by a Π0

2 class. We shall also show that the set of
all ideals or the set of all maximal ideals of a recursive Boolean algebra can be
represented as the set of paths through a recursive tree with no dead ends.

217
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Reversing such results, we will show that any c. b. bounded Π0
1 class can be

strongly represented by the set of maximal ideals of an c. e. Boolean algebra.
We show that the set of paths through any recursive tree T with no dead ends
can be represented as the set of maximal ideals of a recursive Boolean algebra.
We shall also show that the set of separating set S(A,B) of a pair of c. e. sets
can be represented by the set of prime ideals or the set of maximal ideals of a
c. e. commutative ring with identity.

We refer the reader to Downey [56] for a general survey of computable alge-
bra.

Some definitions are needed. Recall that a subset H of an Abelian group
G = (G,+G,−G, 0G) is a subgroup if it satisfies the following conditions:

(i) 0G ∈ H.

(ii) a ∈ H and b ∈ H implies a−G b ∈ H.

H is a maximal subgroup if, in addition, there is no subgroup J of G such that
H ⊂ J ⊂ G.

A subset I of a commutative ring with unity R = (R,+R,−R, ·R, 0R, 1R)
is an ideal I is a subgroup of R = (R,+R, 0R) and it satisfies the following
additional conditions:

(iii) a ∈ I and r ∈ R implies a ·R b ∈ I.

(iv) 1R /∈ I.

I is a prime ideal if, in addition,

(v) a ·B b ∈ I implies a ∈ I or b ∈ I.

I is a maximal ideal if, in addition, there is no ideal J such that I ⊂ J . It is
easy to see that any maximal ideal is prime, but the converse is not always true.

The classical results that every proper subgroup of a group has an extension
to a maximal (and therefore proper) subgroup and that every ideal in a ring has
an extension to a maximal (and therefore prime) ideal follow easily from Zorn’s
Lemma. In particular, if the commutative ring R with unity is not a field, then
R has, for each non-unit a a proper ideal Ra = {ra : r ∈ R} and therefore has
a maximal ideal.

Any Boolean algebra (B,∨B ,∧B ,¬B , 0B , 1B) may be viewed as a commuta-
tive ring with unity where a ·B b = a∧ b and a+ b = (a∧B ¬Bb)∨B (¬Ba∧B b).
In a Boolean ring any prime ideal is maximal, so it follows from the Boolean
algebra results that, for any Π0

1 class P , there is a c. e. commutative ring with
unity such that Max(R) = Prime(R) is represented by P . However, there turns
out to be a significant difference between Boolean rings and rings in general.
The proof that any recursive Boolean ring has a recursive maximal ideal cannot
be extended to arbitrary rings and in fact, a recursive ring need not have a
recursive maximal ideal. This naturally led to the conjecture that any Π0

1 class
could be represented as the set of prime ideals of some commutative ring. By
considering rings of polynomials, Friedman-Simpson-Smith obtained in [67] the
partial result that any Π0

1 class of separating sets can be represented as the set
of prime ideals of some recursive commutative ring with unity.
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8.1 Boolean algebras

The Stone Representation Theorem implies that every Boolean algebra is iso-
morphic to the Boolean algebra of clopen sets of a topological space (indeed
of a Boolean space). If the Boolean algebra is countable, the proof shows that
it is isomorphic to the Boolean algebra RC(P ) of relatively clopen sets of a
closed class P contained in {0, 1}N, and of course RC(P ) is countable for every
closed class P contained in {0, 1}N. In this section we point out effectivized
versions of this correspondence and use them to transfer some of our results on
Π0

1 classes to results on computable and c. e. Boolean algebras. In particular, we
give an effective version of the Stone Representation Theorem, that every com-
putable (c. e. ) Boolean algebra is isomorphic to the set of its prime ideals. We
determine the meaning of thinness and of the Cantor-Bendixson derivative in
the setting of Boolean algebras. We also look at the connection between com-
putable Boolean algebras and theories of propositional calculus, in particular
with Martin–Pour-El theories. Finally, we interpret the results of the previous
sections on Π0

1 classes for computable and c. e. Boolean algebras. Here the Π0
1

class represents the set of prime ideals of a c. e. Boolean algebra.
Some of the results are known as part of the folklore of the subject. For

more on computable Boolean algebras, see Remmel [159].
A computable Boolean algebra B is given by a model (N,�,¬,∨,∧) where �

is a computable binary relation, ¬ is a computable unary operation, and ∨ and
∧ are computable binary functions satisfying the usual properties of a Boolean
algebra. In particular, there is a �-least element 0 and a �-greatest element 1,
and we assume that 0 ∈ N names the last and 1 ∈ N names the greatest. We
note that the complement ¬a may be computed by searching for the element
b ∈ B such that a∧b = 0 and a∨b = 1, and thus we do not need to assume that
it is computable. The partial ordering � may be defined (and in fact computed)
from the two binary operations in that a � b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = a.
(See the exercises.) We will also use the operation a+ b = (a ∧ ¬b) ∨ (b ∧ ¬a),
which will be computable for any computable Boolean algebra.

An element a of a Boolean algebra A is an atom if there does not exists b ∈ A
such that 0 < b < a. A is said to be atomless if it has no atoms. Alternatively,
we may say that A is dense if the ordering � is dense, that is, whenever a < b
in A, then there exists c ∈ A such that a < c < b. A is said to be atomic if for
every b ∈ A, there exists an atom a ∈ A such that a � b.

The fundamental computable atomless Boolean algebra Q may be thought
of as the family of clopen subsets of {0, 1}ω. Each clopen set has a unique
representation as a finite union of disjoint intervals I(σ1) ∪ · · · ∪ I(σk), where
each σi has the same length and k is taken to be as small as possible. Then
the join (∨) and meet (∧) operations are clearly computable, as well as the
complement operation and the partial ordering relation on Q.

Alternatively, we may consider the fundamental Boolean algebra Q(ω) to be
the Lindenbaum algebra of propositional calculus over an infinite set {A0, A1, . . . }
of propositional variables. Here two propositions p and q are equal in Q(ω) if
they have the same truth table, so that this is a computable equivalence relation.



220 CHAPTER 8. ALGEBRA

A c. e. Boolean algebra is given by a model (N,�,∨,∧) such that � is a
c.e. relation which is a pre-ordering, ∨,∧ are total computable binary functions,
and the quotient structure B = (N,�,∨,∧)/ ≡ is a Boolean algebra (where
n ≡ m ⇐⇒ n � m & m � n). We can suppose that 0 ∈ N names the least
and 1 ∈ N the greatest element of B. Note here that ≡ is preserved under the
operations.

A subset I of a Boolean algebra B is said to be an ideal if for all a, b ∈ B,

(i) If a ∈ I and b ∈ I, then a ∨ b ∈ I;

(ii) If b ∈ I and a ≤B b, then a ∈ I.

An ideal I is proper if 1 /∈ I and is prime if, for all a, b: (iii) a ∨ b ∈ I → a ∈ I
or b ∈ I.

An ideal I is principal if, for some b ∈ B, I = I(b) = {a ∈ B : a ≤ b}.
Finally, an ideal I is maximal if I is proper and there is no proper ideal J

with I ⊂ J .
For any ideal I, the equivalence relation ≡I is defined by

a ≡I b ⇐⇒ a+ b ∈ I.

It is clear that ≡I is c. e. if I is c. e. and is computable if I is computable.
Conversely, given an operation-preserving equivalence relation ≡ on B, the

corresponding ideal I may be defined as {a : a ≡ 0}. Then I will be computable
(c. e. ) if ≡ is computable (c. e. ).

The dual notion of an ideal is a filter. A subset M of a Boolean algebra B
is a filter if it is closed uner ∧ and is closed upwards. It is easy to see that M
is a filter if and only if the set Md = {¬b : b ∈M} is an ideal; similarly for any
ideal I, we may define the dual filter Id = {¬b : b ∈ I}. Downey [54] develops
the theory of c. e. Boolean algebras from the point of view of c. e. filters.

Let us define a computable quotient Boolean algebra to be the quotient
B/ ≡B , where B = (B,≡B ,¬B ,∧B ,∨B) is a computable structure such that
B ⊂ ω, such that ≡B is an equivalence relation on B, such that the unary op-
eration ¬B and the two binary operations ∨B and ∧B preserve the equivalence
classes, and hence the set of equivalence classes forms a Boolean algebra.

Lemma 8.1.1. Any computable quotient Boolean algebra B is isomorphic to a
computable Boolean algebra A.

Proof. Define the universe A of A by
A = {b ∈ B : (∀a < b)¬(a ≡B b)}.
For any b ∈ B, let ψ(b) be the least a such that a ≡B b. Then define the

operations on A by
¬A(a) = ψ(¬B(a)),
a ∨A b = ψ(a ∨B b), and
a ∧A b = ψ(a ∧B b).
It is clear that the set A together with these operations forms a Boolean

algebra which is isomorphic to the Boolean algebra on the equivalence classes
of B and that the set A and each of the Boolean operations is computable.
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For any Boolean algebra B with universe B = ω, let P (B) be the class of
maximal ideals B. It is easy to see that P (B) is a closed subclass of 2ω, where
an ideal J is represented as by its characteristic function.

Theorem 8.1.2. If A is a c. e. quotient Boolean algebra, then P (A) is a Π0
1

class and if A is a computable Boolean algebra, then P (A) is a decidable Π0
1

class.

Proof. Suppose that A = B/ ≡ is a c. e. quotient Boolean algebra. We can
represent the class P (A) of prime ideals on A as follows.

x ∈ P (A) ⇐⇒
(1) (∀a)(∀b)[a ≡ b→ x(a) = x(b)] and
(2) (∀a)(∀b)[x(a) = x(b) = 1→ x(a ∨B b) = 1] and
(3) (∀a)(∀b)[x(a) = 1→ x(a ∧B b) = 1] and
(4) (∀a)[x(a) = 1 ⇐⇒ x(¬Ba) = 0].
This clearly defines a Π0

1 class. Observe that either x(0B) = 1 or x(1B) = 1
by (4) and hence x(0B) = 1 by (3), so that x(1B) = 0. Thus any x ∈ P (A)
represents a proper prime ideal. If B is actually a computable Boolean algebra,
then we can omit clause (1) and define a computable tree T with no dead ends
such that P (B) = [T ], as follows. T is defined to be the set of finite sequences
x = (x(0), . . . , x(n− 1)) which satisfy the following, where lh(x) = n.

(2)’ (∀a < n)(∀b < n)[(x(a) = x(b) = 1a ∨B b < n)→ x(a ∨B b) = 1] and
(3)’ (∀a < n)(∀b < n)[(x(a) = 1a ∧B b < n)→ x(a ∧B b) = 1] and
(4)’ (∀a < n)(foralli < 2)[(x(a) = i¬Ba < n)→ x(¬Ba) = 1− i].
(5)′k (∀a1 < a2 < · · · < ak < n)(x(a1) = · · · = x(ak) = 0 → a1 ∧B a2 · · · ∧B

ak 6= 1B).
Clause (5) is needed to establish the finite intersection property for {a < n :

x(a) = 0} which will ensure that any σ ∈ T can be extended to a prime ideal
in P (A). This then implies that T has no dead ends.

We can now apply our general results about Π0
1 classes to Boolean algebras.

The following is a consequence of Theorems 2.2.15 and 3.1.4.

Theorem 8.1.3. (i) For any c. e. Boolean algebra B, B has a prime ideal J
of low c. e. degree (so that J is computable in 0′).

(ii) For any computable Boolean algebra B, B has a computable prime ideal.

Theorem 8.1.4. For any c. e. Boolean algebra B with no computable prime
ideal, there exists a c. e. degree a such that B has no prime ideals of degree ≤ a.

Proof. This follows from Theorem 3.thm:nla.

Theorem 8.1.5. For any For any c. e. Boolean algebra B with no computable
prime ideals, there exists two prime ideals, I and J , of B such that any set
computable from I and computable from J is in fact computable.

Proof. This follows from Theorem 3.3.2.12.
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The following theorem is a corollary of Theorems 4.4.2.3,4.4.4 and 4.2.2.

Theorem 8.1.6. Let B be a c. e. Boolean algebra only countably many prime
ideals. Then

(a) B has a computable prime ideal.

(b) If B has only finitely many prime ideals, then every prime ideal is com-
putable.

(c) Every prime ideal of B is hyperarithmetic.

Now we will briefly consider the notion of rank for ideals. It is an exercise
below 5 that for any Π0

1 class P , an element U of RC(P ) is an atom if and only
if U ∩ P is a singleton.

Proposition 8.1.7. For any prime ideal J of a c. e. Boolean algebra B, J is
isolated in P (B) if and only if J is principal.

Proof. Suppose that J is a principal and prime ideal. Then for some b, we have
J = {a : b ≤ a}. It follows that J is isolated in the interval I(J � b+ 1).

Suppose that J is isolated in the interval I(σ) where lh(σ) = n. Let bσ =
b0 ∧ b1 ∧ . . . bn−1 where bi = i if x(i) = 1 and bi = ¬i if x(i) = 0. The isolation
means that J is the only prime ideal of B that contains bσ. It follows that J is
generated by bσ.

Note that a principal ideal is prime if and only if it is generated by an atom.

The following is a corollary of Theorem 4.4.4.3.

Theorem 8.1.8. Let B be a c. e. Boolean algebra which has a unique non-
principal prime ideal J . Then J ≤T 0′′ and if B is computable, then J ≤T 0′.

Next we consider the reverse direction of the correspondence between Π0
1

classes and c. e. quotient Boolean algebras.

For an arbitrary Π0
1 class P , let RC(P ) be the Boolean algebra of relatively

clopen subsets of P , that is, {U ∩ P : U ∈ Q} under the standard set opera-
tions. Let B(P ) denote the c. e. Boolean algebra resulting from Q by taking the
equivalence relation

U ≡P V ⇐⇒ U ∩ P = V ∩ P.

(Note that the corresponding ideal I(P ) = {U ∈ Q({0, 1}N) : U ∩ P = ∅} is in
fact a c. e. ideal and is computable if and only if P is decidable.)

The notion of a perfect closed set corresponds to the notion of an atomless
Boolean algebra in the following sense.

Proposition 8.1.9. For any closed set P , P is perfect if and only if RC(P ) is
atomless.
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Proof. Assume first that P is perfect and let U ∩ P 6= ∅. Then U ∩ P contains
at least two elements and hence U can be partitioned into two clopen sets U1

and U2 such that U1 ∩ P and U2 ∩ P are distinct nonempty sets in RC(P ). It
follows that RC(P ) is atomless.

Next assume that P is not perfect and let x be isolated in P . This means
that there is a clopen set U such that U ∩ P = {x}. Clearly U ∩ P is an atom
in RC(P ).

Theorem 8.1.10. Let P ⊆ {0, 1}N be a Π0
1 class. Then the quotient algebra

B(P ) is isomorphic to the Boolean algebra RC(P ), the equivalence relation ≡P
is computably enumerable and hence RC(P ) is a c. e. Boolean algebra. Fur-
thermore, if P is decidable, then ≡P is computable and B(P is a computable
Boolean algebra.

Proof. The isomorphism mapping U/equivP to U ∩ P is clearly a computable
isomorphism from B(P ) to RC(P ).

To see that ≡P is a c. e. relation, let P = [T ] where T is a computable tree
and suppose that U = I(σ1) ∪ . . . I(σk) and V = I(τ1) ∪ . . . I(τm). Then

U ∩ P ⊆ V ∩ P ⇐⇒ (∀i ≤ k)I(σi) ∩ P ⊆ V ∩ P.

But for any σ, we have

I(σ)∩P ⊂ V ∩P ⇐⇒ (∃n)(∀τ)[(lh(τ) = n&σ ≺ τ & τ ∈ T )→ (∃i ≤ m)(τi ≺ τ)].

Finally, ≡P is c. e. , since
U ≡P V ⇐⇒ [U ∩ P ) ⊂ V ∩ PV ∩ P ⊂ U ∩ P ].
If P is decidable, then T has no dead ends, so we can take k to be the

maximum of {lh(τi) : i ≤ m}, so that ≡P will be computable and hence each
operation of B(P ) also computable.

Theorem 8.1.11. (a) For any Π0
1 class P ⊆ {0, 1}N, P is computably home-

omorphic to the set of prime ideals of RC(P ).

(b) For any Boolean algebra B with universe B = ω, RC(P (B)) is isomorphic
to B. For a c. e. Boolean algebra, this isomorphism is effective.

Proof. (a) Map the element x of P to the prime ideal J(x) = {U ∩ P : x /∈ U}.
If x 6= y, then there must be a clopen set P such that x ∈ U and y /∈ U , so that
the map is injective. Given a prime ideal J of RC(P ), we claim that there must
be a unique element xJ of P which belongs to every U ∩ P in J . Every finite
subset of J has nonempty intersection since ∅ /∈ J , hence by compactness

⋂
J

is nonempty. Let x be an element of
⋂
J , suppose that y 6= x and let U be a

clopen set such that x ∈ U and y /∈ U . Then U ∩ P ∈ J but y /∈ U and hence
y /∈

⋂
J . Thus

⋂
J is a singleton. We leave it to the exercises to show that xJ

may be computed effectively from J .
(b) Let B be a Boolean algebra with universe B = ω. The isomorphism from

B toRC(P (B)) is given by mapping the element b to {J : J is a prime ideal of B & b /∈
J}, that is, to P (B)∩U(b), where U(b) is the clopen set defined by x ∈ U(b) ⇐⇒
x(b) = 0.
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We now have the following corollaries.

Theorem 8.1.12. For any c. e. degree c, there is a c. e. Boolean algebra B
such that the c. e. degrees of prime ideals of B are exactly the c. e. degrees above
c.

Proof. This is an immediate consequence of Theorems 3.3.2.4 and 8.1.10.

Theorem 8.1.13. There is a c. e. Boolean algebra B such that any two prime
ideals of Γ are Turing incomparable.

Proof. This follows from Theorem 3.3.2.10.

Next we consider the translation of the notion of a thin Π0
1 class to the

corresponding notion for Boolean algebras. Let us say that a c. e. Boolean
algebra is thin if every c. e. ideal of B is principal. Downey [54] defined a c. e.
filter M in Q to be superthick if, for every c. e. filter W such that M ⊂W ⊂ Q,
there exists b ∈ Q such that W = 〈M, b〉. Here a ∈ 〈M, b〉 if and only if there
exists x ∈M such that b ∧ x ≤ a.

Lemma 8.1.14. Let A be the c. e. Boolean algebra defined as the quotient of
Q modulo the ideal I. Then the following are equivalent.

(i) The Π0
1 class P (A) is thin.

(ii) The filter Id is superthick.

(iii) A is thin.

Proof. We will show that (i) and (iii) are equivalent and leave the rest as an
exercise. We may assume by Theorem 8.1.10 that P ⊆ {0, 1}N is a Π0

1 class, that
I = {V ∈ Q : V ∩P = ∅} is a c. e. ideal in Q and that A = {[U ] : U ∈ Q}, where
[U ] is the equivalence class in Q of U under the equivalence relation defined by
U ≡P V ⇐⇒ U ∩ P = V ∩ P . Then we have, for any x ∈ {0, 1}N,

x ∈ P ⇐⇒ (∀U ∈ I)x /∈ U.

Suppose first that P is thin and let J be a c. e. ideal in A. Define the Π0
1

class Q ⊂ P by

x ∈ Q ⇐⇒ (∀V ∈ Q)([V ] ∈ J =⇒ x /∈ V ).

By assumption, Q = P ∩ U for some U ∈ Q and it follows that J = {[V ] :
[V ] ⊆ [U ]} and is principal.

For the converse, suppose that A is thin and let Q ⊂ P be a Π0
1 class. Then

J = {[V ] : V ∩ Q = ∅} is a c. e. ideal in A. By assumption, there exists U
such that, for all V ∈ Q, [V ] ∈ J ⇐⇒ [V ] ⊆ [U ]. It is then easy to see that
Q = P ∩ U .

Here is an existence result concerning Π0
1 classes of rank one. This follows

from Theorem 4.4.4.5 and Corollary 4.4.5.2.
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Theorem 8.1.15. (a) For any degree b ≤ 0′, there is a computable Boolean
algebra B with a unique non-principal prime ideal J such that J has degree
b.

(b) For any degree b such that 0′ ≤ b ≤ 0′, there is a c. e. Boolean algebra B
with unique non-principal prime ideal J of degree b.

Exercises

8.1.1. Show how to compute the partial ordering ≤B of a Boolean algebra B
from the ∨B and ∧B operations.

8.1.2. Show that the ≈ relation in a c. e. Boolean algebra is preserved under the
operations. That is, if a ≈ b then ¬a ≈ ¬b and similarly for the binary
operations.

8.1.3. Show how to carefully define the Boolean algebra of clopen sets to see that
it is in fact computable.

8.1.4. Show how to compute xJ in the proof of Theorem 8.1.11. (Hint: for any
clopen U , exactly one of U and {0, 1}N − U belongs to J ; to find x(0),
check which one of I((0)) and I((1)) belongs to J .)

8.1.5. Show that for any closed set P , U is an atom in the Boolean algebra
RC(P ) if and only if U ∩ P is a singleton.

8.1.6. Complete the proof of Lemma 8.1.14.

8.2 Groups and Rings

In this section, we consider Abelian groups and commutative rings with unity.

Theorem 8.2.1. (a) For any c. e. commutative ring R with unity, the set of
all ideals of R and the set of prime ideals of R can be represented by c. b.
Π0

1 classes and the set of maximal ideals of R can be represented by a Π0
2

class.

(b) For any c. e. group G, the set of all subgroups of G can be represented by
a c. b. Π0

1 class and the set of maximal subgroups of G can be represented
by a Π0

2 class.

Proof. (a): Let A be the underlying recursive ring and I the c. e. ideal such that
R is the quotient A/I. Then there is an effective one-to-one correspondence
between the ideals of R and the ideals of A which extends I, defined as follows.
For any ideal J of A which extends I, let JR = {[a] ∈ R : a ∈ J}. Similarly, given
an ideal JR of R, let J = {a ∈ A : [a] ∈ JR}. Since 0 ∈ J , it follows that I ⊂ J .
It is easy to see that JR is prime if and only if J is prime and is maximal if and
only if J is maximal. Thus we will actually consider the Π0

1 class Prime(A, I)
of prime ideals of A extending I. Since A is recursive, we may assume that
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the universe of A is ω. Let the operations of A be denoted by +A and ·A and
assume that the additive identity 0A = 0 and the unity 1A = 1. Let Is be the
set of elements of I which have been enumerated into I by stage s. Then the
recursive tree T is defined so that for any σ = (x(0), . . . , x(n− 1)) ∈ {0, 1}n, σ
is in T if and only if the following conditions all hold.

(i) For any i, j, k < n, if i+A j = k, x(i) = 1 and x(j) = 1, then x(k) = 1.

(ii) For any i, j, k < n, if i ·A j = k and x(i) = 1, then x(k) = 1.

(iii) If n > 1, then x(1) = 0.

(iv) For any i, j, k < n, if i ·A j = k and x(k) = 1, then x(i) = 1 or x(j) = 1.

(v) For any i < n, if i ∈ In, then x(i) = 1.

Conditions (i),(ii) and (iii) ensure that any infinite path through T will
represent an ideal of R. Condition (iv) ensures that any infinite path through T
will represent a prime ideal. Condition (v) ensures that any infinite path through
T will represent an extension of I. Note that we can modify this construction to
define the class of all ideals of A which extend I by simply omitting condition
(iv).

To define the class of maximal ideals of A which extend I, we note that any
maximal ideal is prime and that an ideal J is maximal in A if and only if, for
each r ∈ A \ J , the ideal J(r) generated by J ∪ {r} equals A, which is if and
only if 1 ∈ J(r), and we also note that J(r) = {i+A r ·A s : i ∈ I, s ∈ A}. Thus
we let P be the Π0

1 class representing the set of prime ideals of A extending I
and define Q with Q ⊆ P by

x ∈ Q ⇐⇒ x ∈ P & (∀j)[x(j) = 0→ (∃i, r)(x(i) = 1 & 1 = i+A rj)].

Thus the set of all maximal ideals of A extending I is represented by the Π0
2

class Q.
(b) The class representing all subgroups of the group G = (ω,+G, 0,−G) is

defined as the set of all x such that all of the following hold.

(i) For any i, j, k < n, if i+G j = k and x(i) = x(j) = 1, then x(k) = 1 and

(ii) For any i, j, k < n, if i−G j = k and x(i) = x(j) = 1, then x(k) = 1 and

(iii) x(0) = 1.

For the maximal subgroups, we note that H is a maximal subgroup of G if
and only if, for each g ∈ G\H, the subgroup H(g) generated by H ∪{g} equals
G and we also note that H(g) = {h+G z · g : h ∈ H, i ∈ Z}. Thus we let P be
the Π0

1 class representing the set of subgroups of G and define Q ⊆ P by x ∈ Q
if and only if

x ∈ P & (∀a, j)[x(j) = 0→ (∃i)(∃z ∈ Z)(x(i) = 1 & a = i+G z · j)].

Thus the set of all maximal subgroups of G is represented by the Π0
2 class Q.
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We can now apply our general results about Π0
1 classes to groups and rings.

Theorem 8.2.2. (a) Any c. e. Abelian group which has a proper subgroup
has a proper subgroup of c. e. degree.

(b) Any c. e. commutative ring with unity R which is not a field has a prime
ideal of c. e. degree.

(c) If a c. e. Abelian group G has a maximal subgroup, then it has a maximal
subgroup computable in some Σ1

1 set.

(d) If a c. e. commutative ring R with unity has a maximal ideal, then R has
a maximal ideal computable in some Σ1

1 set.

Theorem 8.2.3. For any c. e. commutative ring R with unity which has no
computable prime ideal,

1. there exists a c. e. degree a such that B has no prime ideals of degree ≤ a.

2. there exists two prime ideals, I and J , of B such that any set computable
from I and computable from J is computable.

The following theorem is a corollary of Theorems 4.4.2.3,4.4.4 and 4.2.2.

Theorem 8.2.4. Let R be a c. e. commutative ring with unity which has only
countably many prime ideals. Then

(a) R has a computable prime ideal.

(b) If R has only finitely many prime ideals, then every prime ideal is com-
putable.

(c) Every prime ideal of R is hyperarithmetic.

Next we turn to the other direction of our correspondences, that is, repre-
senting an arbitrary Π0

1 class by the set of solutions to one of our problems.
We say that a class Q weakly represents the class P if there is a computable
functional φ such that for each x ∈ Q, φ(x) ∈ P and φ(x) ≤T x and there is a
computable functional ψ such that for all y ∈ Q, ψ(y) ∈ P and ψ(y) ≡T y.

Theorem 8.2.5. For any pair of disjoint c. e. sets, the r.b. Π0
1 class S(A,B)

can be weakly represented by the set of prime ideals and by the set of maximal
ideals of some c. e. commutative ring R with identity.

Proof. We give the proof of Friedman-Simpson-Smith [67]. Let the infinite dis-
joint c. e. sets A,B be given. The construction begins with the underlying ring
R = Q[xn : n ∈ ω] (the ring of polynomials with rational coefficients in infinitely
many variables). Let A = {f(n) : n ∈ ω} and B = {g(n) : n ∈ ω} and let I be
the ideal generated by {xn+1

f(n), x
n+1
g(n) − 1, n ∈ ω}. We claim that

(1) I is a proper recursive ideal;
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(2) the set of prime ideals of R/I represents S(A,B); and

(3) the set of maximal ideals of R/I represents S(A,B).

To test whether a given f ∈ R is in I, we first produce f∗ = f( mod I)
by repeating the following reduction procedure. For any factor xk+1

m occur-
ring in a term of f , enumerate the finite sets F = {f(0), . . . , f(k)} and G =
{g(0), . . . , g(k)} and determine whether m ∈ F ∪ G. If m = f(i) ∈ F , then
replace xk+1

m with 0 (since xi+1
m ∈ I); if m = g(i) ∈ G, then replace xk+1

m with
xk−i (since xi+1

m − 1 ∈ I). Each step in this process reduces the degree of some
term and thus the process must terminate in f∗ after a finite number of steps.
Then f ∈ I if and only if this f∗ = 0. It follows that 1 /∈ I, so that I is proper.

For any set C ∈ S(A,B), let MC be the ideal generated by the set of
all {xm : m ∈ C} ∪ {xn − 1 : x /∈ C}. It is easy to see that, using the
reduction procedure described in the previous paragraph, any polynomial will
be equivalent to some q ∈ Q. Thus MC is a maximal ideal and MC ≡T C.

Now an ideal J is said to be radical if an ∈ I for any n implies that a ∈ I.
It is clear that any prime ideal is radical and it is easy to check that in fact any
maximal ideal is radical. Suppose that J is a radical ideal of R which extends
I. Then it follows that xf(n) ∈ J and that xg(n) /∈ J for all n. Thus we can
define the weak representation of S(A,B) by a class of ideals, simply letting
φ(J) = C, where m ∈ C ⇐⇒ xm ∈ J . Clearly C ≤T J in this case.

.
The representation Theorem 8.2.5 has, as usual, a number of immediate

corollaries.

Theorem 8.2.6. (1) There is a c. e. commutative ring R with unity which
has a prime ideal but has no computable prime ideal.

(2) There is a c. e. commutative ring R with unity such that that any two
prime ideals of R are Turing incomparable.

(3) If a is a Turing degree and 0 <T a ≤T 0′, then there is a computable
society s which has a prime ideal of degree a but has no computable prime
ideal.

8.3 Index sets for computable algebra

In this section, we examine the logical complexity of various properties of al-
gebraic structures. For example, we consider the property that a c. e. Boolean
algebra is atomless and the property that a computable commutative ring with
unity possesses a computable prime ideal.

8.3.1 Index sets for Boolean algebras

In this section, we define index sets for c. e. Boolean algebras and consider the
complexity of properties associated with Boolean algebras and their ideals.
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Recall the computable Boolean algebra Q of clopen subsets of {0, 1}N. It
follows from Theorem 8.1.11 that every c. e. Boolean algebra is a c. e. quotient
of Q. The e’th ideal Je of Q may be defined as follows, as the ideal generated
by the set We.

Je = {a ∈ Q : (∃x1, . . . , xk ∈We)a ≤ x1 ∨ x2 ∨ · · · ∨ xk}.

Then the e’th c. e. Boolean algebra Be may be defined as the quotient
Boolean algebra Q/Je. Note that the corresponding equivalence relation ≡e
is also c. e. .

Theorem 8.1.2 may be uniformized as follows.

Lemma 8.3.1. There is a primitive recursive function f such that, for all
e, Pf(e) represents the set of maximal ideals of the c. e. Boolean algebra Be.
Furthermore, if Be is a computable Boolean algebra, then ¶f(e) is a decidable
Π0

1 class.

For the reverse direction, Theorems 8.1.10 and 8.1.11 may be uniformized
as follows.

Lemma 8.3.2. There is a primitive recursive function g such that, for all e, Pe
represents the set of maximal ideals of Bg(e). Furthermore, if Pe is a decidable
Π0

1 class, then Bg(e) is a computable Boolean algebra.

Proof. Given the Π0
1 class Pe, we simply compute the c. e. set Jg(e) = Wg(e) =

{U : U ∩ P = ∅} and then Pe will represent the class of maximal ideals of the
Boolean algebra Bg(e).

We can now apply the index set result sets of this chapter 5 to obtain some
complexity results for maximal ideals of Boolean algebras.

In a Boolean algebra B, we require that 0 6= 1, but if we take the quotient of
B modulo itself, then we obtain the trivial structure with one element, so that
in fact 0 = 1. The proof of the following proposition is left as an exerecise.

Proposition 8.3.3. {e : Be is trivial} is Π0
2 complete.

We can also classify the index sets of theories with a given number of com-
plete consistent extensions (and similarly for computable complete consistent
extensions). The next theorem follows from Theorems 5.2.8, 5.2.13 and 5.2.15
as above. Let us abbreviate “computable consistent extensions” by CCEs.

Theorem 8.3.4. Let c > 0 be finite.

1. ({e : Be has > c prime ideals}, {e : Be has ≤ c prime ideals} is (Σ0
2,Π

0
2)

complete.

2. {e : Be has exactly c prime ideals} is D0
2 complete.

3. ({e : Be has finitely many prime ideals}, {e : Be has infinitely many prime ideals}
is (Σ0

3,Π
0
3) complete.
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4. {e : Be has exactly ℵ0 prime ideals} is Π1
1 complete.

5. ({e : Be has uncountably many prime ideals}, {e : Be has countably many prime ideals}
is (Σ1

1,Π
1
1) complete.

For a given number of computable complete consistent extensions, we apply
Theorems 5.3.5 and 5.3.9.

Theorem 8.3.5. Let c > 0 be finite.

1. ({e : Be has > c computable prime ideals}, {e : Be has ≤ c computable prime ideals}
is (Σ0

3,Π
0
3) complete.

2. {e : Be has exactly c computable prime ideals} is D0
3 complete.

3. ({e : Be has < ℵ0 computable prime ideals}, {e : Be has ≥ ℵ0 computable prime ideals})
is (Σ0

4,Π
0
4) complete.

The following result can be obtained by combining Proposition 8.1.9 with
Theorem 5.6.1.

Proposition 8.3.6. i{e : Be is atomless} is Π0
3 complete.

Finally, we consider thin Boolean algebras.

Proposition 8.3.7. {e : Be is thin} is a Π0
4 complete set.

Exercises

8.3.1. Prove Lemma 8.3.3

8.3.2. Give details of the proof of Lemma 8.3.1.

8.3.3. Give details of the proof of Lemma 8.3.2.

8.3.4. A Boolean algebra B is said to be atomic if, for every b ∈ B, there is an
atom a ≤ b. Show that i{e : Be is atomic} is Π0

4 complete.

8.3.5. Let R = Q[xn : n ∈ N] and enumerate the elements of R as {r0, r1, . . . }.
Define the e’th c. e. ideal Je as the ideal generated by the set {ri : i ∈We}
and letRe be the quotientR/Je. Show that {e : Re has a computable prime ideal}
is a Σ0

3 set.

8.4 Reverse mathematics and computable alge-
bra

In this section, we consider the proof-theoretic strength of the existence of prime
ideals in Boolean algebras and, more generally, in commutative rings with unity.

It might seem that the close connection between countable Boolean algebras
and propositional theories would carry over into the proof-theoretic content.
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However, it is easy to see that any computable Boolean algebra has a computable
maximal ideal, whereas we have seen that computably axiomatiable theories
may not have computable complete consistent extensions. Thus c. e. Boolean
algebras are different from computable Boolean algebras.

Proposition 8.4.1. The statement ’Every countable Boolean algebra has a
maximal (proper) ideal’ is provable in RCA0.

Proof. Given a countable Boolean algebra B = {b0, b1, . . . }, define the maximal
ideal I in stages In as follows. Let an be the join of the finite set In. We assume
that b0 = 0 and begin with I0 = {0}. At each subsequent stage n+ 1, put bn+1

into In+1 as long as bn+1 ∨ an 6= 1.

For countable commutative rings with unity, Friedman, Simpson and Smith
[66] showed that the existence of prime ideals is equivalent with Weak König’s
Lemma.

Theorem 8.4.2 (Friedman, Simpson, Smith). Weak König’s Lemma is equiv-
alent to the statement that every countable commutative ring with unity has a
prime ideal

Proof. Given a countable commutative ring R with unity, the set of prime ideals
of R and the set of prime ideals of R can be represented as the set of infinite
paths through an infinite binary tree T . It then follows from Theorem 6.1.8
that T has an infinite path and therefore R has a prime ideal.

For the other direction, we follow the proof from the Addendum [68] to
[66]. Let R0 = Q[xn : n ∈ N} be the polynomial ring over the rationals with
countably many variables. We will use the last equivalent form of Weak König’s
Lemma from Theorem 6.1.8. Let f, g : N→ N be one-to-one functions such that
f(i) 6= g(j) for any i, j. Then let I be the ideal generated by {xf(n), xg(n) − 1 :
n ∈ N} and let R = R0/I. By assumption, R has a prime ideal J . Now let
J0 = {p ∈ R0 : p + I ∈ J} and let X = {m : xm ∈ J0} to demonstrate Weak
König’s Lemma.
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Chapter 9

Computer Science

Non-monotonic logics arose in attempts to formalize several notions of “common-
sense” reasoning. These systems include the default logic of Reiter [158] and
the stable semantics of general logic programs [73] due to Gelfond and Lifschitz.
Classical logic is monotonic in that a deduction from a set of premises remains
valid for any larger set of premises. Minsky [140] suggested that there is an-
other form of reasoning which is not monotonic. That is, common sense and
even scientific reasoning forces one to make assumptions in the absence of com-
plete information. Thus new information may naturally lead to the rejection of
previous beliefs. The set of stable models of a logic program is in some sense a
non-monotonic generalization of the set of complete consistent extensions of a
set of premises. Marek, Nerode and Remmel [124] showed that different versions
of a logic program may be used to represent c. b., bounded and unbounded Π0

1

classes.

Another area of theoretical computer science where Π0
1 classes have appli-

cation is the study of ω-languages, that is, sets of infinite words. Here an
ω-language is the set of infinite words which are accepted, in some fashion, by
a program. In particular, a Π0

1 class may be viewed as the set of infinite words
which are accepted by a deterministic automata M in the sense that an infinite
sequence x = (x(0), x(1), . . . is accepted by M if M is always in an accepting
state after reading each initial segment (x(0), . . . , x(k)) of x. L. Staiger and
K. Wagner [190, 187, 188, 189] have examined several other widely studied no-
tions of acceptance which produce different classes. The relation between these
notions and Π0

1 classes is developed in [39].

9.1 Non-monotonic Logic

In this section, we shall show how Π0
1 classes arise naturally in the setting of

nonmonotonic logics. In fact, nonmonotonic logic is one of the few areas where
all three types of Π0

1 classes, arbitrary, bounded, and computably bounded,
arise in a natural manner. Nonmonotonic logics arose in attempts to formalize

233
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several forms of common sense reasoning. These systems include the default
logic of Reiter [158], the nonmonotonic modal logics of McDermott and Doyle
[135, 134], the stable semantics of general logic programs [73], and the answer
sets semantics for logic programs with classical negation [74].

Classical logic, which we considered in the previous section, is monotonic
in that a deduction from a set of premises remains valid for any larger set of
premises. Minsky [140] suggested that there is another sort of reasoning which
is not monotonic. This is the reasoning in which we deduce a statement based
on the absence of any evidence against the statement. Such statements are in
the category of beliefs rather than in the category of truths. Common sense
or even scientific reasoning forces one to make assumptions without complete
information. New information may naturally lead to the rejection of previous
beliefs.

Tarski [191] characterized monotonic formal systems by means of monotonic
rules of inference. Such systems include intuitionistic logic, classical logics,
modal logics, and many others. Suppose that a nonempty set U is given. In a
particular application U may be the collection of all formulas of a propositional
or first order logic, of all legal strings of a formal system, or of all atomic
statements as in logic programming.

A monotonic rule of inference is a tuple r = (P,ϕ) where P = (α1, . . . , αn)
is a finite (possibly empty) list of objects from U and ϕ is an element of U . Such
a rule r is usually written in the suggestive form

r =
α1, . . . , αn

ϕ
.

We call α1, . . . , αn the premises of r and ϕ the conclusion of r.

Definition 9.1.1. (a) A monotonic formal system is a pair (U,M) where U is
a nonempty set and M is a collection of monotonic rules.
(b) A subset S ⊆ U is called deductively closed over (U,M) if for all rules
r = α1,...,αn

ϕ ∈M , α1, . . . , αn ∈ S implies ϕ ∈ S.

Inspired by Reiter [158], and Apt [3], Marek, Nerode, and Remmel developed
a theory of nonmonotonic rule systems [123, 125, 124, 126, 127, 128]. Nonmono-
tonic rule systems are simple algebraic structures which formalize the notion of
nonmonotonic reasoning. Moreover there are simple translations between non-
monotonic rule systems and each of the nonomonotonic formalisms listed above
which show that theorems established for nonmonotonic rule systems immedi-
ately transfer to corresponding results for each of these nonmonotonic logics.

A nonmonotonic rule system is a pair (U,N) where a nonempty set U and
a set N of nonmonotonic rules. A nonmonotonic rule of inference is a triple
P,R, c), where P = {a1, . . . , an}, R = {b1, . . . , bm} are finite lists of objects
from U and c ∈ U . Each such rule is written in form

r =
a1, . . . , an : b1, . . . , bm

c
.

Here a1, . . . , an are called the premises of rule r, b1, . . . , bm are called the re-
straints of rule r. Either P , or R, or both may be empty. If R is empty, then
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the rule r is monotonic. If P = G = ∅, then the rule r is called an axiom. The
set {a1, . . . , an} is denoted by p(r), the set {b1, . . . , bm} is denoted by R(r), and
c is denoted by c(r). The intuitive idea of the non-monotonic rule r is that c is
supposed to hold if we have established that a1, . . . , an are true and there is no
evidence that any of b1, . . . , bn have been established.

A subset S ⊆ U is called deductively closed if for every rule r of N , whenever
all premises a1, . . . , an of r are in S and no restraint b1, . . . , bm of r is in S, then
the conclusion c of r belongs to S.

In a monotonic rule system, the family of deductively closed sets is closed
under arbitrary intersections, so that for every I ⊆ U there is the least set
T (I) such that I ⊆ T (I) and T (I) is deductively closed. The operator T is
monotone, meaning that I ⊆ J implies that T (I) ⊆ T (J). For first order
logic, T (I) = Con(I). In nonmonotonic systems, the deductively closed sets are
not generally closed under arbitrary intersections. But the deductively closed
sets are closed under intersections of descending chains. Since U is deductively
closed, by the Kuratowski-Zorn Lemma, any I ⊆ U is contained in at least one
minimal deductively closed set.

Given a set S and an I ⊆ U , an S-deduction of c from I in (U,N) is a finite
sequence < c1, . . . , ck > such that ck = c and, for all i ≤ k, each ci is in I, or is
an axiom, or is the conclusion of a rule r ∈ N such that all the premises of r are
included in {c1, . . . , ci−1} and all restraints of r are in U \S. An S-consequence
of I is an element of U occurring in some S-deduction from I. CS(I) is defined
to be the set of all S-consequences of I in (U,N).

Note that a monotonic rule system can be viewed as a special case of a
nonmonotonic rule systems where all the rules are monotonic. In a monotonic
system, CS(I) = T (I) for any subset S of U .

For a fixed S, the operator CS(·) is monotonic. That is, if I ⊆ J , then
CS(I) ⊆ CS(J). Also, CS(CS(I)) = CS(I). However, CS(·) is antimonotonic in
S, that is, for fixed I, S′ ⊆ S implies that CS(I) ⊆ CS′(I).

Generally, CS(I) is not deductively closed in (U,N). It is perfectly possible
to have all the premises of a rule be in CS(I), all the restraints of that rule be
outside CS(I), but a restraint of that rule be in S, preventing the conclusion
from being put into CS(I).

A set S is said to be an extension of I in (U,N) if CS(I) = S. Thus in a
monotonic rule system, the only extension of I is T (I).

We list below some basic properties of extensions.

Proposition 9.1.2. (a) If S is an extension of I, then:

(i) S is a minimal deductively closed superset of I.

(ii) For every I ′ such that I ⊆ I ′ ⊆ S, CS(I ′) = S.

(b) The set of extensions of I forms an antichain. That is, if S1, S2 are exten-
sions of I and S1 ⊆ S2, then S1 = S2.

With each non-monotonic rule r, we associate a monotonic rule obtained
from r by dropping all the restraints. The rule r′ is called the projection of
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rule r. We write M(S) for the collection of all projections of all rules from
N(S). The projection (U,N) |S is the monotonic rule system (U,M(S)). Thus
(U,N) |S is obtained as follows: First, non-S-applicable rules are eliminated.
Then, the restraints are dropped altogether. We have the following characteri-
zation theorem.

Theorem 9.1.3. A subset S ⊆ U is an extension of I in (U,N) if and only if
S is the deductive closure of I in (U,N) |S.

Based on Theorem 9.1.3, we can give an intuitive explanation of the notion
of extension for a nonmonotonic rule system. That is, one way to view an
extension is that it represents a justifiable internally consistent set of beliefs
given the rules of the system. The idea is to view the nonmonotonic rules of the
systems as rules of thumb. One then asserts a certain set of beliefs B. Given
B we eliminate all the rules which are not consistent with B, i.e all those rules
r such that R(r) ∩ B 6= ∅. Then B is a justifiable internally consistent set of
beliefs if we can derive everything in B from the rules that are left. On a more
practical level, Theorem 9.1.3 tells us how to test if a collection S ⊆ U is an
extension of I in (U,N).

A simple construction allows us to consider only extensions of the empty set.
In fact, if S is a nonmonotonic rule system, and I ⊆ U , then the system S(I)
arises from S and I by adding to N all the rules of the form :

t for all t ∈ I.
We then have:

Proposition 9.1.4. T is an extension of I in S if and only if T is an extension
of ∅ in S(I).

We next introduce briefly some of the nonmonotonic logical systems men-
tioned above and show how each can be coded into nonmonotonic rule systems.

9.1.1 Default Logic

Default Logic is a system based on the language L of propositional logic. A
default rule has the form

r =
α : Mβ1, . . . ,Mβk

γ
,

where α, β1, . . . , βk, γ are formulas of L. Following Reiter [158], a default theory
is defined as a pair (D,W ) where D is a set of default rules and W is a set of
formulas of L.

A theory S is said to be an extension of (D,W ) if for all rules r ∈ D as
above, if α ∈ S and ¬βi /∈ S for all i, then γ ∈ S.

(D,W ) may be interpreted as a nonmonotonic rule system as follows. For
every default rule r as above, construct the following nonmonotonic rule dr:

dr =
α : ¬β1, . . . ,¬βk

γ
.
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Next, for every formula ψ ∈ L, define the rule

dψ =
:

ψ

and for all pairs of formulas χ1, χ2 define

mpχ1,χ2
=
χ1, χ1 ⊃ χ2 :

χ2
.

Now define the set of rules ND,W as follows:
ND,W = {dr : r ∈ D} ∪ {dψ : ψ ∈W or ψ is a tautology} ∪ {mpχ1,χ2 : χ1, χ2 ∈
L}.

It was shown in [123] that a set of formulas S is a default extension of (D,W )
if and only if S is an extension of nonmonotonic rule system 〈U,ND,W 〉.

9.1.2 Nonmonotonic modal logics

McDermott [134] introduced a technique which allows one to create nonmono-
tonic counterparts of various modal logics. The modal language LL has one
modal operator L, interpreted as necessitation, knowledge, or belief. Given a
modal logic S, McDermott defined a consequence operator CnS which allows
for application of necessitation to all previously proven formulas, not only to
the the axioms of S.

Now, given a set of formulas T ⊆ L and another set of formulas I, interpreted
to be the initial assumptions of the reasoning agent, a theory T is called an S-
expansion of I if

T = CnS(I ∪ {¬Lψ : ψ /∈ T}).

The set of formulas {¬Lψ : ψ /∈ T} represents the so-called “negative introspec-
tion with respect to T”. The modal logic S may be simulated as a nonmonotonic
rule system as follows. The universe U will be as before the set of all well formed
formulas of the language LL.

For every formula ψ ∈ LL we consider a rule

eψ =
: ψ

¬Lψ
.

Now, given a theory I (the set of initial assumptions) in a modal logic S, and a
theory T ⊆ LL consider the following set of rules

NI,S = {dψ : ψ ∈ S} ∪ {eψ : ψ ∈ LL} ∪
{mpχ1,χ2 : χ1, χ2 ∈ LL} ∪

{dψ : ψ ∈ I} ∪ {dψ : ψ is a tautology of LL}

It may then be seen that T is an S-expansion of I if and only if T is an extension
of the nonmonotonic rule system (U,NI,S).
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9.1.3 General logic programming

General logic programs extend the usual syntax of (Horn) logic programs by
admitting negated atoms in the body of clauses. Specifically, a general clause
is an expression of the form:

C = p← q1, . . . , qm,¬r1, . . . ,¬rn.

Here we only assume that m ≥ 0 and n ≥ 0 so that the usual logic programming
clauses are special cases of general clauses. General clauses possess the logical
interpretation:

q1 ∧ . . . ∧ qm ∧ ¬r1 ∧ . . . ∧ ¬rn ⊃ p.
As long as we are interested in Herbrand models of general programs, we

can consider the propositional theory ground(P ) consisting of all ground sub-
stitutions of clauses of P . While P is usually finite, ground(P ) may be infinite
if P contains function symbols. There is of course a one-to-one correspondence
between Herbrand models of P and propositional models of ground(P ).

As is the case for (Horn) logic programming, not every model of the program
has a clear computational meaning. Some models of a general program provide
a computationally sound meaning to negation. We shall discuss here only the
stable models of Gelfond and Lifschitz [73] since stable models are most naturally
modeled by extensions of nonmonotonic rule systems.

Given a subset M of the Herbrand universe, and a clause C as above in
ground(P ), we define CM as nil if rj ∈ M for some 1 ≤ j ≤ n. Otherwise
CM = p← q1, . . . , qm. Then we put

PM = {CM : C ∈ ground(P )}.

Since PM is a Horn program, it possesses a least Herbrand model, NM . Then
we call M a stable model of P if M = NM . It is easy to see that a stable model
of P is a model of P . The stable models of logic programs may be encoded
as extensions of nonmonotonic rule systems as follows. The universe of all our
system, U , will be the Herbrand base of the program. Next, to every general
propositional clause C as above, assign the rule

rC =
q1, . . . , qm : r1, . . . , rn

p
.

Now, given the program P , define

NP = {rC : C ∈ ground(P )}.

Then M is a stable model of P if and only if M is an extension of the nonmono-
tonic rule system (U,NP ).

9.1.4 Proof Schemes

We now return to studying the complexity of the set of extensions of nonmono-
tonic rule systems. The basic notion used to analyze the Turing complexity of
the set of extensions of nonmonotonic rule systems is that of a proof scheme.
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A proof scheme s is a finite sequence of triples ((c1, r1, Z1), . . . , (cn, rn, Zn))
where
c1, . . . , cn ∈ U , r1, . . . , rn ∈ N , Z1, . . . , Zn are finite subsets of U such that
for all 1 ≤ j ≤ n,

(1) c1 = c(r1), Z1 = R(r1) and p(r1) = ∅

(2) For j > 1, p(rj) ⊆ {c1, . . . , cj−1}, c(rj) = cj , and Zj = Zj−1 ∪R(rj).

(3) cn is the conclusion of s and is denoted by cln(s). Zn is called the support
of s and is denoted by supp(s).

Clearly an initial segment of a proof scheme is also a proof scheme.
Notice that the support of a proof scheme s, Zn, has the property that for

every set S such that S ∩ Zn = ∅, the sequence (c1, . . . , cn) is an S-derivation.
Conversely if (c1, . . . , cn) is an S-derivation, then there is a proof scheme

s = ((c1, r1, Z1), . . . , (cn, rn, Zn)

such that Zn ∩ S = ∅.
There is a natural preordering on proof schemes. Namely, s1 ≺ s2 if and

only if every rule appearing in s1 appears in s2 as well. The relation ≺ is not a
partial ordering but it is well-founded. We can thus talk about minimal proof
schemes for a given element c ∈ U . Intuitively, a minimal proof scheme carries
the minimal information necessary to derive its conclusion. Since the support
of every proof scheme is finite, the negative information carried in such a proof
scheme is finite.

Proof schemes can be used to characterize extensions. We say that a set
S admits a proof scheme s if supp(s) ∩ S = ∅. We then have the following
characterization of extensions.

Proposition 9.1.5. Let S = (U,N) be a nonmonotonic rule system. Let S ⊆
U . Then S is an extension of S if and only if the following conditions are met:

(a) If s is a proof scheme and S admits s, then c(s) ∈ S.

(b) Whenever a ∈ S then there exists a proof scheme s such that S admits s.

It is easy to see that we can restrict to minimal proof schemes in Proposition
9.1.5.

9.1.5 Π0
1 Classes and extensions

We now give the basic results from [123, 125, 124, 127] on the complexity of
extensions in computable nonmonotonic rule systems.

The canonical index, can(X), of the finite set X = {x1 < . . . < xn} ⊆ ω is
defined as 2x1 + . . .+ 2xn and the canonical index of ∅ is defined as 0. Let Dk

be the finite set whose canonical index is k, i.e., can(Dk) = k.
Let (U,N) be a nonmonotonic rule system where U ⊆ ω. We shall identify

a rule r with the code of a triple 〈k, l, ϕ〉 where Dk = p(r), and Dl = R(r),
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ϕ = c(r). In this way we can think about N as a subset of ω as well. This given,
we then say that a NRS S = (U,N) is computable if U and N are computable
subsets of ω.

There are two important subclasses of computable NRS’s introduced in [124],
namely locally finite and highly computablee nonmonotonic rules systems. We
say that the system (U,N) is locally finite if for each c ∈ U , there are only finitely
many ≺-minimal proof schemes with conclusion c. Given a proof scheme for c,
s = (c1, r1, Z1), . . . , (cn, rn, Zn)), the code of s, c(s), is defined by

c(s) = 〈〈c1, r1, Z1〉, . . . , 〈cn, rn, Zn〉.

If 〈U,N〉 is a locally finite computable nonmonotonic rule system and c ∈ U ,
we let Drc denote the set of codes of all ≺-minimal proof schemes for c. We
say that (U,N) is highly computable if (U,N) is computable, locally finite, and
the map c 7→ can(Drc) is partial computable. The latter means that there is
an effective procedure which, when applied to any c ∈ U , produces a canonical
index of the set of all codes of ≺-minimal proof schemes with conclusion c. The
following results are due to Marek, Nerode, and Remmel [124].

Theorem 9.1.6. For any highly computable NRS system S = (U,N), there is
a highly computable tree TS such that there is an effective 1:1 degree preserving
correspondence between [TS ] and E(S). Vice versa, for any highly computable
tree T , there is a highly computable NRS system ST = (U,N) such that there is
an effective 1:1 degree preserving correspondence between [T ] and E(ST ).

Theorem 9.1.7. For any locally finite computable NRS system S = (U,N),
there is a finitely branching computable tree TS such that there is an effective
1:1 degree preserving correspondence between [TS ] and E(S). Vice versa, for any
highly computable tree T in 0′, there is a locally finite computable NRS system
ST = (U,N) such that there is an effective 1:1 degree preserving correspondence
between [T ] and E(ST ).

Theorem 9.1.8. For any computable NRS system S = (U,N), there is a com-
putable tree TS such that there is an effective 1:1 degree preserving correspon-
dence between [TS ] and E(S). Vice versa, for any computable tree T , there is a
computable NRS system ST = (U,N) such that there is an effective 1:1 degree
preserving correspondence between [T ] and E(ST ).

As usual, we can immediately derive a number of corollaries about the com-
plexity of the set of extensions of a computable nonmonotonic rule systems
by transferring known results about Π0

1-classes. For example, for computable
nonmonotonic rule systems, we have the following results, see [124].

Corollary 9.1.9. (a) Every computable NRS system S = (U,N) which has an
extension has an extension E such that E ≤T B where B is a complete
Π1

1-set.

(b) If S = (U,N) is a computable NRS system with a unique extension E, then
E is hyperarithmetic.
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Corollary 9.1.10. (a) There is a computable NRS system S = (U,N) such
that S has an extension but S has no extension which is hyperarithmetic.

(b) For each computable ordinal α, there exists a computable NRS system S =
(U,N) possessing a unique extension E such that E ≡T 0(α).

Corollary 9.1.11. Let S = (U,N) be a highly computable nonmonotonic rule
system such that E(S) 6= ∅. Then

(a) There exists an extension E of S such that E is low.

(b) If S has only finitely many extensions, then every extension E of S is
computable.

In the other directions, there are a number of corollaries of Theorem 9.1.6
which allow us to show that there are highly computable NRS systems S such
that the set of degrees realized by elements of E(S) are still quite complex.
Again all these corollaries follow by transferring results of Section 3.

Corollary 9.1.12. (a) There is a highly computable nonmonotonic rule sys-
tem
(U,N) which has 2ℵ0 extensions but has no computable extensions.

(b) There is a highly computable nonmonotonic rule system (U,N) such that
(U,N) has 2ℵ0 extensions and any two extensions E1 6= E2 of (U,N) are
Turing incomparable.

(c) There is a highly computable nonmonotonic rule system (U,N) such that
(U,N) has 2ℵ0 extensions and if a is the degree of any extension E of
(U,N) and b is any computably enumerable degree such that a <T b, then
b ≡T 0′.

(d) If a is any computably enumerable Turing degree, then there is a highly
computable nonmonotonic rule system (U,N) such that (U,N) has 2ℵ0

extensions and the set of computably enumerable degrees b which contain
an extension of (U,N) is precisely the set of all computablly enumerable
degrees b ≥T a.

Finally, we note that there are analogues of Corollaries 9.1.11 and 9.1.12
which hold for computable locally finite nonmonotonic rule systems. That is,
one can replace highly computable nonmonotonic rule systems by computable
locally finite nonmonotonic rule systems if one replaces all the statements about
degrees of extensions by the corresponding statement relative to a 0′ oracle. For
example, the analogue of part (1) of Corollary 9.1.11 is that every computabe
locally finite nonmonotonic rule system S such that E(S) 6= ∅ has an extension
E such that the jump of E is computable in 0′′, while the analogue of (1) of
Corollary 9.1.12 is that there exists a computable locally finite nonmonotonic
rule system (U,N) which has 2ℵ0 extensions but which has no extension which
is computable in 0′. Moreover, we can weaken the hypothesis of locally finite
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and highly computable slightly and still derive the same theorems. That is, we
say that a computable nonmonotonic rule system (U,N) has the finite support
property if for each c ∈ U , the set of supports of all ≺-minimal proofs schemes
of c is finite. It is possible for a c ∈ U to have infinitely many ≺-minimal proof
schemes with the same support so that not every computable nonmonotonic
rule system with the finite support property is locally finite. Similarly, we say
that a computable nonmonotonic rule system (U,N) which has the finite sup-
port property has the computable finite support property if there is an effective
algorithm which given any c ∈ U , produces the canonical index of the set of
canonical indices of the supports of all the ≺-minimal proof schemes of c. See
[127] for further details. Finally there are complete analogues of all the results
of this section which apply to finite predicate logic programs or finite predicate
logic default theories.

9.1.6 Predicate Logic Programs

We end this section with an extension of the results of the previous section to
finite predicate logic programs. In this setting, we get a perfect correspondence
between Π0

1 classes and the set of stable models of finite predicate logic program.
That is, given any finite predicate logic program P , there is a computable tree
TP such that there is an effective one-to-one correspondence between the set of
stable models of P and the paths through TP . Vice versa, given any computable
tree T , there is a computable program PT such that there is an effective one
to one correspondence between the set of stable models of PT and the paths
through T . Moreover under these correspondences, bounded trees correspond
to a natural set of finite predicate logic programs called finite support property
programs FSP and r.b programs correspond to computably FSP programs.
These correspondences can be found in [127] and they essentially allow us to
translate all the results on index sets for trees to results on index sets for finite
predicate logic programs.

For an introductory treatment of Predicate Logic Programs, see [119]. Here
is a brief self-contained account of their stable models [73]. Assume as given
a fixed first order language based on predicate letters, constants, and function
symbols. The Herbrand base of the language is defined as the set BL of all
ground atoms (atomic statements) of the language. A literal is an atomic for-
mula or its negation, a ground literal is an atomic statement or its negation.
A Logic Program P is a set of “program clauses”, that is, an expression of the
form:

p← l1, . . . , lk

where p is an atomic formula, and l1, . . . , lk is a list of literals.
Then p is called the conclusion of the clause, the list l1, . . . , lk is called the

body of the clause. Ground clauses are clauses without variables. Horn clauses
are clauses with no negated literals, that is, with atomic formulas only in the
body. Horn clause programs are programs P consisting of Horn clauses. Each
such program has a least model in the Herbrand base determined as the least
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fixed point of a continuous operator TP representing 1-step Horn clause logic
deduction ([119]).

A ground instance of a clause is a clause obtained by substituting ground
terms (terms without variables) for all variables of the clause. The set of all
ground instances of the program P is called ground(P ).

Let M be any subset of the Herbrand base. A ground clause is said to be M -
applicable if the atoms whose negations are literals in the body are not members
of M . Such clause is then reduced by eliminating remaining negative literals.
This monotonizationGL(P,M) of P with respect toM is the propositional Horn
clause program consisting of reducts of M -applicable clauses of ground(P ) (see
Gelfond-Lifschitz [73]). Then M is called a stable model for P if M is the least
model of the Horn clause program GL(M,P ). We denote this least model as
NM,P . It is easy to see that a stable model for P is a minimal model of P ([73]).
We denote by Stab(P ) the set of all stable models of P . There may be no, one,
or many stable models of P .

A proof scheme for p with respect to P is a sequence of triples

((pl, Cl, Sl))1≤l≤n,

with n a natural number, such that the following conditions all hold.

(1) Each pl is in BL. Each Cl is in ground(P ). Each Sl is a finite subset of
BL.

(2) pn is p.

The Sl, Cl satisfy the following conditions. For all 1 ≤ l ≤ n, one of (a), (b),
(c) below holds.

(a) Cl is pl ←, and Sl is Sl−1,

(b) Cl is pl ← ¬s1, . . . ,¬sr and Sl is Sl−1 ∪ {s1, . . . , sr}, or

(c) Cl is pl ← pm1 , . . . , pmk ,¬s1, . . . ,¬sr, m1 < l,. . . ,mk < l, and
Sl is Sl−1 ∪ {s1, . . . , sr}.

(We put S0 = ∅). Suppose that ϕ = ((pl, Cl, Sl))1≤l≤n is a proof scheme. Then
conc(ϕ) denotes atom pn and is called the conclusion of ϕ. Also, supp(ϕ) is the
set Sn and is called the support of ϕ.

Condition (3) tells us how to construct the Sl inductively, from the Sl−1 and
the Cl. The set Sn consists of the negative information of the proof scheme.

Formally, preorder proof schemes ϕ, ψ by ϕ ≺ ψ if

(1) ϕ,ψ have same conclusion,

(2) Every clause in ϕ is also a clause of ψ.

The relation ≺ is reflexive, transitive, and well-founded. Minimal elements
of ≺ are minimal proof schemes.

We can characterize stable models via proof schemes as follows.
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Proposition 9.1.13. Let P be a program. Also, suppose that M is a subset of
the Herbrand universe BL. Then M is a stable model of P if, and only if, for
every p ∈ BL, it is true that p is in M if and only if there exists a proof scheme
ϕ with conclusion p such that the support of ϕ is disjoint from M .

A finitary support program (FSP program) is a Logic Program such that
for every atom p, there is a finite set of finite sets S, which are exactly the
inclusion-minimal supports of all those minimal proof schemes with conclusion
p.

A recursively FSP program is an FSP recursive program such that we can
uniformly compute the finite family of supports of proof schemes with conclusion
p from p. The meaning of this is obvious, but we need a technical notation for
the proofs. Start by listing the whole Herbrand base of the program, BL as a
countable sequence in one of the usual effective ways. This assigns an integer
(Gödel number) to each element of the base, its place in this sequence. This
encodes finite subsets of the base as finite sets of natural numbers, all that is
left is to code each finite set of natural numbers as a single natural number, its
canonical index. We also set can(∅) = 0. If program P is FSP, and the list, in
order of magnitude, of Gödel numbers of all minimal support of schemes with
conclusion p is

Zp1 , . . . , Z
p
lr
,

then define a function suP : BL → ω as below.

p 7→ can({can(Zp1 ), . . . , can(Zplr )})

We call a Logic Program P a computably FSP program if it is FSP and the
function suP is computable.

In [127], Marek, Nerode, and Remmel proved the following two results.

Theorem 9.1.14. We suppose that the first order language L has infinitely
many ground atoms.

(a) Then for any computable program P in L, there exists a computable tree
T ⊆ ω<ω and an effective one-to-one degree preserving correspondence
between the set of all stable models of P , Stab(P ) and [T ], the set of all
infinite paths through T .

(b) If, in addition to the hypothesis of (1), program P is FSP, then the tree T
is bounded.

(c) If, in addition to the hypothesis of (2), program P is computably FSP, then
the tree T is a highly computable tree.

Theorem 9.1.15. Let C be any Π0
1-class. Then

(a) There is a finite program, P , and an effective one-to-one degree preserving
correspondence between the elements of C and the set of all stable models
of P , Stab(P ).
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(b) If in addition C is of the form [T ] for a bounded computable tree T , then
P can be chosen FSP.

(c) If in addition T is a highly computable tree, then P can be chosen recursively
FSP.

These two results were strengthened by Cenzer, Marek, and Remmel [25] to
prove the following.

Theorem 9.1.16. We suppose that the first order language L has infinitely
many ground atoms.

(a) Then for any finite predicate logic program P in L, there exists a primitive
recursive tree T ⊆ ω<ω and an effective one-to-one degree preserving cor-
respondence between the set of all stable models of P , Stab(P ) and [T ],
the set of all infinite paths through T .

(b) If, in addition to the hypothesis of (1), the program P is FSP, then the tree
T is bounded.

(c) If, in addition to the hypothesis of (2), the program P is computably FSP,
then the tree T is a highly computable tree.

Theorem 9.1.17. Let T be any primitive recursive tree. Then

(a) There is a finite program, P , and an effective one-to-one degree preserving
correspondence between the elements of [T ] and the set of all stable models
of P , Stab(P ).

(b) If in addition T is bounded, then P is FSP.

(c) If in addition T is a highly computable tree, then P is computably FSP.

The crucial point about the proof of Theorems 9.1.16 and 9.1.17 is that they
are completely uniform. For example, given a finite predicate logic program P ,
we can uniformly find the index of a primitive recursive tree TP such that there
is an effective one-to-one degree preserving correspondence between the stable
models of P and the elements of [TP ]. Vice versa, given any primitive recursive
tree T , we can uniformly find a finite predicate logic program PT such that there
is an effective one-to-one degree preserving correspondence between the stable
models of PT and the elements of [T ]. This means that one can transfer all the
index set results about trees and Π1

0 classes to index sets about finite predicate
logic programs. Thus if we fix some computable first order language L with
infinitely many ground atoms, then we can effectively list all finite predicate
logic programs P0, P1, . . .. Then for any property R, we can define an index set

Prog(R) = {e : Pe has property R}.

We can then transfer all the index set results to index set results for finite
predicate logic programs. For example, from Theorems 5.1.6 and 5.1.7 we obtain
the following.
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Theorem 9.1.18. (a) Prog(FSP) = {e : Pe has the FSP property} is Σ0
3 com-

plete set.

(b) Prog( computably FSP) = {e : Pe has the computably FSP property} is Π0
3

complete set.

Similarly, Theorem 5.2.13 implies the following.

Theorem 9.1.19. (a) Prog(computably FSP and has ≥ ℵ0 stable models) is
D0

3 complete and Prog(computably FSP and has < ℵ0 stable models) is
Σ0

3 complete.

(b) Prog(is FSP and has ≥ ℵ0 stable models) is Π0
4 complete and

Prog(is FSP and has < ℵ0 stable models) is Σ0
4 complete.

(c) Prog(has ≥ ℵ0 stable models), P rog(has < ℵ0 stable models) is (Σ1
1,Π

1
1)

complete.

See [25] for further details.

9.2 ω languages

An ω-language is a set of infinite sequences (words) on a countable language,
and corresponds to a set of real numbers in a natural way. Languages may
be described by logical formulas in the arithmetical hierarchy and also may be
described as the set of words accepted by some type of automata or Turing
machine. Certain families of languages, such as the Σ0

2 languages, may enumer-
ated as P0, P1, . . . and then an index set associated to a given property R (such
as finiteness) of languages is just the set of e such that Pe has the property.
The complexity of index sets for 7 types of languages is determined for various
properties related to the size of the language.

This section is concerned with the connections between index sets for ω-
languages and index sets for computable analysis. Let X be a finite or infinite
alphabet and let Xω denote the set of all infinite sequences (x0, x1, . . .) of ele-
ments of X. An automaton M over X is a quadruple [Z, z0, R, Zf ] where Z is a
nonempty set of states, z0 ∈ Z is the initial state, Zf ⊆ Z is a set of accepting
states and R ⊂ Z × X × Z is transition relation. An automaton M is said
to be computable provided Z is an initial segment of the natural numbers ω
and Zf and R are computably enumerable (c.e). M is strictly computable if Zf
is a computable set. An ω-language is just a subset W of Xω which consists
of the strings accepted by some computable automaton. Such languages arise
naturally in several areas of computer science such as temporal logic, model
checking, automata theory, and fair terminations, see [?] and [?].

Such languages also naturally arise in the study of computable analysis and
the study of Π0

1 classes. For example, in computable analysis, we refer to an
effectively closed subset of {0, 1}ω as a Π0

1 class. Such a class may be presented as
the ω-language of infinite strings which are accepted by a computable automaton
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M = [Z, z0, R, Zf ], in the following sense. Suppose that w = (w(0), w(1), . . .) ∈
{0, 1}ω. A run of w for M is a sequence (〈z0, w(0), z1〉, 〈z1, w(1), z2〉, . . .) such
that for all i, 〈zi, w(i), zi+1〉 ∈ R. Then the set of all w ∈ {0, 1}ω such that there
exists a run (〈z0, w(0), z(1)〉, 〈z1, w(1), z2〉, . . .) of w for M such that for all i,
zi ∈ Zf is a Π0

1 class. This provides a topological context for the study of ω-
languages. Similarly real numbers may be represented in various ways as infinite
words and thus computable analysis may be viewed as the study of effectively
Borel sets (that is, ω-languages) and effectively Borel measurable functions on
infinite words. (See [198] for a full introduction to computable analysis.)

There are other notions of acceptance for ω-languages relative to computable
automata which correspond with other natural topological notions. Several of
these different types of acceptance conditions will be described in section 3. A
presentation of the topological aspects of ω-languages and their relation to the
effective Borel hierarchy can be found in the survey article by L. Staiger [189].
We will show how one can translate between the index sets used by Staiger
[188] and the index sets used here in our book. That is, an index for a formal
language may be obtained directly from an index for the machine which accepts
the language or it may be obtained from the representation of the language
in the effective Borel hierarchy. We will demonstrate the connection between
these two approaches and show how, in most cases, one can reduce the index
set result for ω-languages to an index set result for some type of Π0

1 class. This
will allow us to apply the results of ?? to determine the complexity of a vast
array of index sets for ω-languages. Second, we shall study index sets for several
other families of ω-languages corresponding to various properties. For example,
Staiger [188] classified the index sets for pairs 〈V,W 〉 such that V ⊂W which he
called verification properties. We will consider various approximate verification
properties such as considering index sets for pair of languages 〈V,W 〉 such that
W−V is finite, is a set of measure zero or contains only finitely many computable
sequences.

e shall introduce 7 classes that we shall study in this paper and develop an
natural indexing scheme for each type of class. The advantage of our indexing
schemes is that we can easily connect them to known indexing schemes for ω-
languages and indexing schemes for Π0

1-classes. In section 3, we shall define
various notions of acceptance for ω-languages. In sections 4, 5, and 6 we shall
derive a number of new index set results for our seven types of classes and for ω-
languages. Section 4 is devoted to index sets for various cardinality conditions,
section 5 is devoted to index sets for various measure conditions and section 6
is devoted to various weak verification conditions.

We begin with the notion of an effective topological space X . Our notion of
effective topological space is closely related to the notion of effective topologi-
cal space defined in Kalantari and Retzlaff [?] except that we require primitive
recursive intersection and inclusion relations instead of just computable inter-
section and inclusion relations. That is, suppose X is some separable metric
space such that there is an effective enumeration U0, U1, . . . of a basis ∆ for the
space X such that the following hold.
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(I) ∆ is closed under finite intersections.

(II) ∅ and X is in ∆.

We then say that X is an effective topological space if, in addition, the following
hold.

(i) The operations of union and intersection and the inclusion relation are all
primitive recursive. This means that there are primitive recursive func-
tions πou, πcu, and πi such that
(a) Um0∪· · ·∪Umk ⊆ Un0∪· · ·∪Unl ⇐⇒ πou(〈m0, . . . ,mk〉, 〈n0, . . . nl〉) =
1;
(b) Um0

∪ · · · ∪ Umk ⊆ Un0
∪· · ·∪Unl ⇐⇒ πcu(〈m0, . . . ,mk〉, 〈n0, . . . nl〉) =

1;
(c) Um ∩ Un = Uπi(m,n).

(ii) For any m, s, and x ∈ Um, there is an n > s such that x ∈ Un ⊆ Um.

Given such an enumeration, we can also define an enumeration of basic open
sets for the product space X ⊗X = X 2 and for the disjoint union 2X = X ⊕X =
{(i, x) : i ∈ {0, 1} & x ∈ X} of two copies of X . Then for X 2, the basic open
set V〈m,n〉 = Um×Un. For X ⊕X , let V2m = {0}×Um and V2m+1 = {1}×Um.

Here are some specific examples.

(A) For the space X = {0, 1}ω, we have a basis of sets of the form I(σ) = {x :
σ ≺ x}, where σ ∈ {0, 1}<ω. The finite sequences σ ∈ {0, 1}<ω may be
enumerated as ∅, (0), (1), . . . , so that in general bin(n+ 1) = 1_σn. Then
we simply let U0 = ∅ and for all n ≥ 1, Un = I(σn−1).

(B) For the real line <, there is a basis which consists of ∅ and < plus all open
intervals (q, r) where q < r are rationals.

(C) For the space [0, 1] (the real interval), there is a basis consisting of ∅ and
[0, 1] plus all open intervals (q, r) where 0 ≤ q < r ≤ 1 are rationals,
together with the half-open intervals [0, r) and (q, 1]. See [37] for a specific
enumeration.

We are now ready to define our enumerations. We start with the enumera-
tions for Σ0

1 and Π0
1 classes. Let We be the eth computably enumerable subset

of N, that is, the domain of the eth partial computable function, φe.

(1) We define the Σ0
1 class S1,e with index e to be

S1,e =
⋃

n∈We

Un.

(2) We define the Π0
1 class P1,e with index e to be

P1,e = X \ S1,e = X \
⋃

n∈We

Un =
⋂

n∈We

X \ Un.
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As described above, in the paper [35], we gave an alternative definition of the
eth Π0

1 class P ′1,e for the space ωω as the set of paths through the eth primitive
recursive tree Te. In [37], we observed that the Kleene normal form theorem can
be used to show that these definitions are equivalent in a certain sense. That
is, there are primitive recursive functions φ and ψ such that P ′1,e = P1,φ(e) and
P1,e = P ′1,ψ(e). This easily follows from Theorem 4.1 of [37] which proves that

for any c.e. tree T , there is a primitive recursive (and indeed a polynomial-time)
tree S such that S and T have the same set of infinite extensions. However,
we could just as well have given an alternate version of enumeration for the Σ0

1

classes in terms of primitive recursive unions of basic open sets. In fact, these
two versions of effectively closed sets are still equivalent in the more general
setting.

Lemma 9.2.1. For any effective topological space X and any Σ0
1 subset W of

N, there exists a primitive recursive set V such that
⋃
n∈W Un =

⋃
n∈V Un.

Proof. Let W = We and let We,s be the numbers enumerated into We by stage
s. Thus {〈n, e, s〉 : n ∈We,s} is primitive recursive. Now let

m ∈ V ⇐⇒ (∃n, s < m)[Um ⊂ Un & n ∈We,s].

We claim that
⋃
m∈V Um =

⋃
n∈We

Un. If x ∈ Um for some m ∈ V , then there
is n ∈ We such that Um ⊂ Un so that

⋃
m∈V ⊆

⋃
n∈We

Un. On the other hand,
suppose that x ∈ Un for some n ∈ W and let s > n be large enough so that
n ∈We,s. By the definition of an effective topological space, there must be some
m > s such that x ∈ Um and Um ⊂ Un so that m ∈ V .

A similar phenomenon will occur for the strong Σ0
2 and Π0

2 classes defined
below. That is, a Σ0

2 class is an effective union of Π0
1 classes so that every Σ0

2

class is of the form
⋃∞
m=0

⋂∞
n=0{X − Un : 〈m,n〉 ∈ W} for some c.e. set W .

A Π0
2 class is the complement of a Σ0

2 class. Thus we can use the following
enumerations for Σ0

2 and Π0
2 classes.

We define the Σ0
2 class with index e to be

S2,e =

∞⋃
m=0

∞⋂
n=0

{X − Un : 〈m,n〉 ∈We}.

(4) We define the Π0
2 class with index e to be P2,e = X − S2,e.

Note that by the S-M-N theorem, there is a primitive recursive function π
such that Wπ(e,m) = {n : 〈m,n〉 ∈We}. Thus for each m,

P1,π(e,m) = X \
∞⋃
n=0

{Un : 〈m,n〉 ∈We},

so that

S2,e =

∞⋃
m=0

P1,π(e,m).
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It follows that

P2,e =

∞⋂
m=0

S1,π(e,m).

Next we shall turn our attention to strong Σ0
2 and strong Π0

2 classes. Given
any oracle C, we can generalize the definitions of Σ0

1 classes and Π0
1 classes

relative to the oracle C in a natural way by replacing the eth c.e. set We by the
eth c.e. set relative to C, WC

e , to give rise to the notion of Σ0,C
1 and Π0,C

1 classes.
Let 0′ denote the jump of the empty set, then we define a strong Σ0

2 class to

be a Σ0,0′

1 class and a strong Π0
2 class to be a Π0,0′

1 class. Our next lemma, a
generalization of Theorem 4.1 of [?], will help us define natural enumerations
for strong Σ0

2 and strong Π0
2 classes.

Lemma 9.2.2. For any effective topological space X , any oracle C and any Σ0,C
2

subset W of N, there exists a Π0,C
1 subset Y such that

⋃
n∈W Un =

⋃
p∈Y Up.

Proof. Let C ′ denote the jump of C so that W is c.e. in C ′. By the relativized
version of Lemma 9.2.1, we can obtain a set V which is primitive recursive in C ′

such that
⋃
n∈W Un =

⋃
m∈V Um. By the relativized version of the Schoenfield

limit lemma, see [181], there is a sequence {Vn}n∈ω which is uniformly com-
putable in C such that V = limsVs. That is, for any m, there is some modulus
of convergence pm such that m ∈ V ⇐⇒ m ∈ Vs for all s > pm. Hence we
define our set Y as follows:

p ∈ Y ⇐⇒ (∃m < p)[Up ⊂ Um & (∀s > p)(m ∈ Vs)].

The desired equality can be checked as in Lemma 9.2.1.

For the space {0, 1}ω, this result is essentially due to Jockush, Lewis and
Remmel [86] who showed that for any finitely branching tree T ⊆ ω<ω which is
highly computable in 0′, there is a finitely branching recursive tree T ′ with the
same set of infinite paths.

In the case where C = ∅, a Σ0,C
2 set is just a set which is Σ0

1 in 0′ and a Π0,C
1

set is just the complement of a c.e. open set. Thus Lemma 9.2.2 says that for
any e, there is an f such that⋃

n∈W0′
e

Un =
⋃

m/∈Wf

Um.

This leads to following natural enumerations of strong Σ0
2 and strong Π0

2 classes.

(1)* We define the strong Σ0
2 class with index e to be

S∗2,e =
⋃

m/∈We

Um.

(2)* We define the strong Π0
2 class with index e to be

P ∗2,e = X \ S∗2,e =
⋂

n/∈We

X \ Un.
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It is easy to see from our previous lemmas that for each e, we can find an
index f such that Vf is the f th primitive recursive set in 0′ and

S∗2,e =
⋃
n∈Vf

Un.

This means that most results about Σ0
1 and Π0

1 classes can be lifted to results
about strong Σ0

2 and strong Π0
2 classes by relativizing the proofs to the oracle

0′.
Next we consider a special class of Σ0

3 classes that are the effective unions
of sets of strong Π0

2 classes. These classes are said to be Σσ1 in the notation of
ω-languages, see section three. Thus we define the Σσ1 class with index e to be

S∗3,e =

∞⋃
m=0

⋂
n

{X − Un : 〈m,n〉 /∈We}.

As for Π0
1 and Σ0

2 classes,

S∗3,e =

∞⋃
m=0

P ∗2,π(e,m)

where Wπ(e,m) = {n : 〈n,m〉 ∈We}.
For an enumeration of Πσ

1 classes, we define P ∗3,e = X − S∗3,e. However, we
shall not pursue index set results for Πσ

1 classes since almost all natural index
sets we would consider are either Σ1

1 complete or Π1
1 complete and follow easily

from previous results. Thus, in this paper, we shall develop index set results
for 7 types of classes: {S1,e}e∈ω, {P1,e}e∈ω, {S2,e}e∈ω, {P2,e}e∈ω, {S∗2,e}e∈ω,
{P ∗2,e}e∈ω and {S∗3,e}e∈ω.

Next we need to consider the notions of unions, intersections, sums and
products of the various classes defined above as well as develop the connections
between simpler and more complicated classes. In any of the spaces X consid-
ered above, unions and intersections exist. However we will only define sums and
products in the space ωω. Given x = (x(0), x(1), . . .) and y = (y(0), y(1), . . .) in
ωω, we let x⊗y = (x(0), y(0), x(1), y(1), . . .) and we let 0_x = (0, x(0), x(1), . . .)
and 1_y = (1, y(0), y(1), . . .). Then given A,B ⊆ ωω, we define

A⊗B = {x⊗ y : x ∈ A & y ∈ B} and (9.1)

A⊕B = {0_x : x ∈ A} ∪ {1_y : y ∈ B}. (9.2)

Lemma 9.2.3. Let X be an effective topological space. For each of the seven
types of classes Ce discussed above, there are primitive recursive functions ψu,
ψi, ψs and ψp such that for all a and b,

(a) Ca ∪ Cb = Cψu(a,b). (b) Ca ∩ Cb = Cψi(a,b).

(c) Ca ⊕ Cb = Cψs(a,b). (d) Ca ⊗ Cb = Cψp(a,b).



252 CHAPTER 9. COMPUTER SCIENCE

Here for (c) and (d), we assume that X is either {0, 1}ω or ωω.

Proof. We will just give the proofs in a few cases and leave the proofs of the
remaining cases to the reader. To define Ca ⊕Cb or Ca ⊗Cb in the cases where
X = {0, 1}ω or X = ωω, suppose we are given Un = I(σ) and Um = I(τ)
where σ = (σ(0), . . . , σ(k)) and τ = (τ(0), . . . , τ(l)). Then we define πs(m,n) =
{Ur, Ut} where Ur = I((0, σ(0), . . . , σ(k))) and Ut = I((1, τ(0), . . . , τ(l))). We
let πp(m,n) equal the set of all Us such that Us = I(γ) where γ = (γ(0), . . . , γ(2q+
1)) is such that ∀i ≤ k(σ(i) = γ(2i)) and ∀j ≤ l(γ(2i + 1) = τ(i)), where
q = max(k, l) .

(1) Then for the Σ0
1 classes, we have the following:

Wψu(a,b) = Wa ∪Wb;

Wψi(a,b) = {πi(m,n) : m ∈Wa & n ∈Wb};

Wψs(a,b) = {Ux : ∃m ∈Wa & n ∈Wb(x ∈ πs(m,n))};

Wψp(a,b) = {Uy : ∃m ∈Wa & n ∈Wb(y ∈ πp(m,n)}.

Clearly ψu and ψi are primitive recursive for our space X . Similarly if X is
either {0, 1}ω or ωω, it is easy to see ψs and ψp are primitive recursive.

(2) For the Π0
1 classes, we can use DeMorgan’s laws. That is, for example,

P1,a ∪ P1,b = X − (S1,a ∩ S1,b), so that we can use the function ψi from (1) as
our ψu in that case.

(3) For the Σ0
2 classes, we can let

Wψu(a,b) = {〈2m,n〉 : 〈m,n〉 ∈Wa} ∪ {〈2m+ 1, n〉 : 〈m,n〉 ∈Wb}.

Again it is easy to see that ψu is primitive recursive.

(4) For the Π0
2 classes, we can use the corresponding functions for Σ0

2 classes
along with DeMorgan’s laws as in (2).

(1)∗ For the strong Σ0
2 classes,

Wψu(a,b) = Wa ∩Wb and Wψi(a,b) = {πi(m,n) : m ∈Wa & n ∈Wb}

(2)∗ For the strong Π0
2 classes, proceed as in (2).

(3)∗ For the Σσ1 classes, proceed as in (3).

There are many inclusions between the seven definability notions. For ex-
ample, every Σ0

1 class is also a Σ0
2, a Π0

2, a strong Σ0
2 and a Σσ1 class. Similarly,
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every Π0
1 class is also Σ0

2, Π0
2, strong Π0

2 and Σσ1 . Every Σ0
2 class is also Σσ1 .

Every strong Σ0
2 class is also Σ0

2 and every strong Π0
2 class is also Π0

2. Every
strong Σ0

2 class and every strong Π0
2 class is also Σσ1 . Each of these inclusions is

effective in the following sense.

Lemma 9.2.4. For each inclusion C ⊂ D given above, there is a primitive
recursive function θ such that Ce = Dθ(e) for all e.

Proof. We will just indicate how to proceed in a few cases.

(i) For the inclusion of Σ0
1 classes in strong Σ0

2 classes, uniformize the proof
of Lemma 9.2.1. That is, let

m ∈Wθ(e) ⇐⇒ ¬(∃n, s < m)[Um ⊂ Un & n ∈We,s]

Then by the Lemma 9.2.2, S2,θ(e) =
⋃
m/∈Wθ(e)

Um = S1,e.

(ii) For the inclusion of strong Σ0
2 classes in Σ0

2 classes, we will use the extra
property of our effective topological spaces. That is, for any j and n,

X − Un =
⋃
m∈ω
{Um : Um ∩ Un = ∅}

and

Uj =
⋃
n∈ω
{Un : Un ⊂ Uj}.

Hence, for any e,

S∗2,e =
⋃
j /∈We

Uj =
⋃
j /∈We

⋃
i

Ui⊂Uj

⋂
n

Ui∩Un=∅

X − Un

It can be checked that

S1,e = S2,θ(e) =

∞⋃
m=0

⋂
n

〈m,n〉∈Wθ(e)

X − Un,

where 〈m,n〉 ∈Wθ(e) if and only if

(∃i)(∃j)[m = 〈i, j〉 & (j ∈We,n ∨ ¬(Ui ⊂ Uj) ∨ (Ui ∩ Un 6= ∅)].

(ii) For the inclusion of Π0
1 in Σ0

2, just let Wθ(e) = {〈m,n〉 : n ∈We}.
The other inclusions follow by taking complements or have similar proofs.
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9.3 Formal ω-languages

In this section, we explain the connection between the seven types of classes
which we will analyze in this paper and the notion of an ω-language as the set
of infinite words accepted by some computable automaton. For our purposes, a
language will be a set of infinite strings based over a finite alphabet X. There
is no loss in generality in assuming that X is just {0, 1}.

Recall that a computable automaton M = [Z, z0, Zf , R] over X consists
of a nonempty initial segment Z of ω (the states of M), a designated initial
state z0 ∈ Z, a computably enumerable set Zf ⊂ Z of accepting states, and
a computably enumerable subset R if Z ×X × Z of transitions. Given M , we
shall consider the function ΘR : Z ×X → ω ∪{∞} where ΘR(z, x) = card({z′ :
(z, x, z′) ∈ R}). M is finitely branching if ΘR(z, x) ∈ ω for all z ∈ Z and
x ∈ X. M is deterministic if ΘR(z, x) ∈ {0, 1} for all z ∈ Z and x ∈ X so
that R may be considered as a partial function mapping Z ×X into Z. Finally,
a finitely branching computable automaton M is strictly computable if Zf is
computable and ΘR is a computable function. Note that if M is a deterministic
computable automaton, then R can be viewed a partial computable function.
More generally, if M is a deterministic computable automaton, we may consider
the computably continuous mapping ΦM : Xω → Zω defined by the machine
M . Note that the graph of ΦM is a strong Π0

2 class if M is computable and is
a Π0

1 class if M is strictly computable.
We will say that a word x ∈ Xω is α-accepted according to a certain condition

(α) provided that some run corresponding to the input word x satisfies condition
(α). There are four important types of acceptance conditions that have appeared
in the literature that we will consider in this paper. Recall that a run of M on
input x determines an infinite sequence z0, z1, . . . of states of M .

1. x is 1-accepted by the run r if at least one zi ∈ Zf . This notion is due to
Hartmanis and Stearns [?].

2. x is e-accepted by the run r if every zi ∈ Zf . This notion is due to
Landweber [?].

3. x is io-accepted by the run r if infinitely many zi are in Zf . This notion
is due to Büchi [14].

4. x is ae-accepted by the run r if all but finitely many zi ∈ Zf . This notion
is due to Landweber [?].

Let Tα(M) be the set of infinite words α-accepted by M . The following
results are due to Cohen and Gold [?] and to Staiger [188].

Theorem 9.3.1. For a strictly computable deterministic automaton M ’:

(i) Te(M) is a Π0
1 class (and every Π0

1 class is so represented.)

(ii) T1(M) is a Σ0
1 class (and every Σ0

1 class is so represented.)
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(iii) Tio(M) is a Π0
2 class (and every Π0

2 class is so represented.)

(iv) Tae(M) is a Σ0
2 class (and every Σ0

2 class is so represented.)

We should point out that this theorem holds for the more general class of
Turing machines, where one can move forward or backward on the input tape
and do some calculations on work tapes. See [190, ?] for details.

If M is not strictly computable, then cases (ii) and (iv) are unchanged, but
for cases (i) and (iii), we have two other notions of definability.

Definition 9.3.2. For any language W ⊂ X∗,

(i) lim W = {x : (∀n)(xdn ∈W )};

(ii) Wσ = {x : (∃m)(∀n > m)(xdn ∈W )};

A class is in lim Σ0
1 if and only if it is a strong Π0

2 class. A class is in Σ0
1
σ

if
and only if it is an effective union of strong Π0

2 classes.
We have the following theorem, see [188].

Theorem 9.3.3. (i)* W ∈ lim Σ0
1 if and only if W = Te(M) for some deter-

ministic computable automaton M .

(ii)* W ∈ Σ0
1
σ

if and only if W = Tae(M) for some deterministic computable
automaton M .

It is then easy to see that index set results for any of the six classes of ω-
languages considered above will follow from index sets results for one of our
seven families of classes defined in section 2. Thus we shall only state our index
set results for the seven families of classes in section 2 and leave it to the reader
to translate these results to index set results for ω-languages.

9.4 Index sets for cardinality

In this section, we determine the complexity of index sets for various classes
with constraints on the cardinality of the class. For the rest of this paper, we
shall restrict our attention to the spaces X = {0, 1}ω and X = [0, 1]. Of course,
the results for {0, 1}ω here will extend to the space Xω for an arbitrary finite
alphabet X.

The fundamental index set results for the property of being nonempty were
given by Staiger [188]. Proofs of (i) and (iv) can also be found in [35] and a
version of (i) for the classes in the space [0, 1] are given in Theorem 4.5 of [37].

Theorem 9.4.1. (i) {e : S1,e is nonempty} is Σ0
1 complete.

(ii) {e : P1,e is nonempty} is Π0
1 complete.

(iii) {e : S2,e is nonempty} is Σ0
2 complete.

(iv) {e : P2,e is nonempty} is Σ1
1 complete.
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(v) {e : S∗2,e is nonempty} is Σ0
2 complete.

(vi) {e : P ∗2,e is nonempty} is Π0
2 complete.

(vii) {e : S∗3,e is nonempty} is Σ0
3 complete.

Proof. It is not hard to see that each family has a definition of the appropriate
complexity. For example,

S1,e 6= ∅ ⇐⇒ (∃n ∈We)(Un 6= ∅)

so that {e : S1,e is nonempty} is Σ0
1. (Recall that for an effective topological

space, we assume that the {〈m,n〉 : Um = Un} is primitive recursive. For the
spaces of this theorem, each basic open set has a unique representation, by a
finite string or by a pair of rationals, so that this problem is trivial.) Similarly,
by the compactness of {0, 1}ω or [0, 1],

S1,e = X ⇐⇒ (∃n1, . . . , nk ∈We)(X ⊆ Un1
∪ · · · ∪ Unk)

so {e : S1,e = X} is Σ0
1 and hence {e : P1,e is nonempty} is Π0

1. Relativizing
these results to a 0′-oracle then establishes the complexity bounds for strong
Σ0

2 and strong Π0
2 classes. We can use the effective union properties to see that

S2,e 6= ∅ ⇐⇒ (∃n)P1,π(e,m) 6= ∅

and similarly

S∗3,e 6= ∅ ⇐⇒ (∃n)P ∗2,π(e,m) 6= ∅.

The completeness results for (i), (ii), and (iv) were established in [35]. We
note also that completeness results for {0, 1}ω can be extended to the real in-
terval using Lemma 4.4 of [37] which shows that each space can be effectively
embedded in the other by means of a primitive recursive function on indices.

To introduce a technique which we will use later, we shall show the com-
pleteness of (iii) follows from (ii). Let A be Σ0

2. Then there is a uniformly Π0
1

sequence of sets Be such that

a ∈ A ⇐⇒ (∃e)(a ∈ Be).

It follows from (ii) that there is computable function φ such that

a ∈ Be ⇐⇒ P1,φ(a,e) 6= ∅.

But then

a ∈ A ⇐⇒ (∃e)(P1,φ(a,e) 6= ∅) ⇐⇒
⋃
e

P1,φ(a,e) 6= ∅ ⇐⇒ S2,ψ(a) 6= ∅

where

Wψ(a) = {〈m,n〉 : n ∈Wφ(a,n)}.
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This shows that the family in (iii) is Σ0
2 complete as desired. One can establish

the completeness result for (vii) from the completeness result for (vi) in a similar
manner.

The completeness results for (v), (vi) and (vii) easily follow from the com-
pleteness results of (i),(ii), and (iii) respectively by the process of relativization.
That is, as noted above, strong Σ0

2, strong Π0
2 and Σσ1 classes can be viewed

as relativized versions with respect to an 0′ oracle of Σ0
1, Π0

1 and Σ0
2 classes

respectively. Hence a relativization with respect to an 0′ oracle of the proofs of
parts (i), (ii) and (iii) will demonstrate that the complexity of the index sets in
parts (v), (vi) and (vii) are just the complexity of the classes (i), (ii) and (iii)
relative to oracle 0′. It easily follows that the index set in (v), (vi) and (vii) are
respectively Σ0

2, Π0
2 and Σ0

3 complete.

Next we consider index sets for finite cardinality.

Theorem 9.4.2. Let X be either {0, 1}ω or [0, 1]. For any k > 1,

(i) {e : card(S1,e) ≥ k} is Σ0
1 complete.

(ii) {e : card(P1,e) ≥ k} is Σ0
2 complete.

(iii) {e : card(S2,e) ≥ k} is Σ0
2 complete.

(iv) {e : card(P2,e) ≥ k} is Σ1
1 complete.

(v) {e : card(S∗2,e) ≥ k} is Σ0
2 complete.

(vi) {e : card(P ∗2,e) ≥ k} is Σ0
3 complete.

(vii) {e : card(S∗3,e) ≥ k} is Σ0
3 complete.

Proof. (i) This follows from Theorem 9.4.1 (i) since any open set has cardinality
of the continuum if and only if it is nonempty. Part (ii) was part proved in [37].

(iii) First observe that

card(S2,e) ≥ k ⇐⇒ (∃n)card(∪nm=0P1,π(e,m)) ≥ k.

However by Lemma 9.2.3, there is a computable function g such that P1,g(e,n) =
∪nm=0P1,π(e,m) so that

card(S2,e) ≥ k ⇐⇒ (∃n)card(P1,π(g(e,n))) ≥ k.

Thus (iii) is Σ0
2 because (ii) is Σ0

2. By Lemma 9.2.4, there is a computable
function f such that for all n, P1,n = S2,f(n). By (ii), for any Σ0

2 set A, there
is a computable h such that x ∈ A ⇐⇒ h(x) ∈ {e : card(P1,e) ≥ k}. Hence
x ∈ A ⇐⇒ f(h(x)) ∈ {e : card(S2,e) ≥ k} so that (iii) is Σ0

2 complete. We
note the one can establish (vii) from (vi) by a similar argument.

(iv) This set is certainly Σ1
1 and the completeness follows from the fact that

P 6= ∅ ⇐⇒ card(kP ) ≥ k

where kP is just the disjoint union of k copies of P .
The remaining three cases are just relativizations of (i), (ii), and (iii).
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We note that the complexity results of Theorem 9.4.2 are uniform in k.
That is, for example, {〈e, k〉 : card(S1,e) ≥ k} is Σ0

1. We can use this in our
next result, on infinite cardinality.

Theorem 9.4.3. Let X be either {0, 1}ω or [0, 1].

(i) {e : card(S1,e) ≥ ℵ0} is Σ0
1 complete.

(ii) {e : card(P1,e) ≥ ℵ0} is Π0
3 complete.

(iii) {e : card(S2,e) ≥ ℵ0} is Π0
3 complete.

(iv) {e : card(P2,e) ≥ ℵ0} is Σ1
1 complete.

(v) {e : card(S∗2,e) ≥ ℵ0} is Σ0
2 complete.

(vi) {e : card(P ∗2,e) ≥ ℵ0} is Π0
4 complete.

(vii) {e : card(S∗3,e) ≥ ℵ0} is Π0
4 complete.

Proof. Part (i) follows as in Theorem 9.4.2 and part (ii) is proved in [37].
(iii) We show that {e : card(S2,e) < ℵ0} is Σ0

3 complete. Let g and f
be the computable functions defined in Theorem 9.4.2 such that P1,g(e,n) =
∪nm=0P1,π(e,m) and P1,e = S2,f(e). To see that {e : card(S2,e) < ℵ0} is Σ0

3

observe that card(S2,e) < ℵ0 if and only if

(∃n)[(∀m ≤ n)(P1,π(m,e) < ℵ0) & (∀p > n)(P1,π(p,e) ⊆ P1,g(e,n) =

n⋃
m=0

P1,π(m,e))].

(9.3)
It is easy to see that the predicate S1,e ⊃ S1,f is in Π0

2 since S1,e ⊇ S1,f if and
only if

(∀m)(∀n)[(n ∈Wf & Um ⊂ Um)⇒ (∃n1, . . . , nk ∈We)(Un ⊆ Un1 ∪ · · · ∪ Unk)].

By taking complements it is easy to see that the predicate P1,e ⊆ P1,f is also
Π0

2. It then easily follows that the expression in (9.3) is Σ0
3. (Note that we could

also have appealed here to the uniformity of Theorem 9.4.2.) For completeness,
it follows from (ii) that for any Σ0

3 set A, there is a computable function k such
that x ∈ A ⇐⇒ k(x) ∈ {e : card(P1,e) < ℵ0} and hence x ∈ A ⇐⇒ f(k(x)) ∈
{e : card(S2,e) < ℵ0}. Thus {e : card(S2,e) < ℵ0} is complete for Σ0

3 sets.
(iv) The completeness follows from the fact that P2,e ⊗ {0, 1}ω is infinite if

and only if P2,e is nonempty.
The remaining cases follow by relativization.

The complexity results for uncountable cardinality are the same for each
type of class expect for Σ0

1 classes and strong Σ0
2 classes.

Theorem 9.4.4. Let X be either {0, 1}ω or [0, 1].

(i) {e : card(S1,e) > ℵ0} is Σ0
1 complete and {e : card(S1,e) = ℵ0} = ∅.
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(ii) {e : card(S∗2,e) > ℵ0} is Σ0
2 complete and {e : card(S∗2,e) = ℵ0} = ∅.

(iii) For each of the remaining five types of classes Ce, {e : card(Ce) > ℵ0} is
Σ1

1 complete and {e : card(Ce) = ℵ0} is Π1
1 complete.

Proof. Part (i) holds by the proof of Theorem 9.4.1 since S1,e is nonempty if
and only if S1,e has the cardinality of the continuum. Part (ii) follows from part
(i) by relativization.

Theorem 4.5 of [37] proves that {e : card(P1,e) > ℵ0} is Σ1
1 complete and

that {e : card(P1,e) = ℵ0} is Π1
1 complete. The remaining cases can be proved

from these completeness results by the same type of argument that we used to
prove part (iii) from part (ii) in Theorem 9.4.2. That is, in general, the upper
bound on the complexity is given by the fact that any Borel set K is uncountable
if and only if it has a perfect subset. This means that K is uncountable if and
only if there exists an embedding of X into K, which can be coded by a map
from basic open sets to basic open sets. Thus K is uncountable if and only if

(∃f)(∀m)(∀n)[Uf(n)⊂K & (Um⊂Un→Uf(m)⊂Uf(n)) & (Um 6=Un→Uf(m) 6=Uf(n))].

Finally, the completeness in the remaining cases easily follows form the com-
pletness results for {e : card(P1,e) > ℵ0} and {e : card(P1,e) = ℵ0}.

Next we consider the complexity of having a given number of computable
members.

Theorem 9.4.5. Let X be either {0, 1}ω or [0, 1] and let k ≥ 1.

(i) {e : S1,e has ≥ k computable members} is Σ0
1 complete.

(ii) {e : S∗2,e has ≥ k computable members} is Σ0
2 complete.

(iii) For any k ≥ 1 and for each of the remaining five types of classes Ce,
{e : Ce has ≥ k computable members} is Σ0

3 complete.

Proof. Part (i) holds by the proof of Theorem 9.4.2 since any nonempty open
set contains infinitely many recursive members. Then part (ii) follows from part
(i) by relativization.

The fact that {e : P1,e has ≥ k computable members} is Σ0
3 complete is in

Theorem 4.7 of [37]. Theorem 4.8 of [37] proves that {e : P ∗2,e has ≥ k computable members}
is Σ0

3 complete when k = 1 and the proof can easily be extended to cover the
case when k > 1. One can then use these completeness results to prove that {e :
S2,e has ≥ k computable members} and {e : S3,e has ≥ k computable members}
are Σ0

3 complete by the same type of argument that we used to prove part (iii)
of Theorem 9.4.2 from part (ii) of Theorem 9.4.2.

Observe that in {0, 1}ω, P2,e has a computable member if and only if

(∃e)[e ∈ Tot & (∀m)(∃n)(〈m,n〉 ∈We & φe ∈ Un)].

Here Tot = {e : φe is total} which is a complete Π0
2 set. Of course, for n > 0,

Un = I(σn−1) for the finite string σn−1 and φe ∈ Un just means that (∀i <
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lh(σn−1))(φe(i) = σn(i)), which is Σ0
1. This is easily modified to obtain the

result for ≥ k recursive members. Finally, the completeness follows from the
completeness of (ii).

Theorem 9.4.6. Let X be either {0, 1}ω or [0, 1].

(i) {e : S1,e has ℵ0 computable members} is Σ0
1 complete.

(ii) {e : S∗2,e has ℵ0 computable members} is Σ0
2 complete.

(iii) For each of the remaining five types of classes Ce,
{e : Ce has ℵ0 recursive members} is Π0

4 complete.

Proof. Part (i) holds by the proof of Theorem 9.4.2 since every nonempty open
set has ℵ0 computable members. Part (ii) follows from part (i) by relativization.

The fact that {e : P1,e has ℵ0 computable members} is Π0
4 complete is

proved in Theorem 4.7 of [37]. In general, we have

Ce has ℵ0 recursive members ⇐⇒ (∀k)(Ce has ≥ k recursive members)

so that each index set is Π0
4. Then the completeness result for the remaining

cases follows from Theorem 9.2.4 and the Π0
4 completeness of {e : P1,e has ℵ0 computable members}.

9.5 Index sets for measure

In this section, we consider the complexity of having a certain Lebesgue measure.
Let µ(P ) denote the measure of a class P in either {0, 1}ω or in [0, 1]. We begin
with the results from [37] on the measure of Π0

1 classes.

Theorem 9.5.1. Let X be either {0, 1}ω or [0, 1] and let r be a recursive real
number.

(i) For r > 0, {e : µ(P1,e) < r} is Σ0
1 complete.

(ii) For r < 1, {e : µ(P1,e) ≤ r} is Π0
2 complete.

Relativizing this with oracle 0′, we obtain the following.

Theorem 9.5.2. Let X be either {0, 1}ω or [0, 1] and let r be a recursive real
number.

(i) For r > 0, {e : µ(P ∗2,e) < r} is Σ0
2 complete.

(ii) For r < 1, {e : µ(P ∗2,e) ≤ r} is Π0
3 complete.

From the two previous results, we obtain the following results for Σ0
1 and

strong Σ0
2 classes.

Theorem 9.5.3. Let X be either {0, 1}ω or [0, 1] and let r be a recursive real
number.
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(i) For r > 0, {e : µ(S1,e) < r} is Σ0
2 complete.

(ii) For r < 1, {e : µ(S1,e) ≤ r} is Π0
1 complete.

(iii) For r > 0, {e : µ(S∗2,e) < r} is Σ0
3 complete.

(iv) For r < 1, {e : µ(S∗2,e) ≤ r} is Π0
2 complete.

We next consider Π0
2 and Σ0

2 classes.

Theorem 9.5.4. Let X be either {0, 1}ω or [0, 1] and let r be a recursive real
number.

(i) For r > 0, {e : µ(P2,e) < r} is Σ0
2 complete.

(ii) For r < 1, {e : µ(P2,e) ≤ r} is Π0
3 complete.

Proof. (i) For the upper bound on the complexity, use the fact that P2,e =
∩mS1,π(m,e) for some recursive function π. Then

µ(P2,e) < r ⇐⇒ (∃m)µ(S1,π(m,e)) < r

The completeness result follows from Theorem 9.5.3.

(ii) The complexity bound follows from the fact that

µ(P2,e) ≤ r ⇐⇒ (∀q > r)µ(P2,e) < q

where q denotes a rational number. The required completeness follows from
Theorem 9.5.2.

This immediately gives the corresponding result for Σ0
2 classes.

Theorem 9.5.5. Let X be either {0, 1}ω or [0, 1] and let r be a recursive real
number.

(i) For r > 0, {e : µ(S2,e) < r} is Σ0
3 complete.

(ii) For r < 1, {e : µ(S2,e) ≤ r} is Π0
2 complete.

Finally, the result for Σσ1 classes follows by relativization from Theorem 9.5.5.

Theorem 9.5.6. Let X be either {0, 1}ω or [0, 1] and let r be a recursive real
number.

(i) For r > 0, {e : µ(S∗3,e) < r} is Σ0
4 complete.

(ii) For r < 1, {e : µ(S∗3,e) ≤ r} is Π0
3 complete.
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9.6 Verification

The Verification Problem for two sets of classes {Ki : i ∈ I} and {Mj : j ∈ J}
is {〈i, j〉 : Ki ⊂ Mj}. The verification problem has been studied by Klarlund
[96], Staiger [188] and others. Staiger solved the verification problem for all
combinations of the seven types of classes considered in this paper. More gen-
erally, one can ask questions about the difference between two given classes K
and M . For example, “Does K −M contain any recursive elements?”, “What
is the cardinality of K −M?”, “What is the measure of K −M?”, and so on.
One goal of this paper is to address these general verification-type questions for
the various classes defined above.

In this section, we will analyze various properties of the difference set P −Q.
Of course P − Q is empty if and only P ⊂ Q, but it is also interesting to see
whether P−Q might have cardinality ≤ k for some k, or might have no recursive
members. We will generally restrict our study to four cases: (1) differences of
Π0

1 classes; (2) differences of Σ0
2 classes; (3) differences of strong Π0

2 classes; and
(4) differences of Σσ1 classes. Notice that the difference of Σ0

1 classes is the same
thing as the difference of Π0

1 classes, and similarly for Σ0
2 and Π0

2. The first
theorem of this section gives the complexity of the verification problem for all
combinations of the classes studied. We begin with a fundamental theorem of
Staiger [188].

Theorem 9.6.1 (Staiger). (i) {〈a, b〉 : S1,a ⊂ P1,b} is Σ0
1 complete;

(ii) {〈a, b〉 : P1,a ⊂ S1,b} is Π0
1 complete;

(iii) {〈a, b〉 : P1,a ⊂ P1,b} and {〈a, b〉 : S2,a ⊂ P2,b} are Π0
2 complete;

(iv) {〈a, b〉 : P ∗2,a ⊂ S1,b} is Σ0
2 complete;

(v) {〈a, b〉 : P ∗2,a ⊂ P1,b} and {〈a, b〉 : S∗3,a ⊂ P2,b} are Π0
3 complete; and

(vi) {〈a, b〉 : P2,a ⊂ P1,b} and {〈a, b〉 : P2,a ⊂ S1,b} are Π1
1 complete.

Next we consider the complexity of having a finite difference.

Theorem 9.6.2. Let X be either {0, 1}ω or [0, 1]. For any k ≥ 1,

(i) {〈a, b〉 : card(P1,a − P1,b) ≤ k} is Π0
2 complete.

(ii) {〈a, b〉 : card(P2,a − P2,b)) ≤ k} is Π1
1 complete.

(iii) {〈a, b〉 : card(P ∗2,a − P ∗2,b) ≤ k} is Π0
3 complete.

(iv) {〈a, b〉 : card(S∗3,a − S∗3,b) ≤ k} is Π0
3 complete.

Proof. In each case, the completeness follows from Theorem 9.4.2. Thus we
need only see that index sets have the appropriate complexity.

(i) To see that (i) is Π0
2, we claim that

card(P1,a − P1,b) ≤ k ⇐⇒ (∀e)[P1,b ∩ P1,e = ∅ → card(P1,a ∩ P1,e) ≤ k].
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Certainly if the condition is false, then card(P1,a−P1,b) > k. On the other hand,
suppose that card(P1,a−P1,b) > k. Then there are k+1 elements x0, x1, . . . , xk
in P1,a − P1,b. For each i, there is a basic open set Ui such that xi ∈ Ui and
Ui ∩ P1,b = ∅. Then Pe = U0 ∪ · · · ∪ Uk contradicts the condition.

(ii) As above, we claim that

card(P2,a − P2,b) ≤ k) ⇐⇒ (∀e)[P2,b ∩ P2,e = ∅ → card(P2,a ∩ P2,e) ≤ k].

The key here is that X − P2,b = S2,b = ∪mP1,π(e,m) so that if x ∈ P2,a − P2,b,
then x ∈ P1,π(e,m) for some m and P1,π(e,m) ∩P2,b = ∅. Hence if P2,a −P2,b has
k+1 elements, we can obtain a finite union P of Π0

1 classes such that P∩P2,b = ∅
and card(P ∩ P2,a) > k.

(iii) This is similar to (i) since P ∗2,b is a closed set.

(iv) This is similar to (ii) since S∗3,a is an effective union of strong Π0
2 classes.

From this, we can go to an arbitrary finite difference.

Theorem 9.6.3. Let X be either {0, 1}ω or [0, 1].

(i) {〈a, b〉 : card(P1,a − P1,b) < ℵ0} is Σ0
3 complete.

(ii) {〈a, b〉 : card(P2,a − P2,b)) < ℵ0} is Π1
1 complete.

(iii) {〈a, b〉 : card(P ∗2,a − P ∗2,b) < ℵ0} is Σ0
4 complete.

(iii) {〈a, b〉 : card(S∗3,a − S∗3,b) < ℵ0} is Σ0
4 complete.

Proof. In each case, the completeness follows from Theorem 9.4.3 and the upper
bound on the complexity follows from the uniformity of the proof of 9.6.2.

Next we consider countable differences.

Theorem 9.6.4. Let X be either {0, 1}ω or [0, 1]. For each of the seven types
of classes Ce, {〈a, b〉 : card(Ca − Cb)) ≤ ℵ0} is Π1

1 complete.

Proof. This follows easily from Theorem 9.4.4.

Finally, we look at the cardinality of computable elements.

Theorem 9.6.5. Let X be either {0, 1}ω or [0, 1]. For any k ≥ 0 and for each
of the seven types of classes Ce,

(i) {〈a, b〉 : Ca − Cb has ≤ k computable members} is Π0
3 complete.

(ii) {〈a, b〉 : Ca − Cb has < ℵ0 computable members} is Σ0
4 complete.
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Proof. (i) In each case, the completeness follows from Theorem 9.4.5. For the
upper bounds on the complexity, we claim that in general, for a given type of
classes Ce, Ca − Cb has ≤ k computable members if and only if

(∀e)[Cb ∩ P1,e = ∅ → card(Ca ∩ P1,e) ≤ k].

The key here is that if we have k+ 1 recursive elements x0, . . . , xk in the differ-
ence, then they compose a Π0

1 class. Here we use Lemmas 9.2.3 and 9.2.4 to put
each set P1,e in the same definability family and to compute the intersection
and test whether a set is empty.

(ii) The upper bounds on the complexity follow from the uniformity of (i)
and the completeness follows from Theorem 9.4.6.

%bibitemSW77 K. Wagner and L. Staiger, Springer-Verlag (1977), 532-537.



Chapter 10

Graphs

There are several combinatorial problems associated with computable graphs.
These include the graph coloring problem, the problems of Hamiltonian and
Euler circuits, the vertex partition problem, and various matching or marriage
problems. In each case, the set of solutions to any such problem may be repre-
sented by a Π0

1 class. To obtain a bounded Π0
1 class, it is sometimes necessary

to assume that each vertex of the computable graph has finite degree and to
obtain a c. b. Π0

1 class, it is sometimes necessary to assume that the graph is
highly computable, that is, the set of vertices joined to vertex v can be computed
from v.

For the reverse direction, there are a variety of results. In each case, the set
of solutions can represent an arbitrary Π0

1 class of separating sets. For the graph-
coloring problem, Remmel [161] showed that the 3-coloring problem for highly
computable graphs can represent an arbitrary c. b. Π0

1 class. Manaster and
Rosenstein [120] showed that the set of surjective marriages in a symmetically
highly computable society can likewise represent an arbitrary c. b. Π0

1 class. On
the other hand, Remmel [160] showed that this last result does not hold when
each person knows at most two other people; this problem is related to the
the Schroder-Bernstein theorem, where one tries to construct an isomorphism
between two sets given injections in each direction.

For each section, we begin by giving a list of the problems and the required
definitions together with some of the history of each problem. Next we explain
(in varying detail) how to prove that the set of solutions to any such problem can
be represented by a computably bounded Π0

1 class. Then we apply the results of
Chapters IV and V to obtain corollaries which apply to the set of solutions of any
such problem. Conversely we also consider for each problem, whether the set of
solutions to such a problem can represent any c.b. Π0

1 class. In each case, we show
that the set of solutions to such a problem can represent the class of separating
sets of any two disjoint c.e. sets. Then we apply the results of Chapters IV and
V to obtain corollaries which give the existence of “pathological” problems of
each type. Next we consider index sets for such problems using the methods of
Chapter VI. Then we examine the reverse mathematics of such problems as in

265
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Chapter VII. Finally, we look at complexity-theoretic versions of some of the
problems.

10.1 Matching problems

A computable society S = (B,G,K) consists of disjoint computable sets B, the
set of boys, and G, the set of girls, and a computable binary relation K ⊆ B×G.
HereK(b, g) means b knows g. The solutions in this case are the set of marriages,
or matchings, that is, 1:1 maps f : B → G such that K(b, f(b)) holds for all
b. For any subset B′ of B, let K(B′) = {g : (∃b ∈ B′)K(b, g)}. Marshall Hall
[76] extended the classical Philip Hall Theorem to infinite societies and proved
that, for any countable society S = (B,G,K), if every boy knows only finitely
many girls and, for any finite subset B′ ⊆ B, |B′| ≤ |K(B′)|, then there is
a marriage for S. We say that a computable society S = (B,G,K) is highly
computable if there is a partial computable function k : B → ω such that, for
each b ∈ B, k(b) equals the cardinality of K(b). We say that S is symmetrically
highly computable if there is also a partial computable function k such that, for
each g ∈ G, k(g) is the cardinality of the set of boys which know g.

The problems which we consider are:

(i) The general problem of finding a marriage in a highly computable society
S,

(ii) the surjective matching problem, that is, finding a marriage f : B → G
which is both 1:1 and onto in a symmetrically highly computable society
S, and

(iii) the surjective matching problem, where each person knows at most two
other people in a symmetrically highly computable society S.

Problems (i) and (ii) were analyzed by Manaster and Rosenstein in [120, 121],
who showed that the set of marriages in case (i) and (ii) is always a c.b. Π0

1

class, but does not always contain a computable element. Moreover, Manaster,
Rosenstein showed that in case (ii), the set of surjective marriages can represent
an arbitrary c.b. Π0

1 class. We note that problem (iii) contains a computable
version of Banach’s strengthening of the Schroder-Bernstein theorem, which
was shown to be noneffective by Remmel [160]. That is, suppose we take 1:1
computable functions with computable ranges f : B → G and g : G → B
where B and G are computable sets. Then we can form a highly computable
society S = (B,G,K), where K(x, y) holds if and only if f(x) = y or g(y) = x.
For such a society S, the only surjective marriages h arise from some partition
B = B1∪B2, where h = fdB1∪g−1dB2, and the existence of such marriages are
guaranteed by Banach’s result. (See [160] for details.) It was shown by Remmel
in [161] that the set of surjective marriages in case (iii) cannot represent an
arbitrary c.b. Π0

1 class in contrast to the Manaster-Rosenstein result for case
(ii).
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In each case, the set of solutions to such a problem can be represented by a
Π0

1 class [120, 121].

Theorem 10.1.1. For any computable instance of each of the three matching
problems described above, the set of solutions can be represented by a Π0

1 class.
If the given graph is highly computable, then the class is computably bounded.

Proof. We may assume that B is the set of even numbers and G is the set of
odd numbers. In (1), a marriage is simply a 1:1 map g : B → G such that
(b, g(b)) ∈ K for all b ∈ B. We can represent g by a map xg : N → N by
letting xg(i) = 2g(2i) + 1. Thus the Π0

1 class P ⊂ NN which represents the set
of solutions is given by

x ∈ P ⇐⇒ (∀i)(2i, 2x(i) + 1) ∈ K & (∀i, k)(x(i) = x(k)→ i = k).

If S is highly computable, then given i, we can compute the finite set Gi = {j :
(2i, 2j + 1) ∈ K}. Since xg(i) ∈ Gi, this shows that P is computably bounded.

For problems (ii) and (iii), the solution is a pair of functions, one from B
into G and one from G into B, which are inverses of each other. This matching
can be represented by a single function from N to N and the set of solutions will
again be a Π0

1 class, and will be c. b. if S is highly computable.

We can derive a number of immediate corollaries to Theorem 10.1.1.

Theorem 10.1.2. For each highly computable society S and matching problem
of type (i), (ii), or (iii), the following hold.

(a) If S has a solution, then S has a solution in some c. e. degree.

(b) If S has a solution, then S has solutions s1 and s2 such that any function
computable in both s1 and s2 is recursive.

(c) If S has a solution but only has countably many solutions, then S has a
computable solution.

(d) If S has only finitely many solutions, then each solution is computable.

(e) If S has a solution but has no computable solution, then for any count-
able sequence of nonzero degrees {ai}, S has continuum many solutions s
which are mutually Turing incomparable and such that the degree of s is
incomparable with each ai.

Next we consider the reverse direction of this correspondence. That is, given
an arbitrary c. b. Π0

1 class P , is there a matching problem of a given type such
that P represents the set of matchings?

Theorem 10.1.3. [[120]] The problem of finding a surjective marriage in a
computable society can represent an arbitrary bounded Π0

1 class and the problem
of finding a surjective marriage in a symmetrically highly computable society
can represent an arbitrary c. b. Π0

1 class.
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Proof. Let P be the set of infinite paths through a computable tree T . Let B =
{2 < σ >: σ ∈ T {∅}} and G = {2 < σ > +1 : σ ∈ T}. K consists of all pairs
(2 < σ >, 2 < σ > +1) for σ ∈ T as well as the pairs 2 < σ >, 2 < σ � n > +1)
for any σ ∈ T with length n + 1. An infinite path x ∈ T corresponds to the
matching which assigns girl 2 < x � n > +1 to boy 2 < x � n+ 1 > and assigns
girl 2 < σ > +1 to boy 2 < σ > if σ is not an initial segment of x. It is clear
that if T is highly computable, then K will also be highly computable.

Theorem 10.1.4. The following problems can represent the c. b. Π0
1 class of

separating sets for any pair of disjoint infinite c. e. sets.

(i) The problem of finding a marriage in a highly recursive society.

(ii) The problem of finding a surjective marriage in a symmetrically highly
recursive society where each person knows at most two other people.

Proof. (i) For each i ∈ ω, we will specify a boy bi and two girls g0,i and g1,i so
that bi knows both g0,i and g1,i and no other. Our highly computable society
S = (B,G,K) will be such that G = {g0,i, g1,i : i ∈ ω} and B = R∪{bi : i ∈ ω},
where R = {rs : (As ∪ Bs) − (As−1 ∪ Bs−1) 6= ∅} is some infinite set of boys
held in reserve. A marriage f for S will code a set Cf by specifying that i ∈ Cf
if and only if f(bi) = g1,i. We then determine who the boys in R know in stages
in such a way that

(a) if i ∈ A, then one boy in R knows g1,i and no others and no boy in R knows
g0,i;

(b) if i ∈ B, then one boy in R knows g0,i and no others and no boy in R knows
g1,i;

(c) if i /∈ A ∪B, then no boy in R knows g0,i or g1,i.

Then if i enters A ∪ B at stage s, we put rs ∈ B and we put (rs, g1,i) in
K if i ∈ A and (rs, g0,i) in K if i ∈ B. It is clear that this defines a highly
computable society S and that there is a one-to-one degree-preserving corre-
spondence between the marriages f for S and the separating sets C of A and
B, given by mapping f to Cf .

(ii) Fix a pair A andB of infinite disjoint c. e. sets and recursive enumerations
{As}s∈ω and {Bs}s∈ω such that, for all s, As, Bs ⊆ {0, 1, . . . , s} and there is at
most one element of A ∪B which comes into A ∪B at stage s.

We first partition ω into a computable sequence (G0, B0, G1, B1, . . .) of in-
finite computable sets . For any fixed i, let g0

i < g1
i < . . . and b0i < b1i < . . .

list the elements of Gi and Bi in increasing order. Our symmetrically highly
computable society S = (B,G,K) will be thought of as a bipartite graph with
B = ∪iBi and G = ∪iGi. The idea is to construct a connected component of S
with vertex set Gi ∪ Bi for each i. We construct the i-th component in stages,
so that at stage s, we determine the edges out of gki and bki for k ≤ 2s. We begin
as if we are going to construct the two-way infinite chain in which b0i is joined
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to g0
i and g1

i and such that, for each n > 0, b2ni is joined to g2n−2
i and g2n

i and
b2n−1
i is joined to g2n−1

i and g2n+1
i . See Figure 10.1

Observe that there are exactly two possible surjective marriages f for such
a component depending on whether f(b0i ) = g0

i or f(b0i ) = g1
i . A marriage

f : B → G for S will code a separating set Cf for A and B by letting i ∈ Cf if
and only if f(b0i ) = g1

i . Then it is easy to see that all we need to do to ensure
that each marriage f of S corresponds to a separating set Cf for A and B is
to construct the i-th component so that it is a one-way chain starting in Bi if
i ∈ A, a one-way chain starting in Gi if i ∈ B, and the full two-way infinite
chain if i /∈ As ∪ Bs. Thus we build the chain until we see that i ∈ A ∪ B at
some stage s. That is, at each stage t, we add bki and gki for k ∈ {2t, 2t + 1}
as pictured in Figure 10.1. Then if i ∈ Bs omit b2ni and g2n

i from the chain for
all n ≥ s so that the chain will be a one-way infinite starting a girl g2s−2

i . If
i ∈ As, then add b2si and we omit g2s

i plus all boys and girls of the form b2ni and
g2n
i for n > s from the chain so that the chain will be a one-way infinite chain

starting at b2si .
We note that we can consider this example as a computable version of prob-

lem (ii) by simply directing the edges of the graph down the left hand side of
the graph and up the right hand side of the graph. That is, we can define the
function f : B → G by saying that f(b∗) = g∗ is there is a directed edge from
b∗ to g∗ in some component and define the function g : G → B by saying that
g(g∗) = b∗ if there is a directed edge from g∗ to b∗ in some component.

Given these representation results, we have the usual corollaries.

Theorem 10.1.5. (a) For each one of the three matching problems,

(1) There is a computable society S which has a matching but has no com-
putable matching.

(2) There is a computable society S such that that any two distinct matchings
are Turing incomparable.

(3) If a is a Turing degree and 0 <T a ≤T 0′, then there is a computable
society s which has a matching of degree a but has no computable matching.

(b) For the surjective matching problem, the following also hold.

(4) There is a computable society S such that if a is the degree of any matching
and b is a c. e. degree with a ≤T b, then b = 0′.

(5) If c is any c. e. degree, then there exists a computable society S such that
the set of c. e. degrees which contain matchings equals the set of c. e.
degrees ≥T c.

10.2 Graph-coloring problems

A countable infinite graph G = (V,E) consists of a subset V of the natural
numbers called vertices together with a symmetric subset E of V × V , called
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Figure 10.1: Generic component of the symmetric society
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the edges. G is said to be computable if the sets V and E are computable. We
say that vertices u, v are joined by an edge (u, v). The degree of a vertex u
of G is the cardinality of the set of vertices joined to u. A k-coloring of the
graph G is a map g from V into {1, 2, . . . , k} such that g(u) 6= g(v) whenever
(u, v) ∈ E. The k-coloring problem for a graph G is to determine whether G has
any k-colorings. The set of solutions to this problem is the set of k-colorings of
G. We make the convention that, unless stated otherwise, the graphs we shall
discuss are assumed to be connected, have no loops or multiple edges, and have
the property that each vertex v of G is of finite degree.

The graph coloring problem has been studied in combinatorics for over a
century. Two classical results for finite graphs are Brooks’ Theorem [13] that
every graph with all vertices of degree ≤ k and with no k + 1-cliques is k-
colorable and the Four Color Theorem of Haaken and Appel [2] that every
planar graph is 4-colorable. These results are easily extended to infinite graphs
by a compactness argument. A natural question is whether such results can
be effectivized. The answer to this question is yes for Brooks’ Theorem, that
is, Schmerl showed in [169] that every computable graph with all vertices of
degree ≤ k and with no k+1-cliques has a computable k-coloring. On the other
hand, the Four Color Theorem cannot be effectivized. Bean constructed in [7]
a 3-colorable, computable, planar connected graph which has no computable
k-coloring for any k.

A computable graph G = (V,E) is said to be highly computable if there is
a partial computable function f : V → ω such that, for each v ∈ V , f(v) is
the degree of v. Highly computable graphs are of interest for several reasons.
One reason is the result of Bean [7] that any highly computable k-colorable
graph has a computable 2k-coloring, in contrast to the result cited above for
arbitrary computable graphs. This result was improved by Schmerl [168] from
2k to 2k − 1, who also showed that 2k − 1 is the best possible result. It follows
from the work of Bean and Schmerl that every highly computable planar graph
has a computable 6-coloring. This result was improved by Carstens [16] from 6
to 5, but the highly computable four color problem remains open.

Bean showed in [7] that the set of k-colorings of a highly computable graph
is always a computably bounded Π0

1 class. (See Exercise 1.)
Conversely, Remmel [161] showed that every c. b. Π0

1 class can actually be
strongly represented by a highly computable k-coloring problem.

The problem of feasible graphs and colorings has been studied by Cenzer
and Remmel in [33].

Exercises

10.2.1. Show that for any highly computable graph G = (V,E) and any finite k,
the set of k-colorings of G may be represented by a computably bounded
Π0

1 class P ⊆ {0, 1, . . . , k − 1}N.

10.2.2. Show that if G is a planar graph, then the set of 5-colorings of G always
has cardinality 2ℵ0 and hence not every c.b. Π0

1 class may be represented
as the set of 5-colorings of a planar graph. (Hint: every planar graph G
is 4-colorable, by the theorem of Appel and Haken [2].)
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10.3 The Hamiltonian circuit problem

Let G = (V,E) be a countably infinite graph. Two vertices u, v of G are
adjacent if (u, v) ∈ E and two edges (u1, v1) and (u2, v2) are adjacent if either
v1 = u2 or u1 = v2. A one-way (respectively two-way) Hamiltonian circuit (or
Hamiltonian path) for G is a one-to-one correspondence f between the natural
numbers ω (resp. the integers Z) and V such that consecutive vertices are
adjacent, i.e. (f(i), f(i + 1)) ∈ E for all i. The dual concepts are the one-way
(respectively two-way) Euler path, which is a one-to-one correspondence between
the natural numbers ω (resp. the integers Z) and E such that consecutive edges
are adjacent. For each of these four notions, let us also define the associated
notion of being such a path for a subgraph. That is, a one-way Hamiltonian
sub-path for G will be a one-to-one embedding of the natural numbers into
V such that consecutive vertices are adjacent. The other three definitions are
similar.

In each case, the problem here is whether a given graph has such a path.
We will focus on the sub-path problems.

Theorem 10.3.1. For each of the following problems, the set of solutions can
be represented as a Π0

1 class. In cases (a) and (b), the class is bounded if the
each vertex has finite degree and is c. b. if the graph is highly computable.

(a) The one-way Hamiltonian (Euler) sub-paths starting from a fixed vertex
in a recursive graph.

(b) The two-way Hamiltonian (Euler) sub-paths through a fixed vertex in a
recursive graph.

(c) The one-way Hamiltonian (Euler) paths starting from a fixed vertex in a
recursive graph.

(d) The two-way Euler paths through a fixed vertex in a recursive graph.

Proof. (a) Let the computable graph G = (V,E) with fixed vertex v0 be given.
Then a one-way Hamiltonian (Euler) sub-path is a function f from ω into V
with f(0) = v0 such that (f(n), f(n + 1) ∈ E for all n and such that, for the
Hamiltonian path, m 6= n implies that f(m) 6= f(n) and, for the Euler path,
m 6= n implies that the edges (f(m), f(m+1)) and (f(n), f(n+1)) are different.
In each case, this clearly defines a Π0

1 class P . If each vertex v has finite degree,
then there is a function g such that all vertices joined to vertex v are ≤ g(v).
It follows that we can compute a bound h(m) for the possible value of f(m)
by letting h(0) = v0 and in general h(m + 1) = sup{g(v) : v ≤ h(m)}. This
shows that P is bounded. If G is highly computablee, then the function g may
be taken to be computable, so that P is computably bounded.

(b) Again let the computable graph G = (V,E) with fixed vertex v0 be given.
Then a two-way Hamiltonian (Euler) sub-path

. . . , π(−1), π(0) = v0, π(1), . . .
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can be represented as a function f from ω into V with f(0) = v0 such that
(v0, f(1)) ∈ E, such that (f(n), f(n + 2)) ∈ E for all n and such that, for the
Hamiltonian path, the function f is one-to-one, and, for the Euler path, no edge
occurs twice in the list

. . . , (f(3), f(1)), (f(1), f(0)), ((f(0), f(2)), (f(2), f(4)), . . . .

It follows as in (a) that the class P of two-way Hamiltonian (Euler) sub-paths
is a Π0

1 class, is bounded if each vertex of G has finite degree, and is c. b. if G
is highly computable.

(c) We first give the proof for one-way Hamiltonian paths. Recall that V = ω
and represent a one-way Hamiltonian path

π = (π(0) = v0, π(1), π(2), . . .)

by a function f such that f(2n) = π(n) and f(2v + 1) = n such that v = π(n).
This is clearly a one-to-one degree-preserving correspondence between the one-
way Hamiltonian paths ofG and the Π0

1 class P . Then the Π0
1 class P of solutions

is the set of functions f such that f(0) = v0, such that (f(2n), f(2n+2)) ∈ E for
all n, and such that, for all v and n, f(2n) = v if and only if f(2v+ 1) = n. For
the one-way Euler paths π, we take f(2n) = π(n) and let f(2[u, v] + 1) = n+ 1
such that π(n) = u and π(n+1) = v if (u, v) ∈ E and otherwise f(2[u, v]+1) = 0.
In either case, the assumption that G is highly computable does not necessarily
imply that P is even bounded.

(d) Represent a two-way Hamiltonian path by a function f so that the path
is given by . . . , f(4), f(1), f(0) = v0, f(3), f(6), . . . and such that f(3v + 2) = n
such that n 6= 2 mod 3 and f(n) = v. Represent a two-way Euler path π
again by a function f so that π = . . . , f(4), f(1), f(0) = v0, f(3), f(6), . . . and
now such that f(3[u, v] + 2) = n such that n 6= 2 mod 3 and f(n) = u and
f(n+ 3) = v.

It follows that if each vertex of G has finite degree and G has a one-way
or two-way Hamiltonian (Euler) sub-path, then it has such a sub-path which
is computable in 0′′. In the cases (c) and (d) of the Hamiltonian and Euler
paths, we can only conclude, even for a highly computable graph G, that G has
a solution recursive in some Σ1

1 set. We leave the other usual corollaries for the
reader.

Bean [8] showed that if G is highly computable and has an Euler path,
then G will actually have a computable Euler path. This is not the case for
Hamiltonian paths, by the following reasoning. If every highly computable
graph G with a Hamiltonian path had a hyperarithmetic Hamiltonian path,
then the set of highly computable graphs with Hamiltonian paths would be Π1

1,
by the Spector-Gandy theorem 1.14.5. However, Harel [77] showed that the
problem of the existence of (one-way or two-way) Hamiltonian paths in a highly
computable graph is Σ1

1-complete and therefore not Π1
1. It follows that the set of

Hamiltonian paths of a highly computable graph is not always a c. b. Π0
1 class.

That is, if it were always a c. b. class, then by Theorem every highly computable
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graph with a Hamiltonian path would have a Hamiltonian path computable in
0′ and hence a hyperarithmetic Hamiltonian path. This applies to one-way and
two-way paths.

For the reverse direction, we have the following result of Bean [8].

Theorem 10.3.2. For any c. b. Π0
1 class P , there is a highly computable planar

graph G and a one-to-one computable isomorphism between P and the set of
Hamiltonian paths for G.

Proof. Let P be the set of infinite paths through the highly computable tree T .
G is constructed in stages, beginning with vertices 0 and 0out and edge (0, 0out).
At stage n, let σ0, σ1, . . . , σm be the nodes of T at level n and introduce a circuit
of 3(m+ 1) vertice in G given by

(σout0 , σin0 , σ0,1, σ
out
1 , σ1,2, . . . , σ

out
m , σinm , σm,0.σ

out
0 ).

For every node τi at level n− 1 and every successor σj at level n of τi, also add
an edge (τouti , σinj ) to G. (For the two-way circuit, also add a vertex vn and
edge (vn−1, vn), where v0 = 0. It is clear that G is a highly computable planar
graph. The desired correspondence between P and the Hamiltonian paths of G
is given as follows. The node σj of T follows the node τi on the infinite path
through T if and only if the vertex σinj immediately follows the vertex τoutj on
the Hamiltonian path.

It follows that there is a highly computable graph G which has Hamiltonian
paths but has no computable Hamiltonian paths. Other corollaries are left to
the reader.

This problem, posed by S. Ulam, is to show that for each partition of the
vertex set V of a graph G = (V,E) into sets of uniformly bounded cardinality,
there is at least one set of the partition which is adjacent to m (or more) other
sets of the partition. Here we say that two sets S1 and S2 are adjacent if there
exist vertices v1 ∈ S1 and v2 ∈ S2 such that (v1, v2) ∈ E. The partition number
m of a graph G is the least number m for which the statement is true. The vertex
partition problem was studied by Cenzer and E. Howorka [24], who computed
the vertex partition numbers of various well-known graphs, including the m-
regular trees Tm and the planar mosaic graphs M3, M4 and M6. The tree Tm
may be viewed as {1, 2, . . . ,m}∗. The graphs M3, M4 and M6 may be viewed
as tilings of the plane by regular hexagons, squares and equilateral triangles. In
each case, the partition number of the graph turns out to be the degree of the
graph. In this situation, the Π0

1 class arises from the dual problem. That is,
given the graph G and numbers k and m, to find a k-partition P of the graph
such that no set has m neighbors. Here a k-partition is a partition of V into
sets of cardinality ≤ k. The solution to such a problem may be represented as
a function f from V ×V into {0, 1} which is to be the characteristic function of
the equivalence relation with equivalence classes being the sets of the partition.
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Theorem 10.3.3. For any highly computable graph G = (V,E), and any finite
k and m, the set C of k-partitions of V such that no set in the partition is
adjacent to m other sets may be represented by a Π0

1 class in {0, 1}N.

Proof. Let G = (V,E) be a highly recursive graph and let k,m be positive
integers. Let C be the set of k-partitions of V such that no set in the partition
is adjacent to m other sets. As indicated above, we may represent a partition by
the characteristic function f of the corresponding equivalence relation. Let us
assume that V = ω for simplicity and let C be the class of all such functions for
which there is no set in the partition represented by f which has m neighbors.
Now a function f ∈ {0, 1}ω will be in the class C if it satisfies the following
conditions:

(i) (∀u)[f(u, u) = 1].

(ii) (∀u, v)[f(u, v) = f(v, u)].

(iii) (∀u, v, w)[f(u, v) = f(v, w) = 1→ f(u,w) = 1].

(iv) (∀u1, u2, . . . , uk+1)(∃i, j ≤ k + 1)[f(ui, uj) = 0].

(v) (∀u1, v1, u2, v2, . . . , um, vm)[((∀i, j ≤ m)[f(ui, uj) = 1] &
(∀i ≤ m)[E(ui, vi)])→ (∃i, j ≤ m)[f(vi, vj) = 1]].

The first three clauses are the requirement that f is the characteristic func-
tion of an equivalence relation. The fourth clause is the requirement that each
set in the corresponding partition has cardinality ≤ k and the final clause is the
requirement that no set in the partition is adjacent to m other sets.
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Chapter 11

Orderings

There are several problems associated with partially ordered sets (posets) and
also with computable linear orderings and ordered structures.

Problems to be considered include the decomposition of a poset into chains
and into antichains, as well as the problem of expressing a partial ordering as
the intersection of finitely many linear orderings. For each computable instance
of these problems, the set of solutions can be represented as a c. b. Π0

1 class
and can represent an arbitrary Π0

1 class of separating sets.
For a computable linear ordering A, we consider the problem of finding

suborderings of type ω or ω∗, the problem of finding an ω-successivity or ω∗-
successivity, and the problem of finding a self-embedding of A.

Finally, we consider the problem of finding an ordering of a computable
Abelian group or formally real field. As usual, the set of orderings can always
be represented by a c. b. Π0

1 class and Metakides and Nerode [138] showed
that any c. b. class. On the other hand, Solomon [182] showed that not every
c. b. Π0

1 class can be represented as the set of orderings of a computable abelian
group.

11.1 Partial orderings

In this section we consider three problems associated with partially ordered sets
(posets). Two of these are the dual problems of covering a poset with chains or
with antichains. The third problem is the dimension problem, that is, expressing
a poset as the intersection of linear orderings.

We first describe the problems and show that the solution set to a computable
problem always forms a c. b. Π0

1 class, and then apply the results of Part One
to obtain corollaries which apply to the set of solutions of any such problem.
We also consider for each problem, whether, conversely, the set of solutions to
such a problem can represent any c. b. Π0

1 class. For each problem, we show
that the set of solutions to such a problem can represent the class of separating
sets of any two disjoint c. e. sets and we apply the results of Part One to ob-
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tain corollaries which give the existence of “pathological” problems of each type.

Decomposition problems for posets

Here we start with a computable poset A = (A,≤A), which consists of a com-
putable subset A of N and a computable partial ordering ≤A. The width of
A is the maximum cardinality of an antichain in A and the height of A is the
maximum cardinality of a chain in A.

(a) The first decomposition theorem we consider is Dilworth’s theorem [53],
which states that any poset A of width n can be covered by n chains. The
problem here is to find such a covering of A by n chains and the set of solutions
corresponds to the various coverings of A by n chains. The effective version of
Dilworth’s theorem has been analyzed by Kierstead in [94], where he showed that
every computable poset A of width n can be covered by (5n− 1)/4 computable
chains, while for each n ≥ 2, there are computable posets of width n which
cannot be covered by 4(n−1) chains. See Kierstead’s article [93] in this volume
for details and more results.

Thus, the set of solutions of this problem for a computable poset A can be
represented as the set of maps f : A→ {1, 2, . . . , n} such that f−1({i}) = {x ∈
A : f(x) = i} is a chain for each i, which is clearly a c. b. Π0

1 class.
(b) There is a natural dual to Dilworth’s theorem which says that every

poset of height n can be covered by n antichains. The problem again is to
find such a covering. The effective version of the latter theorem was analyzed
by Schmerl, who showed that every computable poset of height n can be cov-
ered by (n2 + n)/2 computable antichains while for each n ≥ 2, there is a
computable poset of height n which cannot be covered by (n2 + n)/2− 1 com-
putable antichains. Furthermore, Szeméredi and Trotter showed that there exist
computabl partial orders of height n and computable dimension 2 which still
cannot be covered by (n2 + n)/2 − 1 computable antichains. These results are
reported by Kierstead in [94].

(2) Dimension of posets problem The poset A = (A,R) is defined to be n-
dimensional if there are n linear orderings of A, (A,L1), . . . , (A,Ln), such that
R = L1∩ · · ·∩Ln. The notion of the dimensionality of posets is due to Dushnik
and Miller, who showed in [62] that a countable poset (A,R) is n-dimensional
if and only if it can be embedded as a subordering in the product ordering Qn,
where Q is the set of rational numbers under the usual ordering. A (computable)
poset (A,R) has (computable) dimension equal to d, for d finite, if there are d
(computable) linear orderings (A,L1), . . . , (A,Ld) such that R = L1 ∩ · · · ∩ Ld,
but there are not d−1 (computable) linear orderings (A,L′1), . . . , (A,L′d−1) such
that R = L′1 ∩ · · · ∩ L′d−1. Kierstead, McNulty and Trotter have analyzed in
[95], the computable dimension of computable posets and have shown that in
general, the computable dimension of a poset is not equal to its computable
dimension.

Given a countable poset (A,R) with A ⊆ ω, we can code a set of d linear
orderings of A, (A,L1), . . . , (A,Ld) as follows. Let a0 < a1 < · · · be an increas-
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ing enumeration of A. Then given d linear orderings of {a0, . . . , an−1}, there
clearly are (n + 1)d ways to extend the d linear orderings to d linear orderings
on {a0, . . . , an}. One can fix some effective enumeration of these extensions for
each n, so that it then becomes possible to code each d-tuple of linear order-
ings by a function f : A → ω where f(an) ≤ (n + 1)d − 1 for all n. Thus the
set of solutions for the n-dimensionality problem of a computable poset (A,R)
can be represented as the set of all f : A → ω such that f codes an n-tuple,
(A,L1), . . . , (A,Ln), of linear orderings on A such that R = L1 ∩ · · ·Ln, which
is a c. b. Π0

1 class.
We state the first theorem and leave the details of the representation to the

reader.

Theorem 11.1.1. For each specific computably presented instance of one of the
poset problems P listed above, the set of solutions can be represented as a c. b.
Π0

1 class.

As usual, we can now derive a number of immediate corollaries from the
results of Part One. We state only a few of these and leave the rest to the
reader. For example, the following is true.

Theorem 11.1.2. (a) If a computable poset A has a covering by n chains,
then A can be covered by n chains C1, . . . Cn such that C1 ⊕ · · · ⊕ Cn has
c. e. degree.

(b) If A = (A,R) is a computable poset such that the family of sets
{(A,L1), (A,L2), . . . , (A,Ln)} of n linear orderings such that
R = L1 ∩ L2 ∩ · · · ∩ Ln is countably infinite, then A has computable
dimension ≤ n.

(c) If a computable poset A has a covering by n antichains, but has no covering
by n computable antichains, then for any countable sequence of nonzero
degrees {ai}, A has a continuum of coverings {A1, A2, . . . , An} by n an-
tichains, which are pairwise Turing incomparable and such that the degree
of {A1, A2, . . . , An} is incomparable with each ai.

Next we consider the reverse direction of this correspondence.

Theorem 11.1.3. Each of the three problems described above can strongly rep-
resent the c. b. Π0

1 class of separating sets for any pair of disjoint infinite c. e.
sets.

Proof. Fix a pair A and B of infinite disjoint c. e. sets and computable enu-
merations {As}s∈ω and {Bs}s∈ω such that, for all s, As, Bs ⊆ {0, 1, . . . , s} and
there is at most one element of A ∪B which comes into A ∪B at stage s.

(1) The problem of covering a computable poset of width k by k chains.
First consider the case k = 2. We begin with the poset D0 consisting of two
one-way chains {ai,j : i = 0, 1 ∧ j ∈ ω} and {bi,j : i = 0, 1 ∧ j ∈ ω} where we
have ai,j ≤ ai,k whenever j < k and a0,j ≤ a1,j as well, and similarly for the
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bi,j . The two chains are linked by having a0,j ≤ b1,j and similarly b0,j ≤ a1,j .
Let us call the posets {a0,i, a1,i, b0,i, b1,i} the i-th block of the poset D0. The
i-th block of D0 is pictured in Figure 11.1(A).

Our final poset D = (D,≤D) will consist of the poset D0 together with an
infinite computable set E whose relations to the elements of D0 and among
themselves is to be specified in stages. Now it is clear that a decomposition of
this poset, up to renaming the chains, is completely determined by the choice,
for each i, of either

(a) putting a0,i and a1,i in one chain and b0,i and b1,i in the other, or

(b) putting a0,i and b1,i in one chain and a1,i and b0,i in the other.

Thus we can think of a chain decomposition f : D → {1, 2} as coding up a
set Cf , where i ∈ Cf if and only if we use choice (b) for the i-th component,
that is, if and only if f(a0,i) = f(b1,i). Now the idea is to define the relations
between the remaining computable set E so that we introduce an element e
in the i-th component between a0,i and a1,i if i ∈ B, see Figure 11.1(B). This
will force e, a0,i and a1,i to be in the same chain. We introduce an element f
in the i-th component between b0,i and a1,i if i ∈ A, see Figure 11.1(C). This
will force f , b0,i and a1,i to be in the same chain. Finally we have no new
element in the i-th component if i /∈ A ∪ B. It is not difficult to see that this
can be accomplished so as to ensure that D is a computable poset of width 2
and that such actions will ensure that the correspondence f → Cf will be a
one-to-one degree-preserving correspondence between the decompositions of D
into two chains and the separating sets of A ∪ B. We leave the details to the
reader. For the case where k > 2, one simply adds to the poset described a set
of k − 2 computable infinite one-way chains, all of whose elements are incom-
parable with D and so that elements from different chains are also incomparable.

(2) The problem of covering a computable poset of width k by k antichains.
Again we shall initially consider the case k = 2. The poset D = (D,≤D) will
consist of two parts. The first part of the poset will consist of a computable
antichain c0, c1, . . ., and the second part will consist of two antichains a0, a1, . . .
and b0, b1, . . . where a0 ≤ b0 and, for each i, ai+1 ≤ bi and ai+1 ≤ bi+1, see
Figure 11.1.

We will complete the partial ordering on D by specifying the relations be-
tween the two parts in stages. Clearly, up to renaming the antichains, there
is a unique decomposition of the second part of the poset into two antichains.
We think of a decomposition of D into two antichains as coding up a set Cf by
specifying i ∈ Cf if and only if f assigns ci to the same antichain as the a’s.
Then, for each i, we define ci to be greater than as if i ∈ As+1 \As and incom-
parable to as otherwise, and define ci to be less than bs if i ∈ Bs+1 \ Bs and
incomparable to bs otherwise. It is then easy to check that D is a computable
poset of height two and that, up to renaming the antichains, the correspondence
f → Cf is a one-to-one degree preserving correspondence between decomposi-
tions of P into two antichains and separating sets of A∪B. For the case where



11.1. PARTIAL ORDERINGS 281

a

a

a

a

a

b

b

b

b

be

f

b

a

i not in A or B

i in B

i in A

(A)

(C)

(B)

1,i

0,i

1,i

0,i

1,i

0,i

1,i

0,i

1,i

0,i

1,i

0,i

Figure 11.1: Blocks for width 2 poset



282 CHAPTER 11. ORDERINGS

.  .  .

.  .  .

a a a a aa

b b b b bb
0

1 20 43 5

1 3 4 52

Figure 11.2: Height 2 poset



11.1. PARTIAL ORDERINGS 283

k > 2, one simply adds to the poset described a set of k− 2 computable infinite
antichains, all of whose elements are comparable with every element of D and
so that elements from different antichains are also comparable.

(3)The problem of expressing a computable poset P = (P,≤ P ) of dimension d
as the intersection of d linear orderings.

We consider the case oftwo dimensional partial orderings. First we partition
N into two infinite computable sets C = {c0 < c1 < · · · } and D = {d0 < d1 <
· · · }. For each i, we let Ci = {c5i, c5i+1, c5i+2, c5i+3, c5i+4}. We shall define
a computable partial ordering <P on ω in stages. Given any two sets E and
F, E <P F will denote that, for any e ∈ E and f ∈ F , e <P f . We start by
defining <P so that C0 <P C1 <P C2 <P · · · . This means that if <1 and <2 are
two linear orderings such that <1 ∩ <2=<P , then the only difference between
<1 and <2 on C is how <1 and <2 order the elements within the blocks Ci.
For each block Ci, <P is defined so that we have the Hasse diagram in Figure
11.1(A).

It is then easy to check that, up to a permutation of the indices of the linear
orderings <1 and <2, there are precisely two ways to define <1 and <2 on Ci
so that <1 ∩ <2 equals <P restricted to Ai, namely,

(I) c5i <1 c5i+1 <1 c5i+2 <1 c5i+3 <1 c5i+4 and
c5i+2 <2 c5i+4 <2 c5i+3 <2 c5i <2 c5i+1, or

(II) c5i <1 c5i+1 <1 c5i+2 <1 c5i+4 <1 c5i+3 and
c5i+2 <2 c5i+3 <2 c5i+4 <2 c5i <2 c5i+1.

Note that the difference between (I) and (II) is that in the ordering where
the elements c5i, c5i+1 precede the elements c5i+2, c5i+3, c5i+4, we have c5i+3

preceding c5i+4 in (I), while in (II) c5i+4 precedes c5i+3.
We can thus use a pair of linear orderings <1 and <2 such that <1 ∩ <2=<P

is defined within the blocks Ci to code a set S(<1, <2) ⊆ ω by declaring i ∈ S
if and only if <1 and <2 are of type (I) on Ci.

The key to our ability to code up a tree of separating sets for a pair of disjoint
c. e. sets A and B is the following. If we add an element d to the Hasse diagram
as pictured in Figure 11.1(B), then only linear orderings <1 and <2 of type (I)
can be extended to Ci ∪ {d} so that <1 ∩ <2=<P and if we add an element d
to the Hasse diagram as pictured in Figure 11.1(C), then only linear orderings
<1 and <2 of type (II) can be extended to Ci ∪ {d} so that <1 ∩ <2=<P .

That is, it is easy to check that, up to a permutation of indices there is only
one way to define linear orderings <1 and <2 on Ci ∪ {d} so that <1 ∩ <2=<P
if <P has the Hasse diagram as pictured in Figure 11.1(B), namely

(I ′): c5i <1 d <1 c5i+1 <1 c5i+2 <1 c5i+3 <1 c5i+4 and
c5i+2 <2 c5i+4 <2 d <2 c5i+3 <2 c5i <2 c5i+1.

Similarly, up to a permutation of indices, there is only one way to define linear
orderings <1 and <2 on Ci ∪ {d} so that <1 ∩ <2=<P if <P has the Hasse
diagram as pictured in Figure 5 (C), namely
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(II ′): c5i <1 d <1 c5i+1 <1 c5i+2 <1 c5i+4 <1 c5i+3 and
c5i+2 <2 c5i+3 <2 d <2 c5i+4 <2 c5i <2 c5i+1.

Now to complete our definition of <P on ω, we proceed in stages as follows.

Stage 0 If i ∈ A0, let Ci−1 <P {d0} <P Ci+1, and define <P on Ci ∪ {d0}
so that we have a Hasse diagram as in Figure 11.1(B). If i ∈ B0, let Ci−1 <P
{d0} <P Ci+1 and define <P on Ci ∪ {d0} so that we have a Hasse diagram as
in Figure 11.1(C). If A0 ∪ B0 = ∅, define {d0} <P C. Note this defines <P on
all of C ∪ {d0} by transitivity.

Stage s > 0. Assume we have defined <P on C ∪ {d0, . . . , ds−1} so that for

all j < s, Ci−1 <P {dj} <P Ci+1 if i ∈ (Aj ∪Bj) \ (Aj−1 ∪Bj−1) and {dj} <P
C ∪ {d0, . . . , dj−1} otherwise. Then if i ∈ As \As−1, let Ci−1 <P {ds} <P Ci+1

and define <P on Ci ∪ {ds} so that we have a Hasse diagram as pictured in
Figure 11.1(B). If i ∈ Bs \ Bs−1, let Ci−1 <P {ds} <P Ci+1 and define <P
on Ci ∪ {bs} so that we have a Hasse diagram as pictured in Figure 11.1(C). If
(As ∪ Bs) \ (As−1 ∪ Bs−1) = ∅, define {ds} <P C ∪ {d0, . . . , ds−1}. Again this
defines <P on all of C ∪ {d0, . . . , ds} by transitivity.

This completes the proof of Theorem 11.1.3.

As usual, there are a number of immediate corollaries and we state only a
few.

Theorem 11.1.4. (a) There is a computable poset of width k which has no
covering by k chains.

(b) There is a computable poset A of height k such that any two distinct
coverings of A by k antichains are Turing incomparable, where distinct
means not obtainable from the other by a permutation of the antichains in
combination with the shifting of a finite number of elements.

(c) If a is a Turing degree and 0 <T a ≤T 0′, then there is a computable
poset A = (A,R) of dimension d, but not of computable dimension d such
that there exists a set {(A,L1), . . . , (A,Ld)} of degree a of linear orderings
such that R = L1 ∩ · · · ∩ Ld.

11.2 Linear orderings

There are three problems discussed in this subsection related to a given com-
putable linear ordering A = (A,≤A).

(1) The problem of finding a subordering of A of type ω or of type ω∗.

(2) The problem of finding an ω-successivity or an ω∗-successivity in A.

(3) The problem of find a self-embedding of A.
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(1) Suborderings of type ω or ω∗

A standard classical result is that any infinite linear ordering has a suborder-
ing {f(0), f(1), . . .} of order type either ω or ω∗ (the order type of the negative
integers). Tennenbaum and independently Denisov showed that there is an infi-
nite computable linear ordering of order type ω + ω∗ which has no computably
enumerable subordering of either type (see Rosenstein [165] or Downey [57]).
The suborderings of type ω (respectively ω∗) are simply the functions f : ω → A
such that f(n) ≤A f(n+1) (resp. f(n+1) ≤A f(n)) for all n. Thus in each case
the set of solutions to the problem of finding such a subordering is a Π0

1 class,
but is clearly not bounded. For example, if A is the standard ordering (ω,≤),
then the class of suborderings of A of type ω is just the class of all increasing
sequences of natural numbers, which is homeomorphic to ωω and not even com-
pact. We observe that the class of suborderings of type ω is always a perfect
set, since for any such subordering f and any n, there is another subordering of
type ω given by (f(0), f(1), . . . , f(n), f(n+ 2), f(n+ 4), . . .).

Theorem 11.2.1. For any computable linear ordering A = (A,≤A), the class
of suborderings of A of type ω (respectively, of type ω∗) is a perfect Π0

1 class.

Thus all we can say is that if a computable linear ordering has a suborder-
ing of type ω (respectively, type ω∗), then it has such a subordering which is
computable in some Σ1

1 set. It was shown by Manaster that any computable
linear ordering has a Π0

1 subordering of type ω or of type ω∗ (see Downey [57]).

(2) Successivities
An element b of A is said to be the successor of an element a if a <A b

and there is no c such that a <A c <A b; in such a case, we write b = SA(a).
We say that a subordering f of type ω in A is an ω-successivity if f(n + 1)
is the successor of f(n) in the linear ordering for each n, and similarly define
an ω∗ − successivity. Then the family P of ω-successivities is a Π0

1 class and
likewise the family of ω∗-successivities.

Observe that the class of ω-successivities of the standard ordering on ω
consists of all sequences (n, n + 1, n + 2, . . .) and is thus a countable set in
which all elements are isolated. As for the suborderings above, this class is not
necessarily compact.

In general, there is at most one ω-successivity f for each starting element
f(0) = a, so that every member of the class P of ω-successivities is isolated;
a class with this property is said to be scattered. Clearly P is also countable.
Furthermore, we can define a bounded computable tree T with P = [T ] by
(a0, a1, . . . , an) ∈ T if and only if

(∀i < n)[ai <A ai+1 & (∀m < ai+1)¬(ai <A m <A ai+1)].

A similar argument applies for ω∗-successivities.

Theorem 11.2.2. For any computable linear ordering A = (A,≤A), the class
of ω-successivities (respectively ω∗-successivities) of A is a scattered, bounded
Π0

1 class.
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As an immediate application, we have the following.

Corollary 11.2.3. Every ω-successivity (respectively ω∗-successivity) of a com-
putable linear ordering A is computable in 0′.

This of course may also be proven directly from the definition of a successiv-
ity. It follows from the result of Tennenbaum and Denisov that there is a com-
putable linear ordering of type ω+ ω∗ which has no computable ω-successivity.

(3) Self-embeddings
Another classical result is due to Dushnik and Miller [62], who showed that

an infinite countable linear ordering always has a non-trivial self-embedding.
Hay, Manaster and Rosenstein [78] constructed a computable linear ordering of
type ω with no non-trivial computable self-embedding. A map f : A → A is a
self-embedding of A if, for all a and b, f(a) ≤A f(b) if and only if a ≤ b. The
family of self-embeddings of a computable linear ordering is again seen to be a
Π0

1 class. For the standard ordering on ω, it is clear that a self-embedding is the
same thing as a subordering of type ω. Thus the class of self-embeddings need
not be compact.

Now A always has a computable self-embedding, namely the identity func-
tion. If A has a non-trivial self-embedding, then we can fix an element a and
consider the Π0

1 class of self-embeddings f such that f(a) 6= a. It follows as
usual that A at least has a non-trivial self-embedding which is computable in
some Σ1

1 set.

Theorem 11.2.4. For any computable linear ordering A = (A,≤A), the class
of self-embeddings of A is a Π0

1 class.

Theorem 11.2.5. For any computable linear ordering A = (A,≤A), if A has a
non-trivial self-embedding, then A has a self-embedding computable in a Σ1

1 set.

Downey and Lempp [61] showed that the proof-theoretical stregnth of the
Dushnik-Miller theorem is ACA, which implies that every computable linear
ordering has a self-embedding which is computable in 0′.

11.3 Ordered algebraic structures

In this section, we consider two problems:

(1) The problem of finding an ordering of an Abelian group.

(2) The problem of finding an ordering of a formally real field.

In each case, the set of solutions to a given effective problem can always be
represented by a r.b. Π0

1 class and in case (2), any r.b. Π0
1 class can be represented

by such a set.
In this section, we will assume that a computably presented group, ring,

or field is given by computable addition, subtraction, multiplication and divi-
sion functions on the set ω, as appropriate. A c. e. ring is the quotient of a
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computable ring modulo a c. e. ideal and a c. e. group is the quotient of a com-
putable group modulo a c. e. normal subgroup. An ordering will be represented
by the cone of positive elements.

A formally real field is a field F such that no sum of (non-zero) squares
equals zero. A field (F,+F , ·F ) is said to be ordered by the relation ≤ provided
that ≤ is a linear ordering such that for all a, b, c ∈ F ,

(i) a ≤ b→ a+F c ≤ b+F c.

(ii) (0 ≤ a & 0 ≤ b)→ 0 ≤ a ·F b.

An ordering for a commutative group (G,+G, 0G) is defined similarly except in
this case the ordering ≤ need only satisfy condition (i).

The set C = C≤ = {a ∈ F : 0 ≤ a} clearly satisfies the following for any
a, b ∈ F :

(i) a, b ∈ C → a+F b ∈ C.

(ii) a, b ∈ C → a ·F b ∈ C.

(iii) (a ∈ C & 0F −F a ∈ C) ⇐⇒ a = 0F .

(iv) a ∈ C ∨ 0F −F a ∈ C.

A subset C of F satisfying (i) to (iv) is said to be a positive cone of F . Thus
any linear ordering of F defines a positive cone and conversely any positive cone
C of F defines a linear ordering by

a ≤ b ⇐⇒ b−F a ∈ C.

Thus we will identify the set of linear orderings of a field F with the set of
positive cones of F .

For a commutative group (G,+G, 0G), a cone C need only satisfy (i), (iii)
and (iv).

The classical result of Artin-Schreier [4] is that any formally real field can be
ordered. Craven showed in [50] that any closed subset C of the Cantor space can
be represented as the set of orderings of some formally real field F . Metakides
and Nerode [137] made this proof effective by showing that if C is a Π0

1 class,
then F may be taken to be a computable field. Downey and Kurtz observed
that the field F may have additional orderings which are compatible with the
group structure although not compatible with the field structure. The classical
result for groups is due to Levi [116], who showed that an Abelian group can be
ordered if and only if it is torsion-free. Downey and Kurtz constructed in [60] a
computable group isomorphic to ⊕ωZ which has no computable ordering.

Theorem 11.3.1. For each specific c. e. instance of the problems (1) and (2)
listed above, the set of solutions can be represented as a c. b. Π0

1 class.
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Proof. For computable structures, this is immediate from the discussion above.
For a c. e. structure, say, F = R/I, observe that a positive cone C on R/I
corresponds to a subset C ′ of R satisfying clauses (i), (ii) and (iv) along with
the following modified version of clause (iii).

(iii) (a ∈ C ′ & 0F −F a ∈ C ′) ⇐⇒ a ∈ I.

We leave it to the reader to translate these four clauses into a definition of a
computable tree T such that [T ] represents the set of positive cones on F . The
proof for ordered groups is similar.

We can as usual derive a number of immediate corollaries from the results
of Part One. For example,

Theorem 11.3.2. (a) Any c. e. presented group which has an ordering has an
ordering of c. e. degree.

(b) If the set of orderings of the c. e. presented group G is countably infinite
and nonempty, then G has a computable ordering.

(c) If the c. e. presented field F has only finitely many orderings, then every
ordering of F is computable.

Next we turn to the other direction of our correspondence, that is, repre-
senting an arbitrary Π0

1 class by the set of solutions to certain of these problems.
The problem of orderings of formally real fields was solved by Metakides and
Nerode in [138].

Theorem 11.3.3. Any c. b. Π0
1 class P can be represented by the set of order-

ings of a formally real field.

Proof. Let the computable tree T ⊆ {0, 1}<ω be given so that P = [T ]. The
construction begins with the underlying ring R = Q[xi : i ∈ ω] (the ring of
polynomials with rational coefficients in infinitely many variables). We define a
computable maximal ideal of R such that the set of orderings of the field R/I
represents [T ]. We sketch a proof is which is somewhat different from that in
[138].

The first step of our construction is to adjoin to Q the radicals
√
p
i
, where pi

is the i-th prime. That is, we put x2
i −pi into I for each i. Thus we have initially

a continuum of possible orderings on Q[
√
pi : i < ω], where to each Π ∈ {0, 1}ω

there corresponds the orderingR(Π) determined by taking xi > 0 if Π(i) = 0 and
xi < 0 if Π(i) = 1. Now for any σ /∈ T , we use an auxiliary variable yσ to elim-
inate the ordering corresponding to σ in the following manner. We uniformly
and effectively define, for σ of length n, a polynomial fσ(x0, . . . , xn−1) such that
for (e0, . . . , en−1) ∈ {0, 1}n, fσ((−1)e0

√
2, (−1)e1

√
3, · · · , (−1)en−1

√
pn−1) < 0

if and only if (e0, . . . , en−1) = σ. Then we add to I the polynomial y2
σ =

fσ(x0, . . . , xn−1), thus adjoining to our field a square root for fσ(x0, . . . , xn−1).
It follows that if σ ≺ Π, then the ordering R(Π) is not compatible with the
field, since it forces a negative element to have a square root. The function fσ is
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defined to be fσ(x0, . . . , xn−1) = cσ− (−1)σ(0)x0−· · ·− (−1)σ(n−1)xn−1, where
cσ is the least integer c such that

√
2 +
√

3 · · ·+√pn−1 > c.

(For example, let σ = (0, 1). Then we want fσ(
√

2,−
√

3) < 0,
fσ(
√

2,
√

3) > 0, fσ(−
√

2,−
√

3) > 0, and fσ(−
√

2,
√

3) > 0. We compute
that 3 <

√
2 +
√

3 < 4 and define fσ(x0, x1) = 3− x0 + x1.)
Finally, to prevent any additional orderings from arising due to the new

roots in the field, we add a sequence of roots yi,j to the field such that yi,0 = yi
and y2

i,j+1 = yi,j . Thus each yi and each yi,j is forced to be positive.

This representation theorem has, as usual, a number of immediate corollaries
of which we state only a few.

Theorem 11.3.4. (a) There is a computable formally real field which has no
computable ordering.

(b) There is a computable formally real field which has continuum many or-
derings and such that any two distinct orderings are Turing incomparable.

(c) There is a computable formally real field F such that if a is the degree of
any ordering of F and b is a r.e. degree with a ≤T b, then b =T 0′.

(d) There is a computable formally real field F which has a unique non-
computable ordering ≤0, such that this ordering ≤0 has degree 0′, and
such that for any other ordering ≤ of F , there is some finite subset A
of F such that for any ordering ≤′ of R, if ≤ agrees with ≤ on A, then
≤=≤′.

D. R. Solomon [182] showed that the analogue of the Metakides-Nerode the-
orem fails for Abelian groups, that is, every abelian group has either two or has
infinitely many orderings and therefore not every Π0

1 class may be represented
as the set of orderings of a computable abelian group.



Chapter 12

Infinite Games

The set of winning strategies for an effective, closed {0, 1}-game of perfect in-
formation was shown in [32] to strongly represent any c. b. Π0

1 class. We will
consider more general closed games here.

For any subset C of NN, the infinite game G(C) of perfect information is
defined as follows. Two players, I and II, alternately play an infinite sequence
z = (x(0), y(0), x(1), y(1), . . .) and player II wins this play if z ∈ C. A strategy
for Player II is a (partial) function Θ from ω<ω into ω. For any play x =
(x(0), x(1), . . .) of the game by Player I, the play Θ(x) of the game when Θ
is applied to x is given by (x(0), y(0), x(1), . . .), where, for each n, y(n) =
Θ((x(0), y(0), . . . , y(n−1), x(n)). The strategy Θ is said to be a winning strategy
for Player II in the game G(C) if, for any play x of the game by Player I,
Θ(x) ∈ C. The notion of a strategy and a winning strategy for Player I is
similarly defined. The game G(C) is said to be determined if one of the two
players has a winning strategy. Gale and Stewart showed in [70] that the game
G(C) is determined if C is either closed or open. For a closed set C, we have
C = [T ] for some tree T , and we will sometimes refer to G(C) as G(T ). We
say that G(T ) is a computably presented Gale-Stewart game if T is a recursive
tree and that G(T ) is bounded (respectively, computably bounded) if the set [T ]
is bounded (resp. c. b. ).

As pointed out in [32], strategies need to be coded to avoid always having a
perfect set of winning strategies.

Let τ0, τ1, . . . effectively enumerate the nonempty elements of ω<ω in in-
creasing order where we order the sequences by the sum of the sequence plus
the length and then lexicographically. Thus τ0 = (0), τ1 = (00), τ2 = (1), . . ..
For each τ ∈ ω<ω, let n(τ) be the unique n such that τ = τn. Then an arbi-
trary sequence z = (z(0), z(1), . . .) ∈ ωω codes a strategy Θz for Player II in
the following manner. For any play x = (x(0), x(1), . . .) of Player I, the strat-
egy Θz produces the following response y = (y(0), y(1), . . .) by Player II. First,
y(0) = z(n((x(0))) and for any k, y(k + 1) = z(n), where τn = (x(0), . . . , x(k)),
that is, Θz((x(0), y(0), . . . , y(k − 1), x(k)) = z(n). Thus z(0) = Θz((0)), z(1) =
Θz(0,Θz(0), 0), z(2) = Θz((1)), and so on. It is clear that the result Θz(x) of
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applying this strategy to a play x = (x(0), x(1), . . .) of the game by Player I can
be computed from x and z by a computable functional. For a finite sequence
zdn = (z(0), . . . , z(n−1)), θzdn is a partial strategy which, applied to any partial
play xdm + 1 = (x(0), . . . , x(m)) of Player I with n(xdm) < n, gives a partial
response θzdn((x(0), y(0), . . . , y(m − 1), x(m))) = y(m) where for all r ≤ m,
y(r) = z(kr) if n((x(0), . . . , x(r)) = kr.

Now, for any tree T ⊆ ω<ω, let WS(T ) be the set of codes

z = (z(0), z(1), . . .) ∈ ωω

for winning strategies of Player II in the game G(T ).

Theorem 12.0.5. For any computable tree T :

(a) WS(T ) is a Π0
1 class.

(b) If T is finitely branching, then WS(T ) is bounded.

(c) If T is highly computable, then WS(T ) is computably bounded.

Proof. We will define a computable tree Q such that WS(T ) = [Q], as follows.
First ∅ is in Q and then for any σ = (z(0), . . . , z(n−1)), σ ∈ Q if and only if, for
all sequences ν = (x(0), . . . , x(r−1)) where n(ν) < n, the result of applying the
partial strategy θσ coded by σ to the partial play ν is in T . It follows from the
discussion above that there is a computable function g such that, for each n, the
value z(n) of a coded strategy gives the play y(g(n)) of player II at step g(n).
If T is finitely branching, then there are only finitely many possible choices for
y(g(n)) which allow player II to win the game, so that only finitely many values
are possible for z(n). This makes WS(T ) bounded. If T is highly computabl,
then we can actually compute a list of these possible values from g(n). Thus
WS(T ) will be computably bounded.

As usual, we can derive a number of immediate corollaries. We state the
following and leave the rest to the reader.

Theorem 12.0.6. Let T be a computable tree such that player II has a winning
strategy for the Gale-Stewart game G(T ).

(a) There is a winning strategy which is computable in some Σ1
1 set and, if

there are only finitely many winning strategies, then each winning strategy
is hyperarithmetic.

(b) If T is finitely branching, then there is a winning strategy which is com-
putable in 0′′.

(c) If T is highly computable, then there is a winning strategy of c. e. degree
and, if there are only countably many winning strategies, then there is a
computable winning strategy.

(d) If T is highly computable and there is no computable winning strategy, then
there is a continuum of pairwise Turing incomparable winning strategies.
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Next we consider the set of winning strategies for Player I (who is trying to
get the play into the open set). Let WS′(T ) be the set of codes for winning
strategies of Player I. Note that for a Gale-Stewart game G(C), the set of
winning strategies of Player I is in general not a closed set or an open set.

Theorem 12.0.7. For any computable tree T :

(a) WS′(T ) is a Π1
1 class.

(b) If T is finitely branching, then WS(T ) is an open set.

(c) If T is highly computable, then WS(T ) is a Σ0
1 class.

Proof. We describe the class of actual strategies Θ and leave it to the reader
to translate this into the coded strategies as in the proof of Theorem 12.0.5. In
general, Θ is a winning strategy for Player I if and only if, for all plays y of
Player II, the result Θ(y) of the game when Player I uses the strategy Θ is not
in the set [T ], that is,

(∀y)(∃n)[(x(0), y(0), x(1), y(1), . . . , x(n), y(n)) /∈ T ]

where x(i+ 1) = Θ((x(0), y(0), . . . , x(i), y(i))) for all i.
If T is finitely branching, let f(n) give an upper bound for the possible values

of σ(n) for any σ ∈ T . Then we can use König’s Infinity Lemma as usual to
express this in the form

(∗) (∃n)(∀(y(0), y(1), . . . , y(n)))[(x(0), y(0), x(1), y(1), . . . , x(n), y(n)) /∈ T ],

where each y(i) ≤ f(2i), so that the (∀) quantifier is bounded, which shows that
WS′(T ) is an open set.

Finally, if T is highly computable, then we may take the function f to
be computable, so that the characterization (*) above makes WS′(T ) a Σ0

1

class.

Theorem 12.0.8. Let T be a computable tree such that Player I has a winning
strategy for the Gale-Stewart game G(T ).

(a) There is a ∆1
2 winning strategy and, if there are only finitely many winning

strategies, then each winning strategy is ∆1
2.

(b) If T is finitely branching, then there is a computable winning strategy.

Proof. (a) This follows from the theorem that ∆1
2 is a basis for Π1

1, which is a
corollary of the Novikov-Kondo-Addison Uniformization Theorem (see Hinman
[80], pp. 196-198) for details).

(b) Since WS′(T ) is open and nonempty, there must be an interval of coded
winning strategies, which of course will contain a computable strategy.

Now we consider the reverse direction of the correspondences given in The-
orems 12.0.5 and 12.0.7.
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Theorem 12.0.9. For any computable tree Q, there is a computable tree T
and an effective one-to-one degree preserving correspondence between the Π0

1

class [Q] of infinite paths through Q and the class WS(T ) of winning strategies
for the effectively closed game G(T ). If Q is finitely branching (respectively
highly computable), then T may be taken to be finitely branching (resp. highly
computable).

Proof. Let the computable tree Q be given. Our basic idea is that each path
Π = (π(0), π(1), . . .) ∈ [Q] should correspond to a strategy ΘΠ which acts as
follows. Given any partial play, ((x(0), . . . , x(m)) of Player I, ΘΠ will respond
with

ΘΠ((x(0), y(0)), . . . , y(m− 1), x(m))) = y(m)

where y(m) = 0 if x(i) > 0 for any i ≤ m and y(m) = π(m) if x(i) = 0 for
all i ≤ m. Thus whenever Player I plays a value x(i) > 0, then ever after ΘΠ

will respond with a 0 and if Player I plays all 0’s, then ΘΠ will respond by
reproducing the path Π. It is easy to see that when we code the strategy ΘΠ

via a sequence z = (z(0), z(1), . . .) that z will have the same Turing degree as
Π. Thus the correspondence Π→ ΘΠ will be an effective 1:1 degree preserving
correspondence. Thus all we need to do is recursively define a computable tree
T ⊆ ω<ω so that WS(T ) = {z : z is a code of ΘΠ for some Π ∈ Q}. We begin
with sequences (a, b) of length 2 by putting (a, b) ∈ T if and only if, either a > 0
and b = 0 or a = 0 and (b) ∈ Q. (This ensures that if Player I starts with an
x > 0, then any winning strategy Θ for Player II must respond with a 0, whereas
if Player I starts with a 0, then Player II must respond by starting a sequence
in Q. Similar remarks will apply to the subsequent nodes we put in T .) Then,
for each n and each τ = (x(0), y(0), . . . , x(n), y(n)) ∈ T , do the following:

(1) If x(k) > 0 for some k ≤ n, then put τ_a_0 ∈ T and leave τ_a_b out of
T for all a and for all b > 0.

(2) If x(k) = 0 for all k ≤ n, then put τ_a_b ∈ T if and only if, either a > 0
and b = 0 or a = 0 and (y(0), . . . , y(n), b) ∈ Q.

It easily follows from the definition of T that for any Π = (π(0), π(1), . . .) ∈
[Q], ΘΠ is a winning strategy for Player II for the game G(T ). Now suppose
that Θ is a winning strategy for Player II for G(T ). Then we can define a
Π = (π(0), π(1), . . .) ∈ [Q] such that Θ = ΘΠ by recursion as follows. For each
n, let π(n) = Θ((0, π(0), 0, π(1), . . . , 0, π(n − 1), 0)). It is easy to see from our
definition of T that Π ∈ Q and that Θ = ΘΠ. Thus the correspondence Π→ ΘΠ

is our desired effective 1:1 degree preserving correspondence between [Q] and
WS(T ).

Suppose now that Q is finitely branching (respectively, highly computable).
Let f(π) be an upper bound on {s : π_s ∈ Q}; if Q is highly computablee, then
f is computable. Now given a partial code σ = (z(0), . . . , z(n − 1)) ∈ WS(T )
for a strategy for the game G(T ), we will indicate how to compute an upper
bound g(σ) for {t : σ_t ∈ WS(T )}. First compute the n-th finite sequence
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τn = (τ(0), . . . , τ(k − 1)) in the enumeration described above, and use σ to
compute the partial play π = (τ(0), y(0), . . . , τ(k − 2), y(k − 2), τ(k − 1))–this
can be done since for any i < k, τdi appears before τ in the enumeration. Now
there are two cases in the computation of g(σ). If τ(k − 1) > 0, then g(σ) = 0
and if τ(k − 1) = 0, then g(σ) = f(π). Thus WS(T ) is finitely branching
and if Q is highly computable, then g is recursive so that WS(T ) is highly
computable.

As usual, there are a number of immediate corollaries and we state only a
few. Note that all of the examples below are games in which player II (who is
trying to force the play into the closed set) has the winning strategy.

Corollary 12.0.10. (a) There is a computably presented Gale-Stewart game
such that Player II has a winning strategy but has no hyperarithmetic
winning strategy.

(b) There is a computably presented, bounded Gale-Stewart game G(C) such
that Player II has a winning strategy and for any winning strategy Θ with
0′ <T Θ ≤T 0′′, there is a Σ0

2 set A such that 0′ <T A ≤T Θ.

(c) For any c. e. degree c, there is a computably presented, computably bounded
Gale-Stewart game G(C) such that Player II has a winning strategy and
the set of c. e. degrees which contain winning strategies for G(C) equals
the set of c. e. degrees ≥T c.

Next we consider the reverse direction for games in which Player I has a win-
ning strategy. Here the bounded games all have computable winning strategies
and nothing more can be said. For the unbounded games, the reverse direc-
tion demonstrates the connection between Π1

1 classes and the game quantifier
of Moschovakis. Recall that the Π0

1 class with index e is the set [Te] of infinite
paths through the e-th primitive recursive tree Te. A theorem of Moschovakis
states that the set of indexes e such that Player I has a winning strategy for
the game G(Te) is a universal Π1

1 set. See [142] for a discussion of the game
quantifier and this theorem.

Note that every winning strategy for Player I is a limit point of the set of
winning strategies for Player I, since once the play of the game has gotten into
the open set, Player I may play anything at all from that point on. Thus we
cannot hope to represent even every Π0

1 class with a one-to-one correspondence.

Theorem 12.0.11. For any Π1
1 class Q ⊆ ωω, there is a recursively presented

Gale-Stewart game G(C) and a recursive function F such that y ∈ V ⇐⇒
F (y) ∈WS′(C).

Proof. Suppose that y ∈ Q ⇐⇒ (∀x)(∃n)R(xdn, ydn). Define the closed set C
to be {(x, y) : (∀n)¬R(xdn, ydn)}. For each y ∈ ωω, let F (y) code the strategy
which simply plays y in response to any play x of Player I. Then it is clear that
F (y) codes a winning strategy if and only if y ∈ Q.
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Theorem 12.0.12. (a) There is a computably presented Gale-Stewart game
G(C) such that the set WS′(T ) of winning strategies for Player I is not
Σ1

1.

(b) There is a computably presented Gale-Stewart game G(C) for which Player
I has a winning strategy but has no hyperarithmetic winning strategy.

Proof. (a) This is immediate from Theorem 12.0.11.
(b) Let Q = {z} be a Π1

1 singleton such that z is not hyperarithmetic and
let the game G(C) and the recursive function F be given by Theorem 12.0.11.
Then it is clear that Player I has a unique winning strategy which consists of
playing z(n) at his n-th turn, and that this strategy has the same degree as
z.



Chapter 13

The Rado Selection
Principle

In this section, we summarize the results of Jockusch, Lewis and Remmel
from [86]. A Rado Family consists of collection of finite subsets {Ai : i ∈
I} of A = ∪i∈IAi and a collection of finite partial functions {φF :∈ AF :
F is a finite subset of I} such that for each finite subset F of I, φF (i) ∈ Ai for
all i ∈ F . The Rado selection problem is to find a choice function f : I → A
such that for any finite subset F of I, there is a finite extension E ⊇ F
such that f(i) = φE(i) for all i ∈ F . We call such a choice function a
Rado selector. Rado proved in [157] that any such family has a Rado selec-
tor. A finite set F = {x1 < . . . < xn} of natural numbers may be coded by
k = 2x1 + 2x2 + · · · + 2xn . In this case, we write F = Dk. We let 0 code the
empty set. Then a family {Ai : i < ω} of finite sets may be coded by a function
f such that Ai = Df(i) for each i. Similarly a family of finite partial choice
functions φF may be coded by a single function g such that g(i) = j if and only
if Dj = {2x+13y+1 : x ∈ Di & φDi(x) = y}. A Rado family together with the
coding described above is an effective Rado family A = I = ω and if the coding
functions f and g are both computable.

Given an effective Rado family F as above, let Ch(F) be the set of functions
h : ω → ω such that

(i) h(i) ∈ Ai for each i and

(ii) for each finite F ⊆ ω, there is a finite extension E such that φE(i) = h(i)
for all i ∈ F .

The following is Theorem 3 of [86].

Theorem 13.0.13. For any effective Rado family F , there is a bounded strong
Π0

2 class P and an effective, degree-preserving correspondence between P and
Ch(F).
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Proof. We can define a tree T which is computable in 0′ such that [T ] = Ch(F)
as follows. A finite path (y0, y1, . . . , yn) is in T if and only if

(i) yi ∈ Ai for all i ≤ n and
(ii) there exists a finite set M such that {0, . . . , n} ⊆M and φM (i) = yi for

all i ≤ n.

Applying Theorems 2.2.15, and 4.2.2, we obtain the following.

Corollary 13.0.14. Let F be an effective Rado family. Then

(a) F has a Rado selector of Σ0
2 degree.

(b) If F has only countably many Rado selectors, then F has a Rado selector
which is computable in 0′.

The following is Theorem 2 of [86].

Theorem 13.0.15. For any nonempty bounded strong Π0
2 class P , there exists

an effective Rado family F and an effective, degree-preserving correspondence
between P and Ch(F).

We can now prove the following.

Corollary 13.0.16. (i) There is an effective Rado family such that, for any
degree a of a Rado selector for F and any Σ0

2 degree b ≥T a, b = 0′′.

(ii) There is an effective Rado family such that, for any two degrees a, b of
Rado selectors for F , a 6≤ b ∨ 0′.

(iii) There is an effective Rado family such that, for any degree a ≤T 0′′ of a
Rado selector for F , there is a Σ0

2 degree b with 0′ ≤T b ≤T a.



Chapter 14

Analysis

Computable functions on real numbers are just effectively continuous functions
and Π0

1 classes of reals are just effectively closed sets. Computable real functions
may be represented by computable functions on natural numbers, by enumer-
ating a countable basis of rational intervals. Effectively closed, compact sets
of reals may be represented by Π0

1 classes in {0, 1}N. Weihrauch [198] has pro-
vided a comprehensive foundation for computability theory on various spaces,
including the space of compact sets and the space of continuous real functions.

The basic example of a Π0
1 class of reals is the sete of zeros of a computable

function. Nerode and Huang [144] showed that any Π0
1 class in {0, 1}N may

be represented as the set of zeroes of a computable real function and Ko [101]
showed that this can be done by polynomial time computable functions. This
leads easily to the set of points where extreme values occur and to the set of
fixed points of a computable function. Effective real dynamical systems have
been studied by Cenzer [?], [102] and more recently by Cenzer, Dashti, King,
Toska and Wyman [20, 21] and by S. Simpson.

Index sets for effectively closed sets of reals were studied by Cenzer and
Remmel in [37, 38, 39].

Results from Chapter 5 are used to obtain the complexity of index sets
related to the cardinality, computable cardinality, measure and category of ef-
fectively closed sets of reals. Index sets for computable real functions are defined
and lead to complexity results for index sets corresponding to the zeroes, ex-
trema, and fixed points of such functions.

Brattka and Weihrauch [10, 198] identify three different types of “effectively
closed” sets in Euclidean space <n. These are determined from an enumeration
Im of the basic open sets (or intervals) and considering whether the set of m
such that Im (or In meets K (or not) is a computably enumerable set. Of course,
there are four possible notions here, and these can be refined further by asking
whether the c.e. sets are in fact computable. These notions are developed
in [38] and applied to the graphs of computable functions. In particular, we
examine the question of whether a function with an effectively closed graph is
“necessarily” continuous.

299
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Polynomial time and NP versions of effectively closed sets are studied and a
version of the “P=NP” problem is given. Here the choice of the basic open sets
is crucial.

The fundamental problems for which the solution sets may be represented
as Π0

1 classes are the following.

(1) Zeroes of continuous functions
The classical problem here is to find a zero for a continuous function. The

intermediate value theorem can be used to show the existence of a zero for a
continuous function which is negative at one point and positive at another point.
The effective version of this theorem also holds, that is, any computable func-
tion on the reals which is negative at one point and positive at another point
has a computable zero, which can be computed by repeatedly splitting the in-
terval between the two initial points. (See Pour-El–Richards [156] for a proof.)
However, Lacombe [112, 113] showed that there are computable functions which
have zeroes but have no computable zeros. We will give the improvement of this
result due to Nerode and Huang [144] by showing that every Π0

1 class is the set
of zeroes of some computable function.

(2) The Extreme Value Theorem
The classical result here is that any function which is continuous on a com-

pact set takes on a maximum and a minimum on that set. The problem here is
to find a point where the maximum or minimum is attained. Lacombe showed
that the extreme values of a computable function on [0, 1] are themselves com-
putable and also constructed a computable function F on [0, 1] which does not
attain its maximum at any computable point. We will present the result of
Nerode and Huang [144] that any Π0

1 class may be represented as the set of
points where some effectively continuous function attains its maximum.

(3) Fixed points of continuous functions
The problem here is to find a fixed point for a given continuous function. A

simple application of the intermediate value theorem shows that any continuous
function F on [0,1] has a fixed point. It is well known that if F is effectively
continuous, then F will have a computable fixed point. The Brouwer Fixed
Point Theorem says that a continuous function on [0, 1] × [0, 1] will also have
a fixed point, but Orevkov [152] showed that there need not be a computable
fixed point. J. Miller [139] defined the notion of a fixable set as a Π0

1 class
Q ⊆ [0, 1] × [0, 1] for which there exists a computably continuous function F
such that Q = {z : F (z) = z}. He gave a beautiful result which characterizes
the fixable sets. Results for other spaces are different. On the real line, the
continuous function F (x) = x + 1 has no fixed point. On ωω, the function
F ((x(0), x(1), . . .) = (1 + x(0), 1 + x(1), . . .) has no fixed point. On the Cantor
space the function F (x(0), x(1), . . .) = (1−x(0), 1−x(1), . . .) has no fixed point.

(4) Dynamical systems
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We will give a few results on effective real dynamical systems from Cenzer
[?] and from Ko [102]. We shall view a dynamical system as determined by a
continuous function F on a space X. The associated problem is to determine the
behavior of the sequence x, F (x), F (F (x)), . . . for a given x. In particular, we
want to find those points x for which this sequence is bounded or converges to
some finite number and those x for which the sequence is unbounded or diverges
to infinity where X is either the real line or the Baire space. If F is a polynomial,
then it is always possible to compute a bound c such that {F (n)(x) : n < ω}
is bounded if and only if |F (n)(x)| < c for all n. In fact, we can take c large
enough so that F (x) > x + 1 for all x > c, so that limn→∞F

(n)(x) = ∞ for
all x > c. In this situation, we say that ∞ is an attracting point for F . Then
{x : |F (n)(x)| ≤ c for all n} is called the Julia set of F . (See Blum, Shub and
Smale [9].) It is then easy to see that the Julia set of any continuous function
must be a compact set and we will show that for a computably continuous
function, the Julia set is a Π0

1 class. The first problem for dynamical systems is
to find a member of the Julia set.

A point x is said to be a periodic point of a continuous function F if F (n)(x) =
x for some finite n. The basin of attraction B(x) of x is defined to be {u :
limnF

(n)(u) = x}. The periodic point x is said to be attracting if there is some
open neighborhood U about x such that U ⊆ B(x). The basin of attraction
of infinity may also be defined as {u : limnF

(n)(u) = ∞}. Thus the basin
of attraction is an open set. We will show that for a computably continuous
function, the complement of a basin of attraction is a Π0

1 class. If 1 is an
attracting periodic point of a function F on {0, 1}ω or [0, 1], then we will refer
to the complement of B(1) as the Julia set of F . The problem here is to find a
point not in the basin of attraction.

Before turning to the problems mentioned above, we give a brief introduction
to computable analysis, including the problem of characterizing the computable
image of the interval and the related concept of a real as a Dedekind cut of
rationals, which was studied by Soare in [179, 180].

A basic principle of computable analysis is that a computable function on
the real numbers is an effectively continuous function and a Π0

1 class is an
effectively closed set. We will consider the real line <, as well as three subspaces:
the space of irrationals, which is homeomorphic to the Baire space ωω and two
compact subspaces, the interval [0,1] and the Cantor space, which is computably
homeomorphic to {0, 1}ω. Since < is computably homeomorphic to the open
interval (0,1) via the order-preserving map ex

1+ex , we will frequently identify <
with (0, 1) and treat it as a subset of [0, 1].

Let D be the set of dyadic rationals in [0, 1]. Then [0, 1] has a basis of open
intervals (a, b),[0, c) or (d, 1] where a, b, c, d ∈ D. Thus an open subset of [0,1] is
a countable union

U = ∪n(an, bn)
⋃
∪n[0, cn)

⋃
∪n(dn, 1]

of dyadic intervals. The open set U is said to be effectively open, or Σ0
1, if the

sequences an, bn, cn and dn are computable. Then a closed set C is said to be
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effectively closed, or Π0
1, if it is the complement of an effectively open set.

Any x ∈ {0, 1}N represents a real rx =
∑
n x(n)/2n ∈ [0, 1]. In addition,

for any σ ∈ {0, 1}∗, σ_0ω represents the dyadic rational qσ =
∑
i<n σ(i)/2i.

Some difficulty arises from the fact that qσ has another representation, σd(n−
1)_0_1ω (assuming that σ ends in a 1). Each dyadic rational is of course
computable, so that we may unambiguously say that r is a computable real if
r = rx for some computable sequence x ∈ {0, 1}ω. Then a subset P of {0, 1}ω
represents a subset of [0, 1] if and only if, for all x, y such that rx = ry, we have
x ∈ P if and only if y ∈ P . For any σ ∈ {0, 1}<ω of length n, the members of
I(σ) represent the members of the real closed interval [qσ, qσ + 2−n], which we
denote by U(σ). More generally, if r < s are computable reals, then the interval
[r, s] is a Π0

1 class, since, if r = rx and s = ry, then

rz ∈ [r, s] ⇐⇒ (∀n)[qxdn − 2−n ≤ qzdn ≤ qydn + 2−n].

Lemma 14.0.17. (a) The following are equivalent for any subset K of [0, 1].

(1) K is a Π0
1 class

(2) K is closed and {〈p, r〉 ∈ D2 : K ∩ [p, r] = ∅} is a c. e. set.

(3) K is represented by a Π0
1 class P ⊂ {0, 1}ω.

(b) K may be represented by a computable binary tree with no dead ends if
and only if {〈p, r〉 ∈ D2 : K ∩ [p, r] = ∅} is computable.

Proof. (a) We show that both (1) and (3) are equivalent to (2). Suppose first
that K is a Π0

1 class and let

[0, 1] \K = ∪n(an, bn)
⋃
∪n[0, cn)

⋃
∪n(dn, 1].

Then

K ∩ [p, r] = ∅ ⇐⇒ (∃n)[p, r] ⊆ ∪m<n(am, bm)
⋃
∪m<n[0, cn)

⋃
∪m<n(dn, 1].

Suppose next that A = {〈p, r〉 : K ∩ [p, r] = ∅} is an c. e. set. Then K is a
Π0

1 class since

[0, 1] \K =
⋃
{(p, r) : 〈p, r〉 ∈ A}.

Furthermore, K is represented by [T ] where the Π0
1 tree T is defined as

follows. Given σ of length n, let

σ ∈ T ⇐⇒ [qσ, qσ + 2−n] 6⊆ ∪{(p, r) : 〈p, r〉 ∈ An}.

Here we replace q + 2−n with 1 if q = 1.)
Finally suppose that K = {rx : x ∈ P} for some Π0

1 class P = [T ] ⊆ {0, 1}ω.
Then for any σ,

K ∩ [qσ, qσ + 2−n] = ∅ ⇐⇒ σ /∈ Ext(T )
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Since any dyadic interval [p, r] may be decomposed into a finite union of intervals
of the form [qσ, qσ + 2−n], it follows that {〈p, r〉 : K ∩ [p, r] = ∅} is an c. e. set.

(b) This follows from the observation that, if K is represented by [T ], then

σ ∈ Ext(T ) ⇐⇒ K ∩ [qσ, qσ + 2−|σ|] 6= ∅.

An arbitrary Π0
1 class P ⊆ {0, 1}ω can be represented by a Π0

1 subclass of
[0,1] by the following lemma.

Lemma 14.0.18. For any Π0
1 class P ⊆ {0, 1}ω, there is a Π0

1 subclass Q ⊆
{0, 1}ω which represents a subset of [0, 1]\D which is computably homeomorphic
to P.

Proof. Let the computable homeomorphism Φ be defined by

φ(x(0), x(1), . . .) = (1, 0, x(0), 1, 0, x(1), . . .)

and let Q = φ[P ]. Q represents a subset of [0,1] since every element of Q has
both infinitely many “1”s and infinitely many “0”s.

We can characterize those intervals which are Π0
1 classes using the notion

of the Dedekind cut L(r) = {q ∈ D : q ≤ r} of a real number r. Soare
showed in [179, 180] that if x ∈ {0, 1}ω is the characteristic function of a Π0

1 set
(respectively a Σ0

1 set), then L(rx) is a Π0
1 set (resp. a Σ0

1 set) and that these
implications are not reversible.

The set ω<ω and the space ωω may be linearly ordered by the lexicographic
ordering ≤L, where x <L y if, for some n, x(n) < y(n) and x(i) = y(i) for all
i < n. This ordering is computable on ω<ω and thus is Π0

1 on ωω, since

x ≤L y ⇐⇒ (∀n)xdn ≤ ydn.

We now define the interval [x, y] = {z : x ≤L z ≤L y} and also [x,∞] = {z :
x ≤L z}. Then we let L(x) = {σ ∈ ω<ω : σ_0ω ≤ x}. These notions may also
be restricted to {0, 1}ω and {0, 1}<ω. Observe that for non-dyadic rationals rx
and ry, rx < ry if and only if x <L y.

Lemma 14.0.19. (a) For any x < y in either [0, 1], {0, 1}ω, or ωω, the in-
terval [x, y] is a Π0

1 class if and only if L(x) is a Σ0
1 set and L(y) is a Π0

1

set.

(b) In either [0, 1], {0, 1}ω, or ωω: L(x) is a computable set (respectively
computable in A) if and only if x is computable (resp. in A)

(c) For any x ∈ {0, 1}ω, if x is the characteristic function of a Σ0,A
1 (respec-

tively Π0,A
1 ) set, then L(x) is a Σ0,A

1 (resp. Π0,A
1 ) set.
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Proof. (a) First consider the case, where x < y and x, y ∈ ωω. We claim that
[x, y] is a Π0

1 class if and only if both [x,∞] and [0, y] are Π0
1 classes. The

if direction follows from the fact that [x, y] = [x,∞] ∩ [0, y]. For the other
direction, choose σ ∈ ωω and n such that xdn ≤L σ <L ydn and observe that
[x,∞] = [x, y] ∪ [σ_1ω,∞] and [0, y] = [0, σ_0ω] ∪ [x, y].

Thus we need only show that [x,∞] is a Π0
1 class iff L(x) is a Σ0

1 set and
that [0, y] is a Π0

1 class iff L(x) is a Π0
1 set. Suppose that [x,∞] = [T ] for some

computable tree T . Then

σ ∈ L(x) ⇐⇒ σ_0ω /∈ [T ] ⇐⇒ (∃n)σ_0n /∈ T

and hence L(x) is Σ0
1 set. Vice versa, suppose that L(x) is a Σ0

1 set. Then we
have

z ∈ [x,∞] ⇐⇒ (∀m)(zdm /∈ L(x))

so that [x,∞] is a Π0
1 class.

Similarly, if [0, y] = [T ] for some computable tree, then

σ ∈ L(y) ⇐⇒ (∀n)(σ_0n ∈ T )

so that L(y) is a Π0
1 set. Vice versa, if L(y) is Π0

1 set, then

z ∈ [0, y] ⇐⇒ (∀n)(zdn ∈ L(y))

so that [0, y] is a Π0
1 class.

For x, y ∈ {0, 1}ω, the argument is similar, except that [x,∞] is replaced by
[x, 1ω].

For rx, ry ∈ [0, 1], the problem reduces to the previous case of {0, 1}ω, as
long as we take x to end in 0ω whenever rx ∈ D and y to end in 1ω whenever
ry ∈ D, so that qσ ∈ [rx, ry] ⇐⇒ σ ∈ [x, y].

(b) We give the argument for ωω. L(x) is computable in x, since σ ∈
L(x) ⇐⇒ σ ≤L xd|σ|. Also, x is computable in L(x), since for each n, x(n+1)
is the least a such that xdn_a ∈ L(x) & xdn_a+ 1 /∈ L(x).

(c) Now suppose that x is the characteristic function of a Π0
1 set, i.e. x

is the characteristic function of ω \ A where A is an r.e. set. Then let As

for s ≥ 0 be some effective enumeration of A. Thus x is the decreasing limit
of a sequence (x0, x1, . . .) where xs is the characteristic function of As. Then
σ ∈ L(x) ⇐⇒ (∀n)(σ ≤L xnd|σ|). Similarly, if x is the characteristic function
of a Σ0

1 set A then x is the increasing limit of the sequence (xn). Hence σ ∈
L(x) ⇐⇒ (∃n)(σ ≤L xnd|σ|).

It follows from part (b) that L(x) is ∆0
2 if and only if x is ∆0

2, and that if x
is Π0

2 (respectively, Σ0
2), then L(x) is Π0

2 (resp. Σ0
2.)

Theorem 14.0.20. (a) Let x ∈ ωω. If x is the maximum element of a c. b.
Π0

1 class, L(x) is a Π0
1 set. If L(x) is a Π0

1 set and, in addition, x is not
hyperimmune, i.e. there is a computable function f such that x(e) ≤ f(e)
for all e, then x is the maximum element of some r.b. Π0

1 class. If x is the
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minimum element of some r.b. Π0
1 class, then L(x) is a Σ0

1 set. If L(x)
is Σ0

1 set and, in addition, x is not hyperimmune, then x is the minimum
element of some r.b. Π0

1 class.

(b) For any x in [0, 1], x is the maximum element of some Π0
1 class if and

only if L(x) is Π0
1 and x is the minimum element of some Π0

1 class if and
only if L(x) is Σ0

1.

(c) For any x ∈ ωω or [0, 1], x is the maximum (respectively, minimum)
element of a Π0

1 class represented by a tree with no dead ends if and only
if x is computable.

(d) For any x ∈ ωω, if x is the maximum element of a bounded Π0
1 class, then

L(x) is a Π0
2 set and if x is the minimum element of a bounded Π0

1 class,
then L(x) is a Σ0

2 set.

(e) For any x ∈ ωω, if x is the maximum element of a Π0
1 class, then L(x) is

a Σ1
1 set and if x is the minimum element of a Π0

1 class, then L(x) is a
Π1

1 set.

Proof. We just give proofs for the maximum element versions.
(a) Suppose that L(x) is a Π0

1 set and there is a computable function f
such that x(e) ≤ f(e) for all e. Then x is the maximum element of the Π0

1

interval [0, x] by Lemma 14.0.19. Hence x is the maximal element of the r.b. Π0
1

class [0, x] ∩ [T ] where T is the computable tree such that σ ∈ T ⇐⇒ (∀i ≤
|σ|)(σ(i) ≤ f(i)).

Now let x be the maximum element of a r.b. Π0
1 class P = [T ]. Then σ ∈ L(x)

if and only if

(∃y)[y ∈ P & σ ≤L y] ⇐⇒ (∃τ ∈ ω|σ|)[τ ∈ Ext(T ) & σ ≤L τ ].

Since T is r.b., the search for τ is bounded and, since Ext(T ) is a Π0
1 set, L(x)

is a Π0
1 set.

If T has no dead ends, then Ext(T ) is computable, so that L(x) is com-
putable. This completes the proof of part (a) as well as part (c).

Part (b) now follows from Lemma 14.0.17.
(c) Any computable x is the maximum element of the r.b. class {x}. The

maximum element of a r.b. Π0
1 class P = [T ] is computed by letting x(n) be the

largest i such that (xdn− 1)_i ∈ T .
Parts (d) and (e) follow from the characterization of L(x) given above, since

Ext(T ) is always Σ1
1 and is Π0

2 if P is bounded.

14.0.1 Computable continuous functions

Next we turn to the definition of computably continuous functions. For functions
on ωω or {0, 1}ω, a computable function y = F (x) is given by an oracle Turing
machine which uses input x as an oracle to compute the values y(n) and is
continuous since each value y(n) depends on only finitely many values of x.
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Lemma 14.0.21. A function F : ωω → ωω (respectively, F : {0, 1}ω → {0, 1}ω)
is computably continuous if and only if there is computable function f : ω<ω →
ω<ω (resp. f : {0, 1}<ω → {0, 1}<ω) such that

(1) for all σ ≺ τ , f(σ) � f(τ),

(2) for all x ∈ ωω, limn→∞ |f(xdn)| =∞, and

(3) for all x ∈ ωω, limn→∞ f(xdn) = F (x).

Proof. Given such a representation f for F , clearly we can compute y(n) for
y = F (x) from x by computing f(xdk) for sufficiently large k.

Given a computable function F , define the representation f as follows. On
input σ of length n, compute the values of τ(i) where τ = f(σ) for each i < n
by applying the algorithm for F for n steps, using oracle σ. The length of τ will
be the least k < n such that τ(k) does not converge in n steps.

In general, a function F on the Baire space is continuous if and only if it has
a representation f as above. Thus F is continuous if and only if it is computable
in some parameter x ∈ ωω.

The definition of computably continuous real functions is more difficult.

Definition 14.0.22. A function F : [0, 1]→ [0, 1] is computable (or computably
continuous if there is a uniformly computable sequence of functions fn : D → D
such that, for any x ∈ {0, 1}ω, F (rx) = limi fi(qxdi) and a computable function
ν : ω → ω such that, for all natural numbers m,n, k and all dyadic rationals
q, r, if |q − r| < 2−ν(k) and m,n > ν(k), then |fm(q)− fn(r)| < 2−k.

This definition is easily seen to be equivalent to other standard definitions,
such as those given by Lacombe [112]. See Pour-El–Richards [156] for some
history.

Note for any computable real function, F (x) is computable real for any
computable real x.

Functions of several variables are treated similarly, thus a uniformly com-
putable sequence of functions {fn}n∈ω and a computable function ν represent
a continuous function F : [0, 1]2 → [0, 1] if lim fi(qxdi, qydi) = F (x, y) for any

reals x, y and if |fm(q1, q2)− fn(r1, r2)| < 2−k whenever m,n > ν(k) and both
|q1− r1|, |q2− r2| < 2−ν(k). For example, the standard distance function |x− y|
may be represented by taking fn(q, r) = |q − r| for all n and ν(k) = k + 1.

We say a function F : {0, 1}ω → {0, 1}ω represents a real functionG provided
y = F (x) whenever ry = G(rx).

Lemma 14.0.23. If F is a continuous (respectively computably continuous)
map on {0, 1}ω such that F (x) = F (y) whenever rx = ry, then F represents a
continuous (respectively computably continuous) map on [0, 1].

Proof. Given the representation function f for F , let fi(qσ) = qf(σ) for all i and
let ν(k) be the least n such that |f(σ)| > k for all σ ∈ {0, 1}n.
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We remark that not every computably continuous real function may be rep-
resented by a computable function on {0, 1}ω; the distance function |x− r| for
any fixed rational r ∈ (0, 1) is a counterexample. For example, suppose that
r = 1

6 and G(x) = |x − 1
6 |. Now suppose that F : {0, 1}ω → {0, 1}ω represents

G and that f : {0, 1}<ω → {0, 1}<ω represents F . Now G( 2
3 ) = 1

2 which has two
representations x1 = 1_0ω and x0 = 0_1ω. Let x2 = (10)ω so that x3 repre-
sents 2

3 . Then either F (x2) = x1 or F (x2) = x0. Suppose first that F (x2) = x0.
Then for some n, 0 ≺ f((10)n). But then (10)n

_
1ω is a number greater than

2
3 so that 1 ≺ f((10)n1k) for some k which is a contradiction. Similarly if
F (x2) = x1, then for some n, 1 ≺ f((01)n). But then (10)n

_
0ω is a number

less than 2
3 so that 0 ≺ f((10)n0k) for some k which is again a contradiction.

A computable metric on the Baire space is defined by δ(x, y) = 1/2n = 0n1ω,
where n is the least such that x(n) 6= y(n), and δ(x, y) = 0 = 0ω if x = y.

The graph of a function F : X → X is defined as usual to be gr(F ) =
{(x, F (x)) : x ∈ X}. For X = ωω, we can view the graph as a subset of X by
associating the pair (x, y) with the element z = x⊗ y, where z(2n) = x(n) and
z(2n+ 1) = y(n). For any class P and any x ∈ X, let πx(P ) = {y : x⊗ y ∈ P}.
For a function F from [0, 1] to [0, 1], the graph may be represented by a subset
of {0, 1}ω, namely {x⊗ y : f(rx) = ry}.

A classical result says that a function on the interval is continuous if and
only if the graph is closed. We give the effective version here.

Theorem 14.0.24. (a) The graph of a computably continuous function on
ωω is a Π0

1 class.

(b) Let X be either {0, 1}ω or [0, 1]. Then a function F : X → X is com-
putably continuous if and only if the graph of F is a Π0

1 class. Furthermore,
the graph of any computably continuous function may be represented by a
tree with no dead ends.

Proof. (a) Suppose first that F : ωω → ωω is computably continuous and is
represented by f : ω<ω → ω<ω. Define the computable tree T with [T ] = gr(F )
by putting σ ⊗ τ ∈ T if and only if τ is consistent with f(σ).

(b) Given a computable F : {0, 1}ω → {0, 1}ω, define the computable tree
T with gr(F ) = [T ] as in (a). Then Ext(T ) is Σ0

1, and therefore computable,
by the following easily verified claim.

CLAIM: σ ⊗ τ ∈ Ext(T ) ⇐⇒ (∃σ′ � σ)τ ≺ f(σ′).

Given a computable tree T so that gr(F ) = [T ], define the computable
representing function f by letting f(σ) be the common part of {τ : σ⊗ τ ∈ T}.

Next suppose that F is a computably continuous function on [0, 1] and let
the computable sequence fi of dyadic rational functions and the computable
modulus function ν be given as in Definition 14.0.22. We can assume that
ν(k) > k for all k. In this case, we can define our desired computable tree T
with gr(F ) = [T ] to be the set of pairs σ ⊗ τ of length 2n − 1 or 2n such that
|fn(qσ)− qτ | ≤ 21−k for all k such that |σ| ≥ ν(k). Again it is easy to see that
EXT (T ) is computable.
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Suppose now that gr(F ) is a Π0
1 class and, by Lemma 14.0.17, let T ⊆

{0, 1}<ω be a computable tree so that [T ] represents gr(F ). T may not be the
graph of a function, since each dyadic real has two representations. However
any two representations of length n differ by 2−n. Thus, for any i and any σ of
length n, we let fi(qσ) = qτ for the lexicographically least τ of length |σ| such
that σ ⊗ τ ∈ T , and let ν(k) be the least n such that, for all σ of length n and
any τ1, τ2 with σ ⊗ τ1 and σ ⊗ τ2 both in T , δq(τ1, τ2) < 2−k.

We next examine the complexity of the image of a Π0
1 class under a com-

putablly continuous function. The classical results are that the image of any
compact set under a continuous function is compact and that the image of a
closed set is an analytic set.

Theorem 14.0.25. Let F be a computably continuous function on a Π0
1 subclass

P = [T ] of ωω or [0, 1] and let F [P ] = {F (x) : x ∈ P}. Then

(a) F [P ] is a Σ1
1 class,

(b) if P is bounded, then F [P ] is a strong Π0
2 class, and

(c) if P is computably bounded, then F [P ] is a computably bounded Π0
1 class

and, furthermore, if there is a computable tree T with no dead ends such
that P = [T ], then there is a computable tree S with no dead ends such
that F [P ] = [S].

Proof. (a) This part follows immediately from the fact that y ∈ F [P ] ⇐⇒
(∃x)(x ∈ P & 〈x, y〉 ∈ gr(F )).

(b) Suppose that T is a finitely branching, computable tree and let S be a
computable tree such that gr(F ) = [S]. Then it follows from König’s Lemma
that F [P ] = [R], for the finitely branching Σ0

1 tree R defined by

τ ∈ R ⇐⇒ (∃σ)[σ ∈ T and σ ⊗ τ ∈ S].

(c) Now suppose that T is computably bounded and let F be represented by
the computable function f : ω<ω → ω<ω. Then it is easy to see the definition
above in (b) becomes computable.

To find a bound for the possible value of τ(n) for τ ∈ R, compute the least m
such that |f(σ)| > n for all σ ∈ T of length m. Then we compute the maximum
value h(r) of f(σ(n)) for all σ ∈ T of length n. Thus R is highly computable.

ly continuous map F (x) = r + (s− r)x.
Suppose that K is the image of the computably continuous map F . It follows

from the Intermediate Value Theorem that K = [r, s] where the reals r and s
are the maximum and minimum elements of P . It follows from Theorem 14.0.25
that K may be represented by a tree with no dead ends and then from Theorem
14.0.20 that r and s are computable.

Corollary 14.0.26. Let F be a computably continuous function on ωω, {0, 1}ω,
or [0, 1]. Then the maximum and minimum values of F on P are computable
reals (if they exist).
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Theorem 14.0.27. Each of the following sets is a Π0
1 class for any computably

continuous function F : X → X, where the space X may be {0, 1}ω, [0, 1], ωω

or <. In case (3), the class always has a compuable member when X = [0, 1].
In case (4), the class is always bounded when X = <.

(a) The set of points x where F (x) = x0 for any fixed computable x0.

(b) The set of points where F attains its maximum (minimum).

(c) The set of fixed points of F .

(d) The Julia set of F where X = ωω or <.

(e) The complement of the basin of attraction of a computable periodic point.

Proof. (a) This is immediate from Theorem 14.0.24.
(b) It follows from Corollary 14.0.26 that the maximum and minimum are

computable if they exist. The result now follows from part (b).
(c) This is easily reduced to part (b). For <, x is a fixed point of F if and

only if F is a zero of G(x) = F (x)− x. For [0, 1], take G(x) = |F (x)− x|. For
{0, 1}ω or ωω, define z = G(x) by z(n) = |F (x)(n)− x(n)|.

A computable fixed point r may be found for a computably continuous func-
tion on X = [0, 1] by the standard procedure. If F has a dyadic fixed point,
then there is nothing to do. If not, then repeatedly split the interval in two and
choose the subinterval with F (x) < x on one end and F (x) > x on the other.
Then r is the unique element in the intersection of these intervals.

(d) This is immediate from the characterization of the Julia set as {x :
(∀n)|Fn(x)| ≤ c} for a fixed computable point c. Note that in ωω, {x : x ≤L x0}
is not a bounded Π0

1 class in our sense of being the paths through a finite
branching tree.

(e) Given an attracting point c for F , there is some computable interval
(a, b) ⊆ B(x) containing c. Then the complement of the basin of attraction may
be characterized as

{x : (∀n)(Fn(x) ≤ a ∨ Fn(x) ≥ b)}

As usual, we give a few immediate corollaries from the results of Part One.

Theorem 14.0.28. Let F : X → X be a computably continuous map, where X
is either {0, 1}ω, [0, 1] or <.

(a) If F attains a maximum M , then there are two points x1 and x2 with
F (x1) = F (x2) = M such that any function computable in both x1 and x2

is computable.

(b) If F has only countably many zeroes, then F has a computable zero.
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(c) If F has only finitely many fixed points, then every fixed point of F is
computable.

(d) If the Julia set of F : < → < has no computable member, then it contains
a continuum of pairwise Turing incomparable elements.

(e) If the basin of attraction B(x0) of a computable fixed point x0 of F is not
all of X, then there is a point x of c. e. degree which is not in B(x0).

Proof. We just note that in each case, a function defined on < may be restricted
to a finite interval and thus be treated as a map on the interval. For example,
if F has a zero, take a computable interval [a, b] on F has a zero and let [c, d]
be the image of [a, b] under F . Then F may be composed with maps between
[0, 1] and the two intervals to obtain a map G : [0, 1]→ [0, 1] so that the set of
zeroes of G is homeomorphic to a subset of the set of zeroes of F .

Theorem 14.0.29. Let F : ωω → ωω be a computably continuous map.

(a) If F attains a maximum M , then F (x) = M for a point x which is com-
putable in some Σ1

1 set.

(b) If F has only countably many zeroes, then F has a hyperarithmetic zero.

(c) If F has only finitely many fixed points, then every zero of F is hyper-
arithmetic.

Next we give the collection of converses to Theorem 14.0.28. The first three
parts are due to Nerode and Huang [144] and may also be found in Ko [101].

Next we give the collection of converses to Theorem 14.0.28. The first three
parts are due to Nerode and Huang [144] and may also be found in Ko [101].

Theorem 14.0.30. Let P be a Π0
1 subclass of the space X, either {0, 1}ω, [0, 1],

ωω or <.

(1) There is a computably continuous function F such that P is the set of
zeroes of F .

(2) There is a computably continuous function F with maximum value M such
that P = {x : F (x) = M}.

(3) (a) If X is either {0, 1}ω, ωω or <, then there is a computably continuous
function F such that P is the set of fixed points of F .

(b) If X is [0, 1] and P has a computable member, then there is a com-
putably continuous function F such that P is the set of fixed points
of F .

(4) If P is bounded and has both a computable maximum and a computable
minimum element, then there is a computably continuous function such
that
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(a) P is the complement of the basin of attraction of a computable peri-
odic point, where X = [0, 1] or <.

(b) P is the Julia set of F where X = <

Proof. (1) First suppose P ⊆ ωω and let T be a computable tree such that
P = [T ]. Define the computable function F by

F (x) =

{
0ω, for x ∈ P
0n_1_0ω, if n is the least with xdn /∈ T .

If P represents a subset of [0, 1], then the function F is modified when x
represents a dyadic, so that F (σ_1_0ω) = F (σ_0_1ω) for all σ. Thus when
rx = ry is dyadic, we let

F (x) = F (y) =

{
0ω, for x ∈ P
0n_1_0ω, if n is the least with xdn /∈ T and ydn /∈ T .

For a subset P of <, let Q be the image of P under the isomorphism G with
(0, 1) together with the point 0, if P has no lower bound and the point 1, if P
has no upper bound. Then let H be the computably continuous map with set
Q of zeroes. It follows that P is the set of zeroes of H ◦G.

(2) Let F be the function defined in the proof of (1) and observe that 0 is
the minimum value of F in each case. For the maximum argument on [0, 1] or
<, just take G(x) = 1 − F (x). For the maximum argument on ωω, note that
the range of F is a subset of {0, 1}ω and take G(x)(n) = 1− F (x)(n).

(3) (a) Let F be given by (1) so that P is the set of zeroes of F . Now let
G(x) = F (x) + x for the real line, and, for ωω or {0, 1}ω, let G(x)(n) = x(n) if
F (x)(n) = 0 and G(x)(n) = 1− x(n), if F (x)(n) 6= 0.

(b) Let x0 be a computable member of the Π0
1 class P and let F be the

function given by (1) so that x ∈ P if and only if F (x) = 0. Define G(x) to be
x+ (x0 − x)F (x).

(4) (a) Let P be a Π0
1 proper subclass of [0, 1]. Then there is some computable

element x0 /∈ P . Let F be the computable function given by part (1) such that
F (x) = 0 for x ∈ P and F (x) > 0 for x /∈ P . Let P1 = P ∩ [0, x0] and
P2 = P ∩ [x0, 1]. Let M1 be the maximal element of P1 and let M2 be the
minimal element of P2, so that both M1 and M2 are computable. Now define
the function G by cases.

G(x) = M1 + F (x)(x0 −M1), for x ≤M1;
G(x) = x+ (x−M1)(x0 − x), for M1 ≤ x ≤ x0;
G(x) = x− (M2 − x)(x− x0), for x0 ≤ x ≤M2;
G(x) = M2 − F (x)(M2 − x0), for M2 ≤ x.

Then x0, M1 and M2 are all fixed points of G. We claim that P is the comple-
ment of the basin of attraction of x0. The following inequalities are immediate
from the above definition.

M1 ≤ G(x) ≤ x0, for x < M1;
x < G(x) < x0, for M1 < x < x0;
x0 < G(x) < x, for x0 < x < M2;
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x0 ≤ G(x) < M2, for M2 < x.

First we show that the basin of attraction of x0 for G includes [M1,M2].
Given M1 < x < x0, we see that x < G(x) < x0. It follows that Gn(x) is an
increasing sequence with limit L such that G(L) = L and M1 < L ≤ x0. Thus
we must have L = x0. A similar argument works for x0 < x < M1.

Next suppose that x /∈ P and either x < M1 or x > M2. Then either
G(x) ∈ [M1,M2], so that x is in the basin of attraction of G.

Now suppose that x ∈ P , so that either x ∈ P0 or x ∈ P1. For x ∈ P0,
we have F (x) = 0 and x ≤ M1, so that G(x) = M1 and thus Gn(x) = M1 for
all n > 0. Thus x is not in the basin of attraction of G. Similarly for x ∈ P1,
Gn(x) = M2 for all n > 0, so that x is not in the basin of attraction of G.

For X = <, just identify X with a subclass of (0, 1) as in (1) above.

(b) Let P be a bounded Π0
1 class of reals with a computable minimal element

m and a computable maximal element M and let the computably continuous
function F be given by (1) so that F (x) = 0 for all x ∈ K and F (x) > 0 for all
x /∈ K. Now define the function F in the following cases.

G(x) = m+M − x, for x ≤ m.

G(x) = M + F (x), for m ≤ x ≤M .

G(x) = 2x−M for x ≥M .

Since any countable Π0
1 subset of [0, 1] and any Π0

1 subset which may be
represented by a tree with no dead ends has a computable member, we have the
following immediate corollary.

Corollary 14.0.31. (a) If the nonempty Π0
1 subclass K of [0,1] may be rep-

resented by a tree with no dead ends, then K is the set of fixed points of
some computably continuous function from [0,1] into [0,1].

(b) Any countable, nonempty Π0
1 subclass K is the set of fixed points of some

computable function from [0,1] into [0,1].

As usual, we have a number of immediate corollaries, of which we state only
a few.

Theorem 14.0.32. Let X be {0, 1}ω, ωω, <, or [0, 1].

(a) For any r.e. degree c, there is a computably continuous function F on X
such that the set of c. e. degrees which contain zeroes of F equals the set
of c. e. degrees ≥T c.

(b) There is a computably continuous function F on X which has a fixed point
and such that any two distinct fixed points are Turing incomparable if X
is {0, 1}ω, ωω, <. There is a computably continuous function F on [0, 1]
which has a unique computable fixed point and uncountable many non-
computable fixed points and such that any two distinct non-computable
fixed points are Turing incomparable.
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(c) There is a computably continuous function F which has a maximum M
on X, such that there is a unique non-comptable point x0 where M is
attained and x0 is also the unique accumulation point of the set where M
is attained.

(d) There is a computably continuous function on < with attracting point at
infinity such that every computable point is attracted to infinity but not
every point is attracted to infinity.

(e) There is a computably continuous function on [0, 1] with a attracting point
at infinity such that every computable point is attracted to infinity but not
every point is attracted to infinity.

Proof. Note that in part (b) when X = [0, 1], we may add a single computable
point to the Π0

1 class so that it can represent the set of fixed points.

Theorem 14.0.33. (a) There is a computably continuous function on ωω

which has a zero but has no hyperarithmetic zero.

(b) There is a computably continuous function on ωω which attains a maxi-
mum M such that F (x) 6= M for any hyperarithmetic point x.

(c) There is a computably continuous function on ωω which has a fixed point
but has no hyperarithmetic fixed point.

Ko [102] improved part (4) of Theorem 10.15 by showing that if the Π0
1 class

P has either a p-time maximum element or a p-time minimum element, then
there is a p-time computable function f with Julia set P . Furthermore, Ko
shows in [102] that there is such a set P which has a non-computable Hausdorff
dimension, which implies that there is a p-time computable function f such that
the Julia set of f has non-computable Hausdorff dimension.

14.1 Symbolic Dynamics

In this section, we examine computable dynamical systems and symbolic dy-
namics associated with computable functions on the Cantor space {0, 1}N and
the unit interval [0, 1].

Computable real dynamical systems have been studied by Cenzer [17], where
the the Julia set of a computably continuous real function is shown to be a Π0

1

class and Ko [102], who examined fractal dimensions and Julia sets. Computable
complex dynamical systems have recently been investigated by Braverman and
Cook [11] and Braverman and Yampolsky [12], who showed that there is a
complex number c such that the Julia set corresponding to the function f(z) =
z2 + c is not decidable.

In particular, the computability of a closed set K in a computable metric
space (X, d) may be defined in terms of the distance function dK , where dK(x)
is the infimum of {d(x, y) : y ∈ K}. K is a Π0

1 class if and only if dK is
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upper semi-computable and K is a decidable (or computable) Π0
1 class if dK is

computable.
xxx
put this in earlier
zzz
For any finite k, the shift function on {0, 1, . . . , k} is defined by σ(x) = y,

where y(n) = x(n+ 1). A closed set Q ⊆ {0, 1, . . . , k} is said to be a subshift if
it is closed under the shift function. We will refer to a Π0

1 class which is also a
subshift as a subsimilar Π0

1 class.
Fix a finite alphabet Σ, let F : ΣN → ΣN be a computable function and let

a partition {U0, U1, . . . , Uk} of ΣN into clopen sets be given. The itinerary of a
point x ∈ ΣN is the sequence It(x) ∈ {0, 1, . . . , k}N where

It(x)(n) = i ⇐⇒ Fn(x) ∈ Ui.

Now let IT [F ] = {It(x) : x ∈ ΣN}. We show that IT [F ] is a decidable subsimilar
Π0

1 class and that, for any decidable subsimilar Π0
1 class Q ⊆ ΣN, there exists a

computable F such that Q = IT [F ].

14.1.1 Undecidable subshifts

In this section, we construct a subsimilar Π0
1 class with no computable element.

We will give the construction in {0, 1}N, but it can be generalized to ΣN for
any finite Σ. Now every decidable Π0

1 class has a computable element (in fact,
the leftmost path is computable). Hence we have an undecidable subsimilar Π0

1

class.
Let us say that a string v is a factor of a string w if there exist w1 and w2

such that w = w1
_v_w2. For any set S of strings, we may define a closed set

PS , where x ∈ PS if and only if, for all n and all w ∈ S, w is not a factor of
xdn. If the set PS is nonempty, then S is said to be avoidable. For this section,
we restrict ourselves to Σ = {0, 1}

Lemma 14.1.1. Given any sequence x0, x1, . . . of elements of {0, 1}N, there is
a nonempty subshift containing no xi.

Proof. Define the sequence l0, l1, . . . by l0 = 3 and, for n > 0,

ln = 3(2
n(n+3)

2 ).

This will imply that ln+1 = 2n+2ln. Now let wn = xnd2ln for each n and define
subshift P to consist of all x which do not contain any wn as a factor. Clearly
xi /∈ P for all i. It remains to show that P is nonempty, that is, {wn : n ∈ N}
is avoidable.

It is important to notice that given any word w of length 2k, it has at most
k + 1 distinct factors of length k. Since there are 2k words of length k, for k
large enough so that 2k > k+ 1, there are words of length k that do not appear
as a factor of w. With this in mind, we construct recursively two sequences of
words < An >n∈N and < Bn >n∈N such that, for all n:
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1. |An| = |Bn| = ln.

2. A0 and B0 are not factors of w0; this is possible since |w0| = 6 so w0 has
at most 4 distinct factors of length 3.

3. An+1 and Bn+1 are taken from {An, Bn}∗, have An as a prefix, and have
length m = 2n+2 = ln+1/ln. This is possible since there are 2m−1 such
words, but there are at most ln+1 + 1 factors of length ln+1 in wn+1 and
2m−1 = ln+1 + 1 + 2.

Now let x = limnAn. This exists since each An ≺ An+1. We claim that
x ∈ P . Suppose by way of contradiction that some wn is a factor of x. We
can view x as an infinite concatenation of blocks length ln, where each block
is either An or Bn. Since wn has length 2 ln, it must completely contain one
of the blocks, which would imply that either An or Bn is a factor of wn. This
contradiction shows that x ∈ P .

We need to improve this lemma in two ways. First, we may have only a
subset of words wk of length lnk . Second, we need an effective version.

Theorem 14.1.2. There is a recursive sequence of natural numbers l0, l1, . . .
such that if for any subsequence < lnk >k∈N and any set S = {vk : k ∈ N}
of words such that |vk| = lnk , S is avoidable. Furthermore, if φ is a partial
computable function such that φ(nk) = vk, then there is a nonempty subsimilar
Π0

1 class P such that no element of P contains any factor vk.

Proof. For the first part, simply let wnk = vk and choose arbitrary words wi of
length li for i /∈ {nk : k ∈ N} and apply the lemma.

For the second part, we have

x ∈ P ⇐⇒ (∀n)(∀k)[vk is not a factor of xdn]

In more detail, notice that vk is not a factor of xdn if and only if, for all v, if
φs(k) = v, then v is not a factor of xdn.

Theorem 14.1.3. There is a nonempty subsimilar Π0
1 class P with no com-

putable element.

Proof. Let the sequence< ln > be given as in Lemma 14.1.1. Let Let φ0, φ1, ..., φe, . . .
be an enumeration of partial computable functions. Now define the partial re-
cursive function φ by

φ(k) =

{
φkdlk, if φk(i) ↓ for all i < 2lk;

undefined, otherwise.

By Theorem 14.1.2, there is a nonempty subsimilar Π0
1 class P such that no

element of P has any word φ(k) as a factor. Now let y be any computable
element of {0, 1}N. Then y = φk for some k such that φk is a total function.
Thus φ(k) = φkdk is defined and is not a factor of any x ∈ P and hence certainly
φk /∈ P .
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14.1.2 Symbolic Dynamics of Computable Functions

Fix a finite alphabet Σ = {0, 1, . . . , k}, let F : ΣN → ΣN be a computable
function and let a partition {U0, U1, . . . , Uk} of ΣN into clopen sets be given.
The itinerary of a point x ∈ SN is the sequence It(x) ∈ {0, 1, . . . , k}N where

It(x)(n) = i ⇐⇒ Fn(x) ∈ Ui.

Now let IT [F ] = {It(x) : x ∈ ΣN}. We observe that IT [F ] is a subshift. That
is, suppose y = It(x) ∈ IT [F ]. Then σ(y) = It(F (x)), so that σ(y) ∈ IT [F ] as
well. The function It is continuous and hence IT [F ] is a closed set, as seen by
the proof of the following lemma.

Lemma 14.1.4. The function from ΣN → {0, 1, . . . , k}N mapping x to I(x) is
computable.

Proof. Given clopen sets U0, . . . , Uk, there exists a finite j and a finite subset
W of {0, 1}j such that each Ui is a finite union of intervals I[w] for some set of
w ∈W . Thus one can determine from ydj the unique i for which y ∈ Ui. Given
x ∈ ΣN, let y = I(x). To compute y(n), it suffices to find the first j values of
Fn(x), which can be computed uniformly from x and n.

Theorem 14.1.5. Fix a computable function F : ΣN to ΣN, let a partition
{U0, U1, . . . , Uk} of ΣN into clopen sets be given and let I(x) denote the itinerary
of x under F . Then

(a) For any computable x ∈ ΣN, I(x) is computable.

(b) The set IT [F ] of itineraries is a decidable, subsimilar Π0
1 class.

Proof. Part (a) follows from the fact that computable functions map computable
points to computable points and (b) follows from the fact that the image of a
decidable Π0

1 class under a computable function is a decidable Π0
1 class. (See

Section ?? for details.)

Next we prove the converse. Note that F 0(x) = x for all x ∈ ΣN and
therefore IT [F ] meets every Ui. Note that if Q is a subshift and Q does not
meet I[i], then Q ⊆ {0, 1, . . . , i− 1, i+ 1, . . . , k}.

Theorem 14.1.6. Let Σ = {0, 1, . . . , k} be a finite alphabet and let Q ⊆ ΣN be
a decidable, subsimilar Π0

1 class which meets I[i] for all i. Then there exists a
partition {U0, . . . , Uk} and a computable F : ΣN → ΣN such that Q = IT [F ].

Proof. We will use the partition given by Ui = I[i]. Since Q is decidable, we
can define a function G : ΣN → Q such that G(x) = x for all x ∈ Q. Let
Q = [T ] where T is a computable tree without dead ends. The approximating
function g for G is defined as follows. For any w ∈ {0, 1, . . . , k}n, find the
longest initial segment v such that v ∈ T and let g(v) be the lexicographically
least (or leftmost) extension of v which is in T ∩ {0, 1, . . . , k}n; this exists since
T has no dead ends. Now let F (x) = σ(G(x)). We claim that ΣF = Q.
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For any x ∈ Q, we have F (x) = σ(x) and σ(x) ∈ Q, since Q is a subshift.
Hence Fn(x) = σn(x), so that Fn+1(x)(0) = x(n + 1) and belongs to the set
Ux(n). Thus the itinerary I(x) = x. This shows that Q ⊆ IT [F ].

Next consider any x ∈ ΣN. We will show by induction that Fn(x) =
σn(G(x)). For n = 1, this is the definition. Then

Fn+1(x) = σ(G(Fn(x))) = σ(G(σn(G(x)))),

by induction. But G(x) ∈ Q, so that σn(G(x)) ∈ Q by subsimilarity and
therefore G(σn(G(x))) = σn(G(x)) and finally Fn+1(x) = σn+1(G(x)), as
desired. It follows that for n > 0, It(x)(n) = G(x)(n). But for n = 0,
the assumption that Q meets I[x(0)] implies that G(x)(0) = x(0) and hence
It(x)(0) = x(0) = G(x)(0) as well. Therefore It(x) ∈ Q as desired.
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Chapter 15

Feasible versions of
combinatorial problems

The main goal in this chapter is to apply the results of Chapter 7 to the math-
ematical problems discussed above in Chapters 8 to 14

We observe that any feasible structure is computable, therefore the set of
solutions to a feasible problem is also the set of solutions to a computable
problem. Thus results such as Theorems 8.2.1, 10.1.1 and 11.1.1 have feasible
versions. The reverse direction is more interesting.

We consider computable representation theorems such as Theorems 8.2.5,
10.1.3 and 11.1.3, and corollary results such as Theorems 8.2.6, 10.1.5 and 11.1.4.

These representation theorems showed that the set of solutions to a com-
putable problem of various sorts can represent either every c. b. Π0

1 class or
at least every Π0

1 class of separating sets. In this section we obtain better re-
sults, in most cases, by improving “recursive” to “polynomial-time”. Now an
infinite computable problem may be assumed to have universe ω, since any two
infinite computable sets are recursively isomorphic. (Here the universe of a
graph-coloring problem, for example, is the set the vertices.) However, it is not
true that any two polynomial-time sets are polynomial-time isomorphic. (For
example, it is clear that there is no p-time map from Tal(ω) onto Bin(ω).)
Thus a polynomial-time structure with some p-time set for its universe may not
be computably isomorphic to any p-time structure with universe ω. For exam-
ple, a p-time Abelian groups with all elements of finite order is constructed by
Cenzer and Remmel in [31] which is not even isomorphic to any p-time group
with standard universe either (Tal(ω) or Bin(ω)). For many of the problems
considered above, we will show that any computable problem can be reduced
first to a p-time problem and then to a p-time problem with standard universe.

We illustrate the general strategy with the graph coloring problem. Recall
from Section 10.10.2 that, for k ≥ 3, the set of k-colorings of a recursive graph
can be represented by a c. b. Π0

1 class and conversely can represent an arbi-
trary c. b. Π0

1 class. Let G = (V,E) be a computable graph. Then the set of
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k-colorings of G can be represented as the Π0
1 class [T ] of infinite paths through

a computable tree T . Now Theorem 7.1.4 constructs for us a p-time tree P
such that [T ] = [P ]. Then the converse representation creates from P a graph
whose k-colorings are in an effective degree-preserving finite-to-one correspon-
dence with the infinite paths through P . Furthermore, inspection of the proof
from [161] shows that this graph will actually be polynomial time, since P is
polynomial time. This shows that the k-colorings of any computable graph can
always be placed in an effective degree-preserving correspondence with the k-
colorings of some p-time graph, and, therefore, that the k-colorings of a p-time
graph can strongly represent any c. b. Π0

1 class.
However, there is no natural correspondence between the recursive graph and

the p-time graph constructed in this manner. We can do better using Theorem
7.2.1.

Theorem 15.0.7. For each computable instance P of any of the following prob-
lems, there is a p-time instance Q of the problem which is computably isomor-
phic to P . Furthermore, except in cases (13) and (14), if P has a computable
solution, then we can take Q to have a p-time solution.

(1) Finding a k-coloring for a k-colorable highly computable graph, for any
k ≥ 3.

(2) Finding a marriage in a highly computable society.

(3) Finding a surjective marriage in a symmetrically highly computable soci-
ety.

(4) Finding a surjective marriage in a symmetrically highly computable society
where each person knows at most two other people.

(5) Finding a k-partition of a highly computable graph such that no set in the
partition is adjacent to m other sets, for m > 2.

(6) Finding a one-way (or two-way) Hamiltonian (or Euler) path starting from
a fixed vertex for a highly computable graph.

(7) Covering a computablee poset of width k by k chains, for any k ≥ 2.

(8) Covering a computable poset of height k by k antichains, for any k ≥ 2.

(9) Expressing a computable partial ordering on a set as the intersection of d
linear orderings on the set.

(10) Finding a subordering of type ω (or of type ω∗) of a computable ordering.

(11) Finding an ω-successivity (or an ω∗-successivity) in a computable linear
ordering.

(12) Finding a non-trivial self-embedding of a computable linear ordering.

(13) Finding a winning strategy for an effectively closed binary game.
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(14) Finding a prime ideal of a recursive Boolean algebra.

Proof. For problems (1) through (12), this follows immediately from Theorem
7.2.1, since each of these problems can be viewed as a relational structure and
the given solution can be viewed as a function mapping to a fixed range. In
the dimension of posets problem, we can interpret the solution as a finite set
of relations. For problem (13), Theorem 4.4 of [32] shows that any computable
game may viewed as a p-time game in that the set of infinite paths which are
winning for Player I will be the set of infinite paths through a p-time tree. For
problem (14), Theorem 2.6 of [30] shows that any computable Boolean algebra
is computably isomorphic to a p-time Boolean algebra.

We note that a computable game with a computable winning strategy is
not necessarily isomorphic to a p-time game with a p-time winning strategy,
since by Theorem 4.5 of [32], there is a computable game with unique winning
strategy, which is computable but not p-time.

Corollary 15.0.8. For each recursive instance P of any of the problems listed
in Theorem 15.0.7, there is a p-time instance Q of the problem such that the Π0

1

class of solutions to P is computably homeomorphic to the Π0
1 class of solutions

to Q.

Proof. In each case, it is easy to see that the computable isomorphism between
P and Q gives rise to a computable homeomorphism between the Π0

1 classes of
solutions.

For example, we consider the coloring problem. Recall that the Π0
1 class of

k-colorings on a computable graph G = (V,E) (where V may be assumed to
equal ω) is the set [T ] of infinite paths through the computable k-ary tree T ,
where a finite sequence (σ(0), . . . , σ(n−1)) ∈ {1, 2, . . . , k}n is in T if and only if
σ(i) 6= σ(j) for all (i, j) ∈ E. Now suppose that f is a computable isomorphism
mappingG to the computable graphG′ = (V ′, E′), so that V ′ = {f(0), f(1), . . .}
and (f(i), f(j)) ∈ E′ if and only if (i, j) ∈ E. Then we can define the tree k+1-
ary T ′ by having (τ(0), . . . , τ(n− 1)) ∈ {0, 1, . . . , k} in T ′ if and only if

(1) τ(v) = 0 ⇐⇒ v /∈ V ′;

(2) τ(u) 6= τ(v) whenever (u, v) ∈ E′.

Then [T ′] represents in a reasonable way the set of legal k-colorings on G′ and
we have a natural homeomorphism from [T ] to [T ′] defined by H(x)(f(i)) = x(i)
and H(x)(v) = 0 if v /∈ V ′.

We can now represent Π0
1 classes as the set of solutions to p-time problems

of the types listed above. We list only some of the results.

Corollary 15.0.9. For each of the problems (1) through (9), and (13) listed in
Theorem 15.0.7,
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(a) The problem of finding a computable solution to a p-time problem can
strongly represent the c. b. Π0

1 class of separating sets for any pair of
disjoint infinite c. e. sets.

(b) There is a p-time instance of the problem with no computable solution.

(c) If a is a Turing degree and 0 <T a <T 0′, then there is a p-time instance P
of the problem such that P has a solution of degree a but has no computable
solution.

For problems (1), (3), (6) and (13), we have also:

(d) The problem of finding a computable solution to a p-time problem can
strongly represent an arbitrary c. b. Π0

1 class.

(e) There exists a p-time instance P of the problem such that

(i) P has a unique non-computable solution y which is also the unique
limit solution and has degree 0′ and such that any other solution is
computable;

(ii) if R is any computable sub-problem of P and z is any computable
solution of R, then either (i) there are only finitely many solutions of
P which extend z, or (ii) all but finitely many solutions of P extend
z.

(iii) if x is any computable solution of P , then there is some finite sub-
problem F of P such that any solution of P which agrees with x on
F must equal x.

We have seen that, by changing the names of the vertices, we can transform a
computable graph into a p-time graph. However, we would prefer for a countably
infinite graph to have the set V of vertices equal to some standard universe
such that the tally or binary representation of the set of natural numbers. This
would, for instance, allow us to define the homeomorphism of Corollary 15.0.8
without worrying about the set of non-vertices. The p-time graph constructed
by Theorem 7.1.4 will have a rather sparse set of vertices and this appears to
be an essential part of the theorem. We will next indicate how to fill out the
p-time structure given by Theorem 15.0.7 to a structure with universe Bin(ω)
such that there is a degree-preserving correspondence, which is one-to-one (up
to a finite permutation), between the Π0

1 classes of solutions of the associated
problems. For example, in the coloring problem, we add vertices whose colors
will be determined, up to a permutation, by the coloring of the vertices of Q.

Theorem 15.0.10. For each computable instance P of the combinatorial prob-
lems listed below, there is a p-time instance Q with universe Bin(ω) and a
degree-preserving correspondence between the solutions of P and the solutions
of Q.

(1) Finding a k-coloring for a k-colorable highly computable graph, for any
k ≥ 3.
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(2) Finding a marriage in a highly computable society.

(3) Finding a surjective marriage in a symmetrically highly computable soci-
ety.

(4) Finding a surjective marriage in a symmetrically highly computable society
where each person knows at most two other people.

(5) Finding a k-partition of a highly computable graph such that no set in the
partition is adjacent to m other sets.

(6) Finding a (one-way or two-way) Hamiltonian or Euler path for a highly
computable graph.

(7) Covering a computable poset of width k by k chains, for any k ≥ 2.

(8) Covering a computable poset of height k by k antichains, for any k ≥ 2.

(9) Expressing a computable partial ordering on a set as the intersection of d
linear orderings on the set.

(10) Finding an ω-successivity (or an ω∗-successivity) in a computable linear
ordering.

Proof. In each case, we may assume by Corollary 15.0.8 that we start with a
p-time instance of the problem which is a relational structure B with some uni-
verse B ⊆ Bin(ω). Now it follows from Lemma 2.3 of [31] that B is computably
isomorphic to a p-time structure A with universe A ⊆ Tal(ω). Then Lemma 2.6
of [31] says that the disjoint union A⊕Bin(ω) is p-time isomorphic to Bin(ω),
where X⊕Y = {〈0, x〉 : x ∈ X}∪{〈1, y〉 : y ∈ Y }. Then we will create a p-time
structure C with universe A ⊕ Bin(ω) which has a copy of A together with a
copy of Bin(ω), where the relations will be defined on Bin(ω) and between A
and Bin(ω) so as to determine the degree-preserving correspondence between
the solutions of A and those of the extension C. Since the universe C of C is
p-time isomorphic to Bin(ω), it follows from Lemma 2.2 of [31] that C is com-
putably isomorphic to a p-time structure with universe Bin(ω). Then we will
let Q be the problem associated with this structure. It follows that there will
be a degree preserving correspondence between the set of solutions of Q and the
set of solutions of the original problem P . In each case, we will assume that our
original structure is p-time and has for its universe a p-time subset A of Tal(ω)
and that there is a p-time list of Bin(ω)\A. These assumptions are justified by
the above discussion. In each case, the correspondence will be one-to-one unless
otherwise indicated.

(1) Finding a k-coloring for a k-colorable highly computable graph, for any
k ≥ 3.

This is Theorem 2.1 of [33]. Here the correspondence is one-to-one, up to a
finite permutation of the colors on the new vertices.
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(2) Finding a marriage in a highly computable society.

Let S = (B,G,K) be a p-time society. Then we will directly extend S to a
highly recursive p-time society S′ = (B′, G′,K ′) where B′ = G′ = Bin(ω). Let
Bin(ω)\B = {b0, b1, . . .} and let Bin(ω)\G = {g0, g1, . . .} be p-time lists of the
new boys and girls in the society S′. Then K ′ is defined by putting (bi, gi) ∈ K ′
for all i. It is clear that any marriage f on S has a unique extension f ′ to S′

defined by letting f ′(bi) = gi for all i. It follows that f and f ′ have the same
degree.

(3) Finding a surjective marriage in a symmetrically highly computable soci-
ety.

The extension is the same as in (2). It is clear that f ′ will be onto if and
only if f is onto.

(4) Finding a surjective marriage in a symmetrically highly computable soci-
ety where each person knows at most two other people.

The extension is again the same as in (2). It is clear that if each person in
S knows at most two other people, then each person in the extension S′ also
knows at most two other people.

(5) Finding a k-partition of a highly computable graph such that no set in
the partition is adjacent to m other sets, with m > 2.

Let the p-time graph G = (V,E) be given. We define a p-time graph G1 =
(V1, E1) to be a regular m − 1-ary tree of complete k-graphs. That is, define
the regular (m− 1)-ary tree Tm−1 to consist of a root node ∅ together with the
set {bin(0), bin(1), . . . , bin(m− 1)} × {bin(1), bin(2), . . . , bin(m− 2)}∗, where ∅
has m − 1 successors (bin(i), ∅) for i < m and (bin(i), σ) has m − 2 successors
(bin(i), σ_bin(j)) for j < m− 1. Then we let

V1 = {bin(1), bin(2), . . . , bin(k)} × Tm−1,

and we let ((bin(i), σ), (bin(j), τ)) ∈ E1, where σ = (σ(0), . . . , σ(s − 1)) and
τ = (τ(0), . . . , τ(t− 1)), provided that σ = τ or either τ is a successor of σ or σ
is a successor of τ . It is clear that if the graph is computably partitioned into
the complete k-graphs corresponding to the nodes of Tm−1, then each set in the
partition is adjacent to at most m− 1 other sets. We see also that each node of
Tm−1 has m− 1 neighbors, so that any two distinct nodes have at least 2m− 4
other neighbors. Now let {Ai : i < ω} be a k-partition of G1. Suppose that
some Ai contains vertices u and v corresponding to different nodes of the Tm−1.
Then u and v taken together have at least 2(k− 1) + (2m− 4)k = (2m− 2)k− 2
other adjacent vertices in G1. Since k − 2 of these could belong to Ai, we see
that Ai has at least (2m− 3)k adjacent vertices. Since each set in the partition
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has at most k vertices, it follows that Ai is adjacent to at least 2m − 3 sets in
the partition. Thus since m > 2, we have 2m− 3 > m− 1 so that the set Ai is
adjacent to too many sets.

Now let G′ = G ⊕ G1. It is clear that for any k-partition of G, there is a
partition of G′ of the same degree which is given by adding the recursive parti-
tion of G1 into the nodes of the tree as defined above. We claim that these are
the only possible partitions. That is, suppose {Bj : j < ω} is a k-partition of
G′. It suffices to show that for any u ∈ V1 and any j, if u ∈ Bj , then the entire
node to which u belongs must be included in Bj . Suppose that this is false.
It follows from the argument above that Bj may not contain an element of a
different node of T . Thus the set Bj has all k(m− 1) vertices from the adjacent
nodes as neighbors as well as at least one vertex from the node of u. But this
clearly implies that at least m sets of the partition must be adjacent to Bj .

(6) Finding a one-way (or two-way) Hamiltonian Euler path starting from a
fixed vertex for a highly recursive graph.

Let the p-time graph G = (V,E) be given with V = {v0 < v1 < · · · } a sub-
set of Tal(ω). Let each edge (tal(m), tal(n)) of V with tal(m) < tal(n) be
coded as 0n+11m+1 in Bin(ω). Let b0, b1, . . . enumerate the codes of edges in
increasing order and let bi = 0ni+11mi+1 for each i. Now let V ′ = V ⊕ Bin(ω)
and let E′ be defined by joining 〈1, bi〉 to 〈0, tal(mi)〉, joining 〈0, tal(ni)〉 to
〈1, bi+1 − 1〉, joining 〈1, b〉 to 〈1, b + 1〉 whenever b + 1 6= bi for any i, and
joining 〈1, b0 − 1〉 to 〈0, tal(m0)〉. Note that other than the initial sequence
of edges connecting 〈1, 0〉 to 〈1, b0 − 1〉 and then to 〈0, tal(m0)〉, this has the
effect of replacing an edge (m,n) ∈ E where m < n and bi = 1m+10n+1 by a
sequence of edges (〈0,m〉, 〈1, bi〉), (〈1, bi〉, 〈1, bi+ 1〉), . . . , (〈1, bi+1−2〉, 〈1, bi+1−
1〉), (〈1, bi+1 − 1〉, 〈0, n〉). See Figure 15.

Thus to test whether 〈1, b〉 and 〈1, c〉 are joined by an edge, where b < c,
we simply check that c = b + 1 and that, if c = 0n+11m+1 with m < n, then
(tal(m), tal(n)) /∈ E. To determine whether 〈0, v〉 and 〈1, c〉 are joined by an
edge, we first check that v = tal(m) ∈ V and that either (i) c = 0s+11r+1 or
(ii) c = 0s+11r+1 − 1 for some edge (tal(r), tal(s)) in G with r < s. Finally, in
case (i), we check that r = m and, in case (ii), we either check that m = m0

and that c+ 1 = b0 or else we compute the largest code 0q+11p+1 of an edge of
G less than c+ 1 and check that m = q. If everything checks, then there is an
edge and otherwise there is not. Thus G′ is a p-time graph.

Now suppose that f is a one-way Euler path on G starting from f(0) = v0 =
tal(m0). Then we can define a corresponding Euler path on G′ starting from
〈1, bin(0)〉 by beginning with the sequence
〈1, bin(0)〉, 〈1, bin(1)〉, . . . , 〈1, b0 − 1〉, 〈0, v0〉 and then replacing in turn each
edge (f(i), f(i + 1)) which joins tal(m) to tal(n) with m < n, either by the
sequence 〈0, f(i)〉, 〈1, bin(b)〉, 〈1, bin(b + 1)〉, . . . , 〈1, bin(c − 1)〉, 〈0, f(i + 1)〉, if
f(i) = tal(m) < f(i+ 1), or by the sequence 〈0, f(i)〉, 〈1, bin(c− 1)〉, 〈1, bin(c−
2)〉, . . . , 〈1, bin(b+ 1)〉, 〈1, bin(b)〉, 〈0, f(i+ 1)〉 if f(i) = tal(n) > f(i+ 1), where
b = 0n+11m+1 and c is the least code greater than b for an edge of G. It is clear
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m < n 

b  = 1        0m+1 n+1

i

<1,b  >   <1,b  +1> <1,b    -2> <1,b    -1>
i i i+1 i+1

m n

.  .  .

Figure 15.1: Replacement for edge (m,n)
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that this one-way Euler path is computable in f .
Conversely, let g be a one-way Euler path in G′ starting from 〈1, bin(0)〉. It

is clear that the path must proceed through
〈1, bin(1)〉, 〈1, bin(2)〉, . . . , 〈1, b0 − 1〉 and then to 〈0, v0〉. Now let f : ω → V be
defined by letting 〈0, f(i)〉 be the i-th vertex of the form 〈0, x〉 in the path g.
Then f is a one-way Euler path for G and it follows from the construction that
g is the corresponding path as defined above, since there is only one way in G′

to go from 〈0, f(i)〉 to 〈0, f(i+ 1)〉.
For two-way Euler paths, modify the construction by eliminating the finite

initial sequence 〈1, bin(0)〉, 〈1, bin(1), . . . , 〈1, bin(m0)−1〉 of vertices of G′ along
with the edges through those vertices. Then the remaining vertex set is still
p-time isomorphic to Bin(ω) and the argument goes through as above.

The Hamiltonian paths require a different construction. We assume without
loss of generality that the vertices of G include 0 and that all are multiples of
4 (in binary) and let 4m0, 4m1, . . . enumerate the vertices of G in increasing
order. Define the graph G′ to have vertex set V ′ = Bin(ω) with edges defined
as follows. For each i, there will be two sequences of edges joining the set of
binary numbers from 4mi + 1 up to 4mi+1, as follows:

(i) 4mi+1, 4mi+1 − 4, 4mi+1 − 8, . . . , 4mi + 4, 4mi + 2, 4mi + 6, . . . , 4mi+1 − 2,

(ii) 4mi+1, 4mi+1 − 3, 4mi+1 − 7, . . . , 4mi + 1, 4mi + 3, . . . , 4mi+1 − 1.

These are the vertices associated with 4mi+1. In addition, for each edge joining
4mi and 4mj in G with mi,mj 6= 0, there are edges joining 4mi−1 with 4mj−2
and joining 4mi− 2 with 4mj − 1. For an edge in G joining 4mi with 0, there is
an edge joining 4mi − 1 with 0. The procedure for determining whether there
is an edge joining a and b is the following. First look for the largest m and n
such that 4m ∈ V and 4m < a and 4n ∈ V and 4n < b. In the special case
that a = 0, a and b are joined if and only if b+ 1 is joined to 0 as vertices in G.
Otherwise there are several cases. First suppose that m = n; then a are b are
joined if and only if, either they differ by exactly 4 or {a, b} = {4m+ 1, 4m+ 3}
or {a, b} = {4m + 2, 4m + 4}. Next suppose that m 6= n. Then a and b are
joined if and only if either a + 1 and b + 2 are joined as vertices in G or a + 2
and b+ 1 are joined as vertices in G. Thus G′ is a p-time graph.

Now let f be a one-way Hamiltonian path on G starting from v0 = 0 and
suppose that f(i) = 4mri . Then there is a corresponding Hamiltonian path g in
G′ obtained by replacing the edge from v0 to 4mr1 with the sequence of edges
joining v0 to 4mr1 − 1 and then on to 4mr1 − 3 and 4mr1 as described above,
and for i > 0, replacing each edge (f(i), f(i + 1)) with the sequence of edges
first joining 4mri to 4mri − 4 and then on to 4mri − 2 as described above, then
joining 4mri − 2 to 4mri+1 − 1, and closing with the sequence joining 4mi+1− 1
to 4mi+1− 3 and then 4mi+1. Thus for each i > 0, the even vertices associated
with f(i) are joined to the odd vertices associated with f(i+ 1).

Conversely, let g be a one-way Hamiltonian path in G′ starting from v0 = 0
and define f(i) = 4mri so that 0, 4mr1 , . . . lists the members of G in order of
appearance in the path g. It follows from the construction that f is a one-way
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Hamiltonian path for G′ starting from v0 and that g is the corresponding path
as defined above.

For the two-way Hamiltonian paths, the construction is modified by adding
an edge joining v0 with 4mi − 2 for each edge joining v0 with 4mi in G. Then
for any two way Hamiltonian path f in G, there will be two corresponding two-
way paths in G′, one in which the even vertices associated with f(i) are joined
to the odd vertices associated with f(i + 1) and one in which the odd vertices
associated with f(i) are joined with the even vertices of f(i + 1). Thus the
correspondence here is two-to-one.

(7) The problem of covering a computable poset of width k by k chains, for
any k ≥ 2.

Let P = (P,≤P ) be a p-time poset where P ⊆ Tal(ω). Then define a p-
time poset R = (R,≤R) where R = P ⊕ ({bin(1), . . . , bin(k)} × Bin(ω)) and
〈0, p〉 ≤R 〈0, q〉 iff p ≤P q, 〈0, p〉 ≤R 〈1, n〉 for all p and n, and
〈1,m〉 ≤R 〈1, n〉 iff m = 〈bin(i), bin(r)〉 and n = 〈bin(i), bin(s)〉 where r ≤ s.
Then it is clear that for any covering f of P by k chains induces a covering f ′

of covering of R by k chains where

(i) f ′(〈0, p〉) = f(p) for all p ∈ P and

(ii) f ′(〈1, 〈bin(i), n〉〉) = f ′(〈1, 〈bin(i),m〉〉) for all i,m and n.

Thus the covering is determined by the value of f ′ on the finitely many new
points 〈1, 〈bin(1), 0〉〉, . . . , 〈1, 〈bin(1)0〉〉. This shows that f ′ has the same degree
as f and that f ′ is unique up to a permutation of the names of chains. Then R
is p-time isomorphic to p-time linear ordering S whose universe is Bin(ω).

(8) The problem of covering a computable poset of height k by k antichains, for
any k ≥ 2.

This is the dual of problem (7). The partial order is now defined by mak-
ing 〈1, 〈bin(i), n〉〉 ≤ 〈1, 〈bin(j),m〉〉 ⇐⇒ (i < j & m = n).

(9) The dimension of posets problem.

Let P = (P,≤P ) be a poset and let Bin(ω) \ P = {vi : i < ω}. The par-
tial order ≤′ is defined on Bin(ω) by making p ≤′ vi for all p ∈ P and all i and
making vi ≤′ vj if and only if vi ≤ vj (where < is the usual ordering on Bin(ω).

(10) Finding an ω-successivity (or an ω∗-successivity) in a computable linear
ordering.

Given a p-time linear ordering L1 = (A,<1) on a p-time set A = {a0 < a1 <
· · · }, we may assume a0 = 0 and that each ai = bin(4mi). Now define the
p-time ordering L2 = (Bin(ω), <2) by replacing each point a = bin(4mi) with
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a block B(a):

bin(4mi + 1) < bin(4mi + 5) < · · · < bin(4mi+1 − 3)

< bin(4mi+1 − 1) < bin(4mi+1 − 5) < · · · < bin(4mi + 3)

< bin(4mi) < bin(4mi + 4) < bin(4mi + 8) < · · · < bin(4mi+1 − 4)

< bin(4mi+1 − 2) < bin(4mi+1 − 6) < · · · < bin(4mi + 2)

That is, we use the elements between 4mi and 4mi+1 which are equivalent to 1
mod 4 to form a chain between 4mi+1 and 4mi+1−1, then we use the elements
between 4mi and 4mi+1 which are equivalent to 3 mod 4 in reverse order to
form a chain between 4mi+1 − 1 and 4mi, etc.

Now suppose that f is an ω-successivity in L1. Then we can recursively
obtain an ω-successivity g in L2 by replacing each point f(i) with the block
B(f(i)). Conversely, given an ω-successivity g in L2, the ω-successivity f of
L1 may be defined by making f(i) the i-th binary number in the successivity
g which is divisible by 4 and it then follows that g is the successivity obtained
from f as above. The argument for ω∗-successivities is similar.

We remark that, for the three-coloring problem, it is possible to improve
this result by having the 3-colorings of the the original computable graph be
restrictions of the 3-colorings of the p-time graph to the original recursive vertex
set.

Theorem 15.0.10 can now be applied to obtain improved versions of Corollary
15.0.9. We list only a few here.

Corollary 15.0.11. (a) There exists a p-time graph G with universe Bin(ω)
which has a unique non-computable Hamiltonian path π, where π has de-
gree 0′ and such that any other Hamiltonian path is the unique extension
to G of a Hamiltonian path on some finite subgraph F of G.

(b) There is a p-time partial ordering with universe Bin(ω) of width k which
has no computable covering by k chains.

(c) For any x ≤T 0′, there is a p-time linear ordering A with universe Bin(ω)
such that there is ω-successivity (respectively ω∗-successivity) of A of de-
gree x and every ω-successivity (respectively ω∗-successivity) of A is either
computable or has the same Turing degree as x.

Theorem 15.0.10 and Corollary 15.0.11 demonstrate that the problem of
finding solutions to feasible problems is just as difficult as the problem of finding
solutions to recursive problems. Therefore more conditions will have to be put
on a problem than just feasibility if our goal is to guarantee the existence of a
feasible solution, or even the existence of a recursive solution. There are many
possible approaches to this goal, some of which were explored in [33] for the
graph-coloring problem.

Finally, we consider the problem of finding a prime ideal of a recursive
Boolean algebra, or more generally, of a recursive ring.
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Theorem 15.0.12. For any recursive Boolean algebra B, there is a p-time com-
mutative ring R with unity, having universe Bin(ω), and a one-to-one degree-
preserving map between the class of prime ideals of R and the class of prime
ideals of B.

Proof. By Theorem 15.0.7, we may assume that B is a p-time Boolean algebra,
and thus a Boolean ring. Now define the ring R = B ⊕ Q. Q is chosen here
because it has no (proper) prime ideals. The ring Q of rationals may be repre-
sented as a p-time ring with universe Bin(ω) and it follows from Lemmas 2.2
and 2.6 of [31] that R is p-time isomorphic to a ring with universe Bin(ω). For
any prime ideal I of B, it is easy to check that I ⊕Q is a prime ideal of R and
that these are the only prime ideals of R.

Corollary 15.0.13. (i) For any degree a <T 0′, there exists a recursive com-
mutative ring R with a prime ideal I of degree a such that I is the unique
non-recursive prime ideal of B and such that any other prime ideal of B
is finitely generated.

(ii) There is a computable commutative ring with unity, R, which has a unique
non-computable prime ideal I, such that any other prime ideal of R is
finitely generated, and such that for any c. e. ideal J of R, either there
are only finitely many prime ideals of R extending J or else all but finitely
many of the prime ideals of R extend J .
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Chapter 16

The Lattice of Π0
1 classes

The study of the lattice E of computably enumerable sets under inclusion has
been one of the central tasks of computability theory since the 1960s. The
inclusion lattice EΠ of Π0

1 classes has an interesting algebraic structure, in some
ways analogous to the dual of the lattice E of c.e. sets. Recent work has
focused on comparing and contrasting the two lattices. Important issues include
the definability and complexity of various properties, automorphisms of certain
substructures of the lattice.

Here is an example. Given two Π0
1classes P ⊂ Q, the interval [P,Q] = {R :

P ⊆ R ⊆ Q} of P and in particular [∅, Q] is an initial segment of EΠ. A Π0
1class

P is said to be thin if [∅, Q] is a Boolean algebra. P is perfect if every element
of P is a limit point. Cholak et al. [45] have shown that the family of all
perfect thin classes is in certain ways analogous to the hyper-hypersimple c.e.
sets. That is, any two perfect thin classes are automorphic in EΠ, the family of
perfect thin classes is definable in EΠ and the degrees of perfect thin classes are
exactly the c.e. array noncomputable degrees. (Here the degree of P = [T ] is
the degree of the set of nodes of T which have an extension in P .)

An infinite Π0
1 class P is minimal if every Π0

1 subclass of P is either finite
or cofinite in P . This is of course dual to the notion of a maximal c.e. set.
For any lattice L, let L∗ be the quotient lattice of L modulo finite difference.
Then P is minimal if and only if [0, P ]∗ is the trivial Boolean algebra. Cenzer,
Downey, Jockusch and Shore [22] first constructed a minimal thin class. Cenzer
and Nies [28] characterized the order types of the finite intervals of E∗Π as finite
distributive lattices with the dual reduction property. Furthermore, for each
such lattice L, the theory of L is decidable. In particular, this means that there
are intervals (in fact, initial segments) of order type n for any finite ordinal n.
This contrasts with the classic result that finite intervals of E∗ are all Boolean
algebras. However, it is shown in [28] that for any decidable Π0

1 class P , if
[0, P ]∗ is finite, then it must be a Boolean algebra. Finally, if P is decidable and
[0, P ] is not a Boolean algebra, then the theory of [0, P ] interprets the theory of
arithmetic and is therefore undecidable.
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End intervals [P, TN ] were studied in [29] where it was shown that there
are exactly two possible isomorphism types of end intervals (where P is either
clopen or not).

In his thesis (and continued in joint work with Cenzer), Riazati [164, 41]
studied minimal extensions of Π0

1 classes (an analogue of maximal subsets). He
proved an analogue of the Owings Splitting Theorem and used it to prove that
decidable minimal extensions are not possible.

Lawton [114] introduced the notion of minor superclasses of Π0
1classes, as

an analogue of major subsets of c.e. sets and gave a characterization of the Π0
1

classes which have strong minor superclasses.
It is easy to see that the family of finite classes is invariant under auto-

morphism. Cenzer and Nies [29] showed that the property of being finite is
definable in the lattice and in general, the family of countable Π0

1 classes of
rank α is definable if and only if α < ω.

16.1 The dual lattice of c. e. ideals of Q
An ideal I of the Boolean algebra B is a subset which is closed under ∨ and
under �, that is, if a, b ∈ I and c � b, then a ∨ b ∈ I and c ∈ I.

For any Π0
1 class P ⊂ {0, 1}N, let

I(P ) = {U ∈ Q : U ∩ P = ∅}.

Then I(P ) is a c. e. ideal of Q.
We will make use of Σ0

k-Boolean algebras, which may be similarly defined
by requiring that � be Σ0

k and that ∧,∨ be computable in 0(k−1). For a Σ0
k

Boolean algebra B, let

I(B) := the lattice of Σ0
k–ideals of B.

The lattice operations of I(B) are given by

(a) I ∧ J = I ∩ J and

(b) I ∨ J = {a ∈ Q : (∃b ∈ I)(∃c ∈ J)(a ≤ b ∪ c).

We claim that the map taking a Π0
1 class P to I(P ) defines an effective

isomorphism from EΠ onto I(Q), where the meet and join are reversed. Details
are left to the exercises.

Proposition 16.1.1. EΠ and I(Q) are effectively (reverse) isomorphic.

Recall that an ideal I in a Boolean algebra B is said to be principal if there
is some b such that I = {a : a ≤ b}. The ideal I corresponding to a Π0

1 class P as
above is principal if and only if P is clopen. Thus we will refer to a non-clopen
Π0

1 class P as nonprincipal. For any Π0
1 class P , let S(P ) be the lattice of Π0

1

classes Q such that P ⊂ Q.
Exercises



16.2. COUNTABLE THIN CLASSES 335

16.1.1. Explain concretely how the meet and join operations of B are computed.

16.1.2. Show that I(P ) is a c.e. ideal of Q for any Π0
1 class P ⊂ {0, 1}N.

16.1.3. Show that I(P∪Q) = I(P )∩I(Q) and I(P∩Q) = I(P )∨I(Q). HINT: The
second part will use the separation property of Π0

1 classes from Corollary
2.2.24.)

16.1.4. Show that for any ideal I ∈ I(Q), P = {0, 1}N \ ∪I is a Π0
1 class and

I(P ) = I. (Hint: use compactness.)

16.2 Countable thin classes

Theorem 16.2.1. (C-D-J-S) For any computable ordinal α, there is a thin Π0
1

class Pα with Cantor-Bendixson rank α. Furthermore, we may take Pα as the
set of paths through a computable tree with no dead ends.

Proof. We first sketch the proof for α = 1. We construct a sequence τe ∈
{0, 1}<ω such that τ_e 1 ≺ τe+1 for all e, a set A = ∪eτe and a Π0

1 class P = [T ]
such that

(1) D(P ) = {A}, and

(2) for any e, if A ∈ [Te] then P ∩ I(τe) ⊂ [Te].

These conditions imply that A is non-computable, since if A were com-
putable, then {A} = [Te] for some e, so that by (2), P ∩ I(τe) = {A}, contra-
dicting (1).

These conditions imply that A is non-computable, since if A were com-
putable, then {A} = [Te] for some e, so that by (2), P ∩ I(τe) = {A}, contra-
dicting (1).

These conditions also imply that P is minimal (and therefore thin by Theo-
rem 5.2). To see this, suppose that [Te] ⊂ P . If A /∈ [Te], then [Te] has no limit
point and is therefore finite. If A ∈ [Te], then P \ [Te] ⊂ P \ I(τe) by (2) has no
limit point and is finite.

The construction is in stages, so that at stage s we have a tree T s and strings
τse . At stage s+ 1, we simply look for e ≤ s such that some τ � τse is in T s \ Te
and let τs+1

e = τ for the least such e and τ . For i < e, let τs+1
i = τsi and for

τs+1
e+i = 0τ_1i. We leave the details to the reader.

The general construction for a computable ordinal α is accomplished using
a computable system of notations for α and a uniformly computable family
of trees of rank up to α as in the proof of Theorem 4.4.8. The details are
omitted.

Next we consider the possible degrees of members of thin Π0
1 classes.

Theorem 16.2.2. (C-D-J-S) There is a Π0
1 set A of degree 0′ and a minimal,

thin Π0
1 class P such that D(P ) = {A}.
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Proof. Let B = 0′ be the union of uniformly computable sets Bs. Let T0, T1, . . .
be an effective enumeration of the primitive recursive trees on 2<ω. We will
define a Π0

1 retraceable set A = {a0 < a1 < · · · } and a corresponding Π0
1 class

P = I(A) of initial subsets of A, by Theorem 2.6.2, such that
(1) For any e, e ∈ B ⇐⇒ e ∈ Bae .
(2) For any Π0

1 class Pe = [Te], if A ∈ Pe, then An ∈ Pe for all n ≥ e.
By property (1), 0′ is recursive in A, so that, since A is Π0

1, A has degree
0′. It then follows from (2) as in the proof of Theorem 16.2.1 that P is minimal
and thin.

The sequence a0 < a1 < · · · is defined by Π0
1 recursion in the style of

Theorem 2.6.5 by making an the least a which satisfies the following:
(i) For all m < n, am < a.
(ii) n ∈ B → n ∈ Ba.
(iii) For all m < n, either < a0, . . . , an−1, a >/∈ Tm or
(∀x)(< a0, . . . , an−1, x >∈ Tm).
(iv) For all x < a, either

(a) x ≤ xn−1 or

(b) n ∈ Ba \Bx or

(c) for some m < n, < x0, x1, . . . , xn−1, x >∈ Tm& < x0, x1, . . . , xi, a >/∈ Tm.

The details are left to the reader.

The following result is Theorem 2.13 of [22] (p. 102).

Theorem 16.2.3. (C-D-J-S) Let T be a recursive tree and P a Π0
1 class such

that P = [T ]. Then for any set A ∈ P ,

(a) If P ⊂ P(A), then A ≤T Ext(T ).

(b) If A is a Π0
1 set and P is thin, then A ≤T Ext(T )

(c) If T has no dead ends and A is either r. e. or co-r. e., then A is recursive.

Proof. (a) To test whether n ∈ A, simply see if there is a σ ∈ Ext(T ) of length
n+ 1 such that σ(n) = 1.

(b) Note that P(A) is a Π0
1 class, so that Q = P ∩ P(A) is a Π0

1 subclass of
P and is nonempty since A ∈ Q. Since P is thin, we must have Q = P ∩ U for
some clopen U = I(σ0) ∪ · · · ∪ I(σk). If we now define

TQ = {σ ∈ T : σiscompatiblewithσi, forsomei ≤ k},
then it is clear that Q = [TQ] and that
Ext(Tq) = {σ ∈ Ext(T ) : σiscompatiblewithσi, forsomei ≤ k},
so that Ext(TQ) is recursive in Ext(T ). Now Q ⊂ P(A), so that by (a) we

have A ≤T Ext(TQ) ≤T Ext(T ).
(c) It is immediate from (b) that if A is Π0

1 set, then A is recursive. If A is an
r.e. set, then ω \A is Π0

1 and belongs to the thin Π0
1 class {ω \X : X ∈ P}.
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Theorem 16.2.4. (C-D-J-S) Let T be a recursive tree such that P = [T ] is a
thin Π0

1 class and let A ∈ P . Then

(a) A′ ≤T A⊕ 0′′ (so that it is not possible that A ≥T 0′′.)

(b) If T has no dead ends, then A′ ≤T A ⊕ 0′ (so that it is not possible that
A ≥T 0′.)

Proof. (a) Let P = [T ] be thin and suppose A ∈ P . For each e, let Qe =
{C : φCe (e) ↑}. Then Qe is a Π0

1 class, so there is a clopen set U(e) such that
P ∩ Qe = P ∩ U(e). Thus if φAe (e) ↑, then there is some σ = Adn such that σ
forces φAe (e) ↑, that is, such that, for any B ∈ P , if σ ≺ B then φBe (e) ↑. Now
define the Π0

2 relation R(e, σ) which says that σ forces φBe (e) ↑, by
R(e, σ) ⇐⇒ (∀τ � σ)[(τ ∈ T&φτe (e) ↓)→ τ /∈ Ext(T )].
Then we can compute from A together with 0′′, whether e ∈ A′ by searching

for the least n such that, for σ = xdn, either φσe (e) ↓, in which case e ∈ A′, or
R(e, σ), in which case e /∈ A′.

(b) 0bserve that if Ext(T ) is recursive, then the relation R defined above
will be recursive in 0′.

It follows from (b) and Theorem 4.2 (b) above that if A has rank one in a
thin Π0

1 class P = [T ], where T has no dead ends, then A has low degree a, that
is, a′ = 0′.

Part (a) of this theorem is best possible in the sense that, as shown in
Theorem 2.18 of [22], there is a minimal thin Π0

1 class P and a set A such that
D(P ) = {A} and A⊕ 0′ ≡T 0′′.

We conclude this section by stating without proof several further results
from [22].

Theorem 16.2.5. (C-D-J-S) Between any two distinct r. e. degrees b < c,
there is a degree a, a set A of degree a and a minimal, thin Π0

1 class P with
D(P ) = {A}.

There is a family of c. e. degrees which contain members of thin Π0
1 classes.

In particular, it follows from Theorem 4.9 of Downey-Jockusch-Stob [59] that
all array non-computable ( a.n.c.) degrees and hence all non− low2 degrees
contain members of thin Π0

1 classes.
Theorem 5.8 tells us that no set of degree 0′′ can even belong to a thin Π0

1

class. Two further results give lower degrees which also contain no members of
thin classes.

Theorem 16.2.6. (C-D-J-S) (a) There is an r.e. degree a such that no set B
of degree a belongs to any thin Π0

1 class.
(b) There is a minimal degree a < 0′ such that no set A of degree a is a

member of any thin Π0
1 class.

In contrast, we have the following improvement of Theorem 4.4.14.

Theorem 16.2.7. (C-D-J-S) There is a non-recursive set A ≤T 0′′ such that
every non-recursive set B ≤T A is a rank 1 member of a minimal, thin Π0

1 class.
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Finally, there is another connection with maximal c. e. sets.

Theorem 16.2.8. (C-D-J-S) There is a maximal set A which is not a member
of any thin Π0

1 class.

16.3 Initial Segments of the Lattice

In this section, we show that in the lattice EΠ of Π0
1 classes there are initial

segments [∅, P ] = L(P ) which are not Boolean algebras, but which have a de-
cidable theory. In fact, we will construct for any finite distributive lattice L
which satisfies the dual of the usual reduction property a Π0

1 class P such that
L is isomorphic to the lattice L(P )∗, which is L(P ), modulo finite differences.
For the 2-element lattice, we obtain a minimal class, first constructed by Cen-
zer, Downey, Jockusch and Shore in 1993. For the simplest new Π0

1 class P
constructed, P has a single, non-computable limit point and L(P )∗ has three
elements, corresponding to ∅, P and a minimal class P0 ⊂ P . The element
corresponding to P0 has no complement in the lattice. On the other hand, the
theory of L(P ) is shown to be decidable. We show that if P is decidable and
has only finitely many limit points, then L(P )∗ is always a Boolean algebra.
We show that if P is a decidable Π0

1 class and L(P ) is not a Boolean algebra,
then the theory of L(P ) interprets the theory of arithmetic and is therefore
undecidable.

It was proved in Nies [149] that the theory of each interval of the lattice
E which is not a Boolean algebra interprets true arithmetic (and is therefore
certainly undecidable). However, we will show that in L there are initial seg-
ments [∅, P ] = L(P ) which are not Boolean algebras, but which have a decidable
theory.

We will construct for any finite distributive lattice L which satisfies the dual
of the usual reduction property a Π0

1 class P such that L is isomorphic to the
lattice L(P )∗, which is L(P ), modulo finite differences. We will show that L(P )
is isomorphic to a sublattice of P(N) which is closed under finite differences and
then apply a theorem of Lachlan [111] to conclude that the theory of L(P ) is
many-one reducible to the theory of the finite lattice L and is therefore decidable.

The construction of the Π0
1 class corresponding to a given lattice builds on

the construction of a minimal Π0
1 class in [22]. The simplest minimal Π0

1 class
P has a single limit point together with countably many isolated points. P has
the property that every Π0

1 subclass Q of P is either finite or is cofinite in P –
furthermore, Q is the intersection of P with a clopen set. Thus the lattice L(P )
of Π0

1 subclasses of P is isomorphic to the class of finite/cofinite subsets of ω and
is a Boolean algebra. Such a class plays a role in the lattice L corresponding to
the dual of the role played by a maximal c.e. set in the lattice E .

For the simplest new Π0
1 class P constructed, P includes a minimal subclass

P0, has a single, non-computable limit point and P has three types of subclasses:
(i) finite classes, (ii) cofinite classes, and (iii) classes which are cofinite in P0 and
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finite in P − P0. The third type of subclass has no complement in the lattice,
which is why the lattice is not a Boolean algebra.

This lattice is isomorphic to the lattice L of subsets of ω containing all
finite and cofinite sets together with all sets S containing cofinitely many even
numbers and finitely many odd numbers. We observe that L is isomorphic to
the dual lattice of complementary sets. The theory of L is seen to be decidable
by Lachlan’s result, as explained above. It is not hard to see that this lattice
may not be realized as the class of c.e. subsets of any c.e. set. Indeed, let
A ⊂ B be c.e. sets and let L be the interval [A,B] of c.e. sets C such that
A ⊂ C ⊂ B, modulo finite difference. If some set C is not complemented in
L, then it follows from repeated applications of the Owings Splitting Theorem
([181], p. 183) that L is infinite.

The original construction of a minimal thin class in Theorem 2.2 of [22],
p. 88, provides a decidable Π0

1 class P such that L(P )∗ is the trivial Boolean
algebra {0, 1}.

We will show that if P is decidable and has only finitely many limit points,
then L(P )∗ is always a Boolean algebra. Thus if P is a decidable Π0

1 class and
L(P )∗ is not a Boolean algebra, then P has infinitely many limit points.

Finally, we will show that if P is a decidable Π0
1 class and L(P ) is not a

Boolean algebra, then the theory of L(P ) interprets the theory of arithmetic
and is therefore undecidable.

As usual, we say that sets A and B are equal modulo finite difference (writ-
ten A =∗ B) if the symmetric difference (A−B)∪ (B−A) is finite. For a lattice
L of sets, let L∗ be the quotient lattice of L modulo the equivalence relation
=∗. We note here that if A and B are Π0

1 classes and A−B is finite, then any
element of A − B is computable, so that A − B is also a Π0

1 class. However,
the lattice EP is not closed under finite differences, since if x is a computable
element of the Π0

1 class P and is a limit point of P , then {x} is also a Π0
1 class,

but P − {x} is not even a closed set and thus is not a Π0
1 class.

16.3.1 Representation of finite lattices

For any Π0
1 class P , the family L(P ) of Π0

1 subclasses of P is an initial segment of
the lattice of Π0

1 classes. It is clear that each such initial segment is a sublattice
of the full lattice of Π0

1 classes with least member ∅ = 0 and greatest element
P = 1, and is distributive. The quotient lattice L(P ) is likewise a distributive
lattice. In this section, we characterize the family of finite lattices L which are
isomorphic to L(P )∗ for some Π0

1 class P and also the family of finite lattices L
which are isomorphic to L(P )∗ for some decidable Π0

1 class P .
We will show that L(P ) satisfies the following Dual Reduction Property.

Definition 16.3.1. The lattice (L,≤) satisfies the dual reduction property if
for any a, b ∈ L, there exist a1 ≥ a and b1 ≥ b such that a1 ∨ b1 = 1 and
a1 ∧ b1 = a ∧ b.

Let L(P )
∗

denote the lattice [∅, P ] modulo finite difference. This lattice will
also be distributive and satisfy the dual reduction property.



340 CHAPTER 16. THE LATTICE OF Π0
1 CLASSES

Proposition 16.3.2. For any Π0
1 class P , the lattices L(P ) and L∗(P ) satisfy

the dual reduction property.

Proof. Let P1 and P2 be (nonempty) Π0
1 subclasses of P and, for i = 0, 1, let

Ti be a computable tree such that Pi = [Ti] is the set of infinite paths through
Ti. We define computable trees Si ⊃ Ti such that S1 ∩ S2 = T1 ∩ T2 and
S1 ∪ S2 = {0, 1}<ω and let Qi = [Si]. It will follow that Q1 ∩Q2 = P1 ∩P2 and
that Q1 ∪Q2 = {0, 1}ω; the desired classes are Q1 ∩P and Q2 ∩P . For the first
condition, suppose that x ∈ Q1 ∩ Q2. Then xdn ∈ S1 ∩ S2 for each n, so that
xdn ∈ T1∩T2 for each n, and therefore x ∈ P1∩P2. For any x, we have that for
each n, either xdn ∈ S1 or xdn ∈ S2. Thus without loss of generality xdn ∈ S1

for infinitely many n. Since S1 is a tree, xdn ∈ S1 → xdm ∈ S1 for m < n, so
that xdn ∈ S1 for all n and therefore x ∈ Q1.

The definition of the trees Si is by recursion on the length of σ ∈ {0, 1}<ω.
First put the empty string in both S1 and S2 since it is in T1 ∩T2. Now assume
by induction that for strings σ of length ≤ n, we have

(i) σ ∈ S1 ∪ S2 and
(ii) σ ∈ S1 ∩ S2 ⇐⇒ σ ∈ T1 ∩ T2.
Now for τ = σ_0 or σ_1, there are 4 cases; the final case is most important.
(a) If τ ∈ T1 ∩ T2, then we put τ ∈ S1 ∩ S2.
(b) If τ ∈ T1 − T2, then we put τ ∈ S1 − S2.
(c) If τ ∈ T2 − T1, then we put τ ∈ S2 − S1.
(d) If τ /∈ T1 ∪ T2, then we consider whether σ ∈ S1 or S2. If σ ∈ S2 − S1,

then we put τ ∈ S2 − S1 and otherwise, we put τ ∈ S1 − S2.
It is easy to check that in each case, if τ ∈ Si, then σ ∈ Si, so that each Si

is a tree. The conditions (i) and (ii) follow from the construction by induction
on the length of σ.

We now prove a converse result.

Theorem 16.3.3. For any finite distributive lattice L which satisfies the dual
reduction property, there exists a Π0

1 class Q such that L(Q)∗ is isomorphic to
L. Furthermore, the theory of L(Q) is decidable.

Proof. Notice that for any finite class Q, L(Q)∗ will be the one-point lattice. For
the simplest non-trivial example, the two-point lattice L = {0, 1}, Q must be a
minimal Π0

1 class, meaning that every Π0
1 subclass is either finite or is cofinite in

Q. Such a class was constructed in [22]. The construction given below is based
on the construction of a minimal Π0

1 class.
Let Te be a standard enumeration of the primitive recursive trees, so that

Pe = [Te] enumerates the Π0
1 classes as in [36].

We need the following characterization of the finite distributive lattices sat-
isfying the dual reduction property, which follows from Hermann [79].

Lemma 16.3.4. Suppose L is a finite lattice of sets. Then L satisfies the dual
reduction property if and only if there exists a tree S with root ∅ which generates
L in the sense that every element of L is a join of a set of nodes.
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Figure 16.1: S
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Note that S is uniquely determined from L as the set of join-irreducible
elements of L.

To illustrate this idea, let S consist of the following subsets of {0, 1, 2, 3}:
∅, {0}, {0, 1}, {0, 1, 2}, {0, 1, 3}, {0, 4}, {0, 4, 5}. Here a set B is a successor of a
set A if B = A ∪ {b} for some b. S is a lower semi-lattice under the operation
of intersection and generates a lattice with the operation of union as follows.
The leaves of S are the sets {0, 1, 2}, {0, 1, 3} and {0, 4, 5}. Thus S gener-
ates a lattice L(S) with the addition of 8 sets: {0, 1, 4}, {0, 1, 4, 5}, {0, 1, 2, 4},
{0, 1, 3, 4}, {0, 1, 2, 3}, {0, 1, 2, 4, 5}, {0, 1, 3, 4, 5} and {0, 1, 2, 3, 4, 5} – the max-
imum element of L(S). A sketch of the tree S is given above in Figure 16.3.1

Suppose now that the lattice L is generated by a tree S of finite sets with
B a successor of A in S if and only if B = A ∪ {b} for some b as in the above
example, so that the new elements are ordered as usual from left to right in the
tree.

Each b ≤ m may be identified with the unique B(b) ∈ S such that B(b) =
A ∪ {b} for some A ∈ S. Then we define a partial ordering on {0, 1, . . . ,m} by

a ≤∗ b ⇐⇒ B(a) ⊂ B(b).

We may assume that a ≤∗ b implies a ≤ b (by renumbering if necessary). We
may also simplify the problem by assuming, without loss of generality, that there
is only one atom {0} in L. If there are several atoms {i} for i = 1 to k, then we
can use the construction for one atom to produce disjoint Π0

1 classes Q1, . . . , Qk
such that L(Qi)

∗ is isomorphic to the lattice Li = {∅} ∪ {A ∈ L : i ∈ A}. It is
then easy to see that for Q = ∪iQi, L(Q)∗ is isomorphic to L.

Suppose therefore that the generating tree S has a single atom {0} and
is a family of subsets of {0, 1, . . . ,m}. We will construct the class Q with
corresponding subclasses QA for each A ∈ L such that every subclass of Q
differs from one of the QA by a finite set. The classes are constructed so that
A ⊂ B ⇐⇒ QA ⊂ QB . It is immediate that Q{0} is a minimal Π0

1 class.
Our goal is to define a Π0

1 class Q with natural subclasses QA for each A ∈ L
so that for each Π0

1 class Pe ⊂ Q, there is some A such that the difference
between Pe and QA is finite.

The class Q will have a single limit element x, which will also be the only
element of Q containing infinitely many “1”s. If we express x in the form
0n0 ∗ 1 ∗ 0n1 ∗ 1 ∗ . . . , let σ0 = 0 and let σk = 0n0 ∗ 1 ∗ · · · ∗ 0nk , then the class
Q{0} will have additional elements x0,k = σk ∗ 0 ∗ 1 ∗ 0ω for each k.

For each i ≤ m with i > 0, we will have a corresponding label 1i+1 such
that for A ∈ L and i ∈ A, the elements of QA will all contain 0 ∗ 1i+1 ∗ 0 as a
substring. In fact, we will characterize QA as those elements of Q which have
no labels of the form 0 ∗ 1m+1 ∗ 0 for any m /∈ A. Note that this will make QA
a Π0

1 subclass of Q. For each B = A ∪ {i} ∈ S, we will define a sequence of
elements xi,k which have labels for all i ∈ B and no other labels. This will be
done so that for each i, xi,k is an extension of σk but not an extension of σk+1.

A sketch of the class Q for the simple case of S = {∅, {0}, {0, 1}} is given
below in Figure Two.
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It follows from the above discussion that the map taking A ∈ L to QA is a
lattice homomorphism, that is, A ⊂ B ⇐⇒ QA ⊂ QB .

The key to making the subclasses of Q, modulo finite difference, isomorphic
to L, is the following condition:

(∗): For any b ≤ m, any e and any A and B in S with B = A ∪ {b}, if
Pe ∩ (QB −QA) is infinite, then QB − Pe is finite.

Given this condition, we now show that for every Π0
1 subclass Pe of Q,

there exists C ∈ L such that Pe = QC modulo finite difference. Just let C =⋃
{A : QA − Pe is finite}. Clearly QC − Pe is finite. Now suppose by way of

contradiction that Pe − QC is infinite. Then there must be some B ∈ S with
Pe ∩ (QB − QC) infinite. Let B have minimal cardinality among the set of D
such that Pe ∩ (QD −QC) is infinite and let A be the predecessor of B. Then
there is a b such that B = A ∪ {b} and Pe ∩ (QB − QA) is infinite. It now
follows from (*) that QB − Pe is finite. But the definition of C now requires
that QB ⊂ QC , contradicting the assumption that Pe ∩ (QB − QC) is infinite.
Thus Pe and QC have a finite difference, as desired.

Now let us see how to obtain this condition in the construction. Recall that
we are defining x as the limit of strings σk and also defining xb,k for each k and
for b ≤ m as the limit of, say, µb,k.

The requirements used in the construction to obtain condition (∗) are the
following, for each b ≤ m and each pair of natural numbers e ≤ j.
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Requirement Rb,j,e:

(i) if b = 0 and x ∈ Pe, then x0,j ∈ Pe;

(ii) if b > 0, a ≤∗ b, and xb,j ∈ Pe, then xa,k ∈ Pe for all k ≥ j.

(Recall that Pe is the e-th Π0
1 class.) Let us demonstrate that these require-

ments imply the condition (∗) given above.
Suppose therefore that B = A∪{b} and that Pe ∩ (QB −QA) is infinite and

let a ∈ B. This means that xb,j ∈ Pe for infinitely many j and thus for some
j ≥ e. Then the requirement Rb,j,e implies that xa,k ∈ Pe for all but finitely
many k. Thus QB − Pe is finite as desired.

We will show below that these requirements also imply that x is the unique
limit point of Q and that x is not computable.

Priority is assigned to the requirements as follows. Ra,i,d has higher priority
than Rb,j,e if either i < j, or i = j and d < e, or i = j and d = e and a < b.



16.3. INITIAL SEGMENTS OF THE LATTICE 345

 

Figure 16.2: Q(S)
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It remains to construct the set Q by a finite injury argument. The construc-
tion will proceed in stages. At stage s we will have, for e ≤ s, strings σse ≺ µs0,e,
containing at least e 1’s, such that, for all e < s, σs_e 1 ≺ σse+1, together with
strings µsb,k for 1 ≤ b ≤ m and k < s such that µb,k extends σsk but does not ex-
tend σsk+1. The construction will ensure the existence of the limits σe = lims σ

s
e

for each e. The unique limit point x of Q will the union of {σe : e ∈ ω}. For each
b and k, the element xb,k of Q will be the limit of the strings µsb,k in the sense
that xb,k(i) = limsµ

s
b,k(i) for each i. At the same time we will be defining a

sequence n(0) < n(1) < . . . so that s ≤ n(s) and constructing a computable tree
T in stages T s. At stage s, we will have decided whether each finite sequence
of length n(s) is in T . This will ensure that T is computable.

We first give an outline of the construction for the case when L is a chain
with 3 nodes 0,{0} and {0, 1}. We will build a computable tree T with Q =
[T ] = {x} ∪ {x0,j : j < ω} ∪ {x1,j : j < ω}, where x is the unique limit path of
Q, also called the main path. Thus Q0 = ∅, Q{0} = {x} ∪ {x0,j : j < ω} and of
course Q{0,1} = Q. The main path will have the form 0n0 ∗ 1 ∗ 0n1 ∗ . . . , while
the isolated paths will each end in 0ω. The paths x1,j will each have as a label
the substring (11), while the other paths will not have this label. The isolated
paths xa,j will agree with x at least as far as 0n0 ∗ 1 ∗ · · · ∗ 1 ∗ 0nj .

We achieve the requirements Rb,j,e by working on the converses. That is, if it
looks like x0,j /∈ Pe but x ∈ Pe, then we move x to x0,j (by making µs0,j ≺ σs+1

e )
to ensure that x /∈ Pe. Similarly, if for some j < k it looks like x0,j ∈ Pe but
x0,k /∈ Pe, then we move x0,j to x0,k to ensure that x0,j /∈ Pe. The other cases
move x1,j to x1,k or move x1,k to x1,j for j ≤ k. The restriction that e ≤ j will
ensure that the construction converges.

To see that these requirements lead to the desired conclusion, we suppose
now that some Pe ⊂ Q and show that Q is equal (modulo finite difference) to
one of the three sets QA defined above. If Pe is finite, then clearly Pe = Q0

(modulo finite). If Pe is infinite, then it has a limit point, so that x ∈ Pe
and therefore, by part (i) of the Requirement, x0,j ∈ Pe for all j ≥ e, so that
Q{0} ⊂ Pe (modulo finite). In this case, if Pe contains just finitely many x1,j ,
then Pe = Q{0} (modulo finite). If Pe contains infinitely many x1,j , then, by
part (ii), it must contain all points x1,j and x0,j for j ≥ e, so that Pe = Q
(modulo finite).

We begin the construction by setting n(0) = 0 and letting σ0
0 be the null

string.
Now suppose we have completed the construction as far as stage s. Thus

we have defined n(s) > s and decided whether σ ∈ T for all strings σ of length
≤ n(s). We have also defined σse for all e ≤ s and also µsa,k for all a ≤ m and
k < s as described above.

At stage s+ 1, the triple (b, j, e) with j ≥ e and b > 0 requires action if we
have µsb,j ∈ Te and we have some a ≤∗ b and some k > j such that µsa,k /∈ Te.

The triple (0, j, e) with j ≥ e requires action if σsj ∈ Te and there is some
k > j such that µs0,k /∈ Te.

If no triple requires action at stage s+ 1, then we simply extend the tree as
follows.



16.3. INITIAL SEGMENTS OF THE LATTICE 347

For each a ≤ m, let 0 = a0 <∗ a1 <∗ · · · <∗ an = a list the nodes below or
equal to a in S, let

`(a) = a+ 1 + a0 + 2 + · · ·+ an + 2

and let ` = max{`(a) : a ≤ m} and n(s+ 1) = n(s) + `.
For all a ≤ m and all k < s, let µs+1

a,k = µsa,k ∗ 0`. Let σs+1
k = σsk and let

σs+1
s+1 = σss ∗ 1 ∗ 0`−1. Finally, let

µs+1
a,s = σss ∗ 0a+1 ∗ 1a0+1 ∗ 0 ∗ 1a1+1 ∗ 0 ∗ · · · ∗ 0 ∗ 1an+1 ∗ 0`−`(a).

Otherwise, let (b, j, e) be the triple with highest priority which requires action
at stage s+ 1 and do the following.

Case I: b = 0. Then we have σsj ∈ Te and k > j such that µs0,k /∈ Te. Now
the idea is to move σj to µs0,k, to abandon the part of the tree which branches

off between σsj and µs0,k and restart the construction above the new σs+1
j . The

details follow.
Define ` as above and let n(s+ 1) = n(s) + (s+ 1− j)(`). For i ≤ s+ 1− j,

let

σs+1
j+i = µs0,k ∗ (1 ∗ 0`−1)i.

For a ≤ m as above and for i ≤ s− j, let

µs+1
a,j+i = σs+1

j+i ∗ 0a+1 ∗ 1a0+1 ∗ 0 ∗ 1a1+1 ∗ 0 ∗ · · · ∗ 0 ∗ 1an+1 ∗ 0(s+1−j−i)`−`(a).

For i < j, let σs+1
i = σsi and for each a, let µs+1

a,i = µsa,i ∗ 0(s+1−j)`.

Case II: b > 0. Then we have µsb,j ∈ Te and we have some c ≤∗ b and
k > j such that µsc,k /∈ Te. Now the idea is to move µb,j to µsc,k, move σj+1 to
σk+1 and to abandon the part of the tree which branches off between σsj and
σsk, except for the µa,j with a 6= b. The tree above σsk+1 is relabeled and the
construction is restarted above σss . The details follow.

Define ` as above and let n(s + 1) = n(s) + (k − j)`. Let c = c0 <∗ c1 <∗
· · · <∗ cr = b list the nodes of T between c and b and let

µs+1
b,j = µsc,k ∗ 1c1+1 ∗ 0 ∗ · · · ∗ 0 ∗ 1cr+1 ∗ 0q,

where q is chosen so that |µs+1
b,j has length n(s+ 1). For a 6= b, let

µs+1
a,j = µsa,j ∗ 0(k−j)`.

Let σs+1
j = σsj . For 0 < i ≤ s− k, let

σs+1
j+i = σsk+i

and for i with 0 < i < k − j and for any a ≤ m, let
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µs+1
a,j+i = µsa,k+i ∗ 0(k−j)`.

For i ≤ k − j + 1, let

σs+1
s+j−k+i = σss ∗ (1 ∗ 0`−1)i

and for a ≤ m and 0 < i < k − j + 1, let

µs+1
a,s+j−k+i = σs+1

s+j−k+i ∗0a+1 ∗1a0+1 ∗0∗1a1+1 ∗0∗· · ·∗0∗1an+1 ∗0(k−j−i)`−`(a).

Finally, for i < j, let σs+1
i = σsi and for each a, let µs+1

a,i = µsa,i ∗ 0(k−j)`.
In each case, a string σ of length ≤ n(s + 1) is in T if and only if either

σ ≺ σs+1
k for some k, or σ ≺ µs+1

a,k ∗ 0t for some a, k, t.

Claim 16.3.5. For every k, the sequence σsk converges to some limit σk and
for every a ≤ m and every e, there is a stage s such that, for all t ≥ s, µt+1

a,k is

an extension of µta,k by a string of 0’s.

Proof. It follows from the construction that we only have σs+1
k 6= σsk when we

take action on a requirement Rb,j,e with j ≤ k and similarly we only move µsa,k
when we take action on Rb,j,e with j ≤ k.

Thus it suffices to show that for each k, there is a stage after which we
never again take action on any requirement Rb,j,e with j ≤ k. We proceed by
induction on k. For k = 0, the only possible requirements have the form Rb,0,0.
For b = 0, one action at stage s will put σs0 /∈ T0 and no later action can injure
this requirement. Now suppose that we have reached a stage s0 such that we
never act on requirement R0,0,0 after stage s0. Then for each b, c ≤ m with
b, c 6= 0, observe that action taken on requirement Rb,0,0 does not move µc,0,
so that one action taken on requirement Rc,0,0 will move µc,0 out of T0 and no
further action will be required.

Now suppose that we have reached a stage sk−1 such that no action is ever
taken on any requirement Rb,j,e with j < k after stage sk−1. Then we see as
in the k = 0 case above that there will be a stage after which we never act on
requirement R0,k,0 and then a stage sk,0 after which we never act on requirement
Rb,k,0 for any b. Since we always have e ≤ k in requirement Rb,k,e, we can show
by induction on e ≤ k that there are stages sk,e after which we never act on
requirement Rb,k,e for any b. Thus after stage sk = sk,k, we never act on any
requirement Rb,j,e with j ≤ k.

Since σse ≺ σse+1 for all s and e, it follows that σe ≺ σe+1 for all e. Thus we
can define the limit point x of Q to be x = ∪eσe.

For each a ≤ m and each k, the sequence µsa,k likewise converges to a path
µa,k ∈ Q. Since all other paths are eventually terminated, Q consists of precisely
the elements xa,k and the elements xe. For each k ≥ e, x0,k is an extension of
σe, so that x is a limit point of Q. It is clear that each xa,k is isolated in Q
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since µa,k is eventually only extended by 0’s in T . Thus x is the unique limit
point of Q.

It remains to verify the requirements Rb,j,e given above. Note that for each
A ∈ L, QA = {x} ∪ {xa,k : a ∈ A & k < ω}.

Claim 16.3.6. Let e ≤ j.

(i) If b = 0 and if x ∈ Pe, then x0,j ∈ Pe.

(ii) If b > 0, and B = A∪{b} for some A,B ∈ S and xb,j ∈ Pe, then xa,k ∈ Pe
for all a ∈ B and all k ≥ j.

Proof. For the first part, suppose that x ∈ Pe and let s be a stage such that no
action is taken on any requirement of priority less than or equal to R0,e,j after
stage s. Then the condition must never require action at any stage t+ 1 > s. It
follows that σj = σsj . Since x ∈ Pe, it follows that σj ∈ Te, so that for all t ≥ s,
µt0,k ∈ Te for all k ≥ j. It follows that x0,j ∈ Pe.

For the second part, assume the hypothesis of part (ii) and let s be a stage
such that no action is taken on any requirement of priority less than or equal to
Rb,e,j after stage s. Then the condition must never require action at any stage
t + 1 > s. It follows that µa,j = µsa,j for all a ∈ B. Since xb,j ∈ Pe, it follows
that µb,j ∈ Te, so that for all a ∈ B and all t ≥ s, µta,k ∈ Te for all k ≥ j. It
follows that xa,k ∈ Pe, as desired.

It is important to note that these requirements, now verified, imply that the
limit point x is not computable. If it were, then {x} would be a Π0

1 class, say
Pe. But then we would have x0,j ∈ Pe for all j ≥ e, which is a contradiction.

Finally, we consider the furthermore clause of the theorem, that is, that the
theory of L(Q) is decidable. By a theorem of Lachlan [111], if a lattice L ⊂ P(N)
is closed under finite differences, then the theory of L is many-one reducible to
the theory of L∗.

Lemma 16.3.7. Suppose that P is a countable Π0
1 class such that every com-

putable member of P is isolated. Then the lattice L(P ) of Π0
1 subclasses of P is

isomorphic to a sublattice L of P(N) which is closed under finite differences.

Proof. Let A = {αn : n < ω} be a list of the isolated points in P . It is sufficient
to show that a Π0

1 subclass of P is determined by its intersection with A. To see
this, suppose that Q1 and Q2 are two Π0

1 classes having the same intersection
with A. We first show by induction on the rank of x ∈ P that if x ∈ Qi (where
i = 0, 1), then for any open neighborhood U of x, there is an element of A which
belongs to Qi ∩ U . The hypothesis covers the case of rank zero. Now suppose
that x ∈ Qi and that x has rank α in P . Let U be an open set such that x ∈ U
and such that U contains no points of rank ≥ α in P other than x. Since x is
not computable, Qi ∩ U must contain some point y 6= x and necessarily y has
rank < α. It follows by induction that Qi ∩ U contains an element of A. Now
if x ∈ Q1, then every neighborhood of x contains an element of A ∩ Q1 and
therefore, by assumption, an element of A ∩ Q2. Since Q2 is closed, it follows
that x ∈ Q2. Similarly, x ∈ Q2 → x ∈ Q1.
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The Π0
1 class constructed above is certainly countable and the finitely many

limit points are each non-computable. Thus by Lemma 16.3.7 the theory of
L(Q) is many-one reducible to the theory of L(Q)∗. But the latter is the theory
of a finite structure and is therefore decidable.

This completes the proof of Theorem 16.3.3.

For the remainder of the section, we will show that the construction of Theo-
rem 16.3.3 may not, in general, be achieved with a decidable class P . In Section
3, we will present a stronger result, that the theory of L(P ) is undecidable, and
in fact interprets the theory of arithmetic, whenever P is decidable and L(P ) is
not a Boolean algebra. We include the next result since it gives a more direct
proof that no decidable Π0

1 class P can have L(P )∗ isomorphic to a finite lattice,
such as the three-point lattice {0, 1, 2}, which is not a Boolean algebra.

Theorem 16.3.8. If P is a countably infinite, decidable Π0
1 class, and L(P )∗

is not a Boolean algebra, then L(P )∗ is infinite.

Proof. First suppose that P has infinitely many limit points. This condition
alone implies that L(P )∗ is infinite; by the countability of P , there must be
infinitely many {x0, x1, . . . } which have rank one. This means that for each
n, there is an interval Un such that P ∩ Un contains xn and contains no other
limit point of P . We claim that the sets P ∩ Un are distinct modulo finite
difference. Suppose by way of contradiction that P ∩ Um and P ∩ Un had a
finite difference. Since xm is a limit point of P , there is a sequence y0, y1, . . .
of (isolated) elements of P ∩ Um which converges to xm. Then all but finitely
many of these yk would belong to P ∩Un and therefore xm would be in P ∩Un,
contradicting the assumptions above.

Now suppose that P has only finitely many limit points {x0, . . . , xk}. As
above, we can separate them by intervals Un so that P ∩ Un contains xn and
no other limit point. Since P − (U0 ∪ · · · ∪ Un) contains no limit points and is
therefore finite, we may assume that the sets P∩Un partition P . The assumption
that L(P )∗ is not a Boolean algebra thus implies that L(P∩Un)∗ is not a Boolean
algebra for some n. Thus we may assume without loss of generality that P has
a unique limit point.

Since L(P )∗ is not a Boolean algebra, there must be some infinite subset
P0 of P such that P − P0 is also infinite. Assuming that L(P )∗ is finite, we
may take P0 to be minimal and P to be a minimal extension of P0. That is,
we may assume, without loss of generality, that L(P )∗ has exactly 3 nodes,
corresponding to ∅, P0 and P . Now let P = [T ] where T has no dead ends, let
P0 = [T0], and let x be the unique limit point of P . Of course x ∈ P0 since P0

is infinite and x is the only limit point of P . Observe that for any σ ∈ T − T0,
σ has only finitely many extensions in P , since otherwise P −P0 would contain
a limit point of P .

Then we can recursively define a sequence σ0, σ1, . . . of pairwise incompatible
nodes in T − T0, as follows. Let σ0 be the least element of T − T0. Given
σ0, . . . , σn ∈ T − T0, there exists an element y ∈ P − P0 which does not extend
any of σ0, . . . , σn since P − P0 is infinite and each σi has only finitely many
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extensions in P . Thus there exists some initial segment σ ∈ T − T0 of y which
is incompatible with each of σ0, . . . , σn. Just take σn+1 to be the least such σ
(first under length and then lexicographically). The key conclusion now is that
since T has no dead ends, each interval I(σn) must contain a point xn of P −P0.
Now consider the Π0

1 class P1 = {x ∈ P : (∀n)¬(σ2n ≺ x)}. Since each σk /∈ T0,
we have P0 ⊂ P1 and in addition x2n−1 ∈ P1 for each n. Thus P1 is distinct
modulo finite difference from the three subclasses which make up L(P )∗. This
contradiction demonstrates the result.

Note that we are not assuming in the previous theorem that L(P ) is closed
under finite differences. In particular, we are not assuming that every limit
point of P is non-computable.

For the special case of a single node, there does exist a computable tree T
with no dead ends such that P = [T ] is a minimal Π0

1 class.
In the next section, we consider the general problem of a decidable Π0

1 class
where L(P ) is not a Boolean algebra.

16.4 Decidable Π0
1 classes

In this section, we consider in more detail the theory of the lattice L(P ) of Π0
1

subclasses of a decidable Π0
1 class when L(P ) is not a Boolean algebra. By

Theorem 16.3.8 this means that either P is uncountable or L(P )∗ is infinite.
We prove the following theorem.

Theorem 16.4.1. Suppose that P is a decidable Π0
1-class such that L(P ) is not

a Boolean algebra. Then Th(L(P )) interprets Th(N).

Let D be the computable dense Boolean algebra. For ease of notation and
also to conform with Nies [148], we will use the language of c.e. ideals of D
under inclusion instead of Π0

1-classes under inclusion. If H is a c.e. ideal of D,
let L(H) be the lattice of c.e ideals of D containing H.

Theorem 16.4.2. Suppose H is a computable ideal of D and L(H) is not a
Boolean algebra. Then Th(L(H)) interprets Th(N).

The equivalence of Theorem 16.4.1 and the preceding theorem can be ob-
tained using effective Stone duality. See Cenzer and Remmel [36] for details. It
will be clear from the proof how the decidability of H is used: this enables one
to see that a requirement is satisfied permanently, when it depends on the fact
that a certain element of D which has been enumerated into an ideal is not in
H.

We first need some terminology and notation. A c.e. Boolean algebra is
given by a model (N �,∨,∧) such that � is a c.e. relation which is a pre-
ordering, ∨,∧ are total computable binary functions, and the quotient structure
B = (N,�,∨,∧)/ ≈ is a Boolean algebra (where n ≈ m ⇐⇒ n � m ∧ m � n).
We can suppose that 0 ∈ N names the least and 1 ∈ N the greatest element



352 CHAPTER 16. THE LATTICE OF Π0
1 CLASSES

of B. For Σ0
k-Boolean algebras, one requires that � be Σ0

k and that ∧,∨ be
computable in ∅(k−1). For a Σ0

k Boolean algebra B, let

I(B) := the lattice of Σ0
k–ideals of B.

Clearly c.e. Boolean algebras correspond to c.e. ideals of D, and similarly for
computable. In this language, Theorem 16.4.2 can be restated a further time as
follows: for a computable Boolean algebra C, if I(C) is not a Boolean algebra,
then Th(I(C)) interprets Th(N).

Proof. We will first prove the weaker result that Th(L(H)) is undecidable, and
then obtain the full result by an extra argument. We use a result from Nies
[148]. A c.e. Boolean algebra B is called effectively dense [148] if there is a
computable F such that ∀x [F (x) ≺ x] and

∀x 6≈ 0 [0 ≺ F (x) ≺ x]. (16.1)

More generally, a Σ0
k Boolean algebra B is effectively dense if the above holds

with some F ≤T ∅(k−1). In [148], it is proved that, for any effectively dense Σ0
k

Boolean algebra C, Th(I(C)) is hereditarily undecidable (i.e., all subtheories
containing the valid sentences are undecidable). By the standard methods to
transfer hereditary undecidability (see e.g. [15]), it suffices to give a coding in
L(H) with parameters of I(C), for an effectively dense Σ0

3 Boolean algebra C.
In the following we describe how to determine C and how to do the coding.

We first need some more notation.

Definition 16.4.3. 1. For S ⊂ D, let I(D)S be the ideal of D generated by
S ∪H.

2. A enumeration of an ideal X of B = D/N∗H is given by a c.e. subset X̃ =⋃
s X̃s of D such that X = I(D)X̃. We let Xs = I(D)X̃s (thereby slightly

deviating from the notation in [149], where H is usually not decidable).
We let (Ve) be a uniform enumeration of all c.e. ideals containing H.

3. For a c.e. ideal X, we let

x0 = 0, xs = sup
D
Xs − sup

D
Xs−1(s > 0). (16.2)

Thus, (xn)n∈N is an effective “partition” generating X.

4. Capital letters A, . . . , E,X, Y, V,W range over c.e. ideals of D containing
H.

5. An element b of B is identified with the corresponding principal ideal
I(D){b}.

6. (Splittings of ideals) We write B t C = A if B ∩ C = H and B ∨ C = A.
In this case we denote C by CplA(B). We write B @ A if ∃C B tC = A.
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Fix A ∈ I(B) and choose a ∅′′-listing (Xi) of B(A), where

B(A) = {X : X @ A}.

Since I(B) is a distributive lattice, (B(A),∩,∨,CplA, H,A) is a Σ0
3-Boolean

algebra (with the presentation determined by that listing). We consider ideals
of B(A). To avoid confusion, we will write “IDEAL ” when we mean such a level
2 ideal. For certain A,E such that A ⊂ E, we will view

RE(A) = {X @ E : X ⊂ A}

as the IDEAL of negligible splittings of A. Note that {e : Xe ∈ RE(A)} is a
Σ0

3-set. Let

C = B(A/E) = B(A)/N∗RE(A). (16.3)

We first give an outline of the coding. Under certain conditions on A and E
(for instance, if E is nonprincipal), we will be able to show that C is effectively
dense as a Σ0

3 Boolean algebra. Then, to give the coding of I(C) in L(H), we
represent a Σ0

3-IDEAL I ∈ I(C) by (any) C ∈ L(H) such that, for X @ A,
X ∈ I(C) if and only if X ∩ C is negligible, that is, X ∩ C ⊂ R for some
R ∈ RE(A). Clearly, any subset of B(A) represented in this way is a Σ0

3-IDEAL
containing RE(A). The main technical result, proved in [149], is that also each
such IDEAL I can be represented.

Then with the listing (Xi/E)i∈ω, B(A/E) becomes a Σ0
3 Boolean algebra.

To obtain the desired Σ0
3 Boolean algebra, we require that E is a nonprincipal

ideal, A ⊂ E is not a split of E and A also satisfies the following property.

Definition 16.4.4. We say that A is locally principal (l.p.) in E if A ⊂ E and

∀e ∈ E[e ∩A is principal ].

Note that this property of A,E can be expressed in I(B) in a first-order
way, since the principal ideals are just the complemented elements of I(B). The
motivation is that the situation A ⊂ E is in a sense similar to an inclusion
of sets: whenever e ∈ E, the intersection A ∩ e has only a finite amount of
information.

Locally principal ideals were introduced by Nies in [149].
Since L(H) is not a Boolean algebra, a nonprincipal E exists. We first supply

the fact that an A ⊂ E as required also exists.

Lemma 16.4.5. For any E 6@ 1, there is A ⊂ E, A 6@ E such that A is l.p. in
E.

Proof. Since E 6@ 1, we can fix an enumeration Es = I(D){en : n < s}, where
(en) is a u.c.e. sequence of elements of D −H which have pairwise meet H. It
suffices to meet the requirements

Rn : ¬(A t Vn = E).
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To do so, we reserve en for Rn. At stage s, for each n < s, if now en ∈ Vn,s,
we put en into A (precisely speaking, into Ã).

Clearly A is l.p. in E. Moreover, each requirement is met: If A ∨ Vn = E,
then, since we threaten to keep en out of A, en ∈ Vn,s for some s. Then the
construction ensures Vn ∩A 6= H.

In the following we fix A,E with the properties as above. We prove that the
Σ0

3 Boolean algebra B(A/E) is effectively dense. Clearly if A is l.p. in E and
Y @ A, then so is Y . So the following is sufficient.

Lemma 16.4.6. Suppose Y is l.p. in E. Then one can effectively obtain a
splitting Y = Y0 t Y1 such that Y 6@ E implies Yi 6@ E (i = 0, 1).

Proof. Let E = I(D){en : n ∈ N} as above. We call S ⊂ E small if

∃nS ⊂ e0 ∨ . . . ∨ en.
For c.e. ideals C,D let C ↘ D be the ideal X given by enumerating (into a

set X̃) at stage s those x such that

x ∈ Cs−1 ∧ x 6∈ Ds−1 ∧ x ∈ Ds,

(and, as always, letting Xs be the ideal of Ds generated by X̃s ∪H). Similarly
to the proof of the Friedberg Splitting Theorem [181], we meet the requirements

Pe,i : Ve ↘ Y not small ⇒ Ve ↘ Yi 6⊂ H,
while ensuring that Y = Y0 t Y1.

We first verify that this is sufficient. Suppose Yi @ E. Choose k such that
Yi t Vk = E ∧ Yi ∩ Vk = H. Then Vk ↘ Y is not small: assume

Vk ↘ Y ⊂ ên := e0 ∨ . . . ∨ en,
and let

V = I(D){y ≤ CplE(ên) : ∃s (y ∈ Vk,s ∧ y /∈ Ys)}.
Then

(ên ∨ Y ) ∨ V = E ∧ (ên ∨ Y ) ∩ V = H.

Thus (ên ∨ Y ) @ E, and since Y is l.p. in E, Y @ E.
Since Vk ↘ Y is not small, Vk ↘ Yi 6⊂ H, contrary to Vk ∩ Yi = H. So it

suffices to meet the requirements Pe,i.
Construction of Y0, Y1. At stage s determine the least 〈e, i〉 < s such that

Pe,i has not been met (i.e., Ve ↘ Yi[s] ⊂ H and ys ∩ Ve,s−1 6⊂ H). Enumerate
ys into Yi. If 〈e, i〉 fails to exist, put ys into Y0.

Clearly, Y = Y0 t Y1. To prove that Pe,i is met, suppose that by stage t, Pk
has been met for each k < 〈e, i〉. Since Ve ↘ Y is not small, there is s > t such
that ys /∈ H, ys∧ êt ∈ H and ys∩Ve,s−1 6⊂ H. Then the requirement is satisfied
from stage s+ 1 on.
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Since B(A/E) is an effectively dense Σ0
3 Boolean algebra, by Nies [148], the

lattice I(B(A/E)) has a hereditarily undecidable theory. Therefore it is sufficient
to give a coding with parameters of I(B(A/E)) in L(H). We rely on the proof
of Nies [149, Lemma 6.3], where it is shown that, if A is l.p. in E, then, for each
Σ0

3 IDEAL I of B(A) containing RE(A), there is a CI such that

I = {X ∈ B(A) : (∃R ∈ RE(A))(CI ∩X ⊂ R)}. (16.4)

(In [149] the assumption is made in the proof of Lemma 6.3 that the base
Boolean algebra D/H is effectively dense, but this is not needed.) Note that,
conversely, each subset of B(A) determined by (16.4) is a Σ0

3 IDEAL contain-
ing RE(A). Since the set of these IDEALs corresponds to I(B(A/E)), we ob-
tain the desired coding: represent I by any CI , and give a first-order formula
φ⊂(C1, C2;A,E) expressing inclusion of the represented ideals in the obvious
way.

This settles undecidability. We now give the extra argument needed to obtain
an interpretation of Th(N) in Th(L(H)). First we prove a uniqueness property
of B(A/E).

Proposition 16.4.7. Suppose that

E 6@ 1, A ⊂ E, A 6@ E, A is l.p. in E, (16.5)

and the same properties also hold for Ẽ, Ã. Then B(A/E) ∼= B(Ã/Ẽ) via an
isomorphism which is computable in ∅′′.

Proof. A c.e. Boolean algebra C is called effectively inseparable (e.i.) if the sets
{n ∈ N : n ≈ 0}, {n ∈ N : n ≈ 1} (i.e. the sets of names for 0C , 1C) are
effectively inseparable. By the methods of Kripke and Pour-El [?], any two e.i.
Boolean algebras are effectively isomorphic. We apply their result, relativized
to ∅′′. It suffices to show that under the given hypotheses B(A/E) (with the
presentation given at (16.3)) is ∅′′-e.i.. Recall that (Xi) is an ∅′′-listing of B(A).
We prove that

S = {i : Xi ∈ RE(A)}, T = {i : A−Xi ∈ RE(A)} (16.6)

are ∅′′-e.i. sets. Fix a pair of Σ0
3-sets S̃, T̃ which is e.i. relative to ∅′′. It suffices

to find a total f ≤ ∅′′ such that

f(S̃) ⊂ S, f(T̃ ) ⊂ T. (16.7)

Fix a u.c.e. double sequence Zin of initial segments of N such that i ∈ S̃ ⇐⇒
∃nZi2n = N and i ∈ T̃ ⇐⇒ ∃nZi2n+1 = N. For each i we will effectively obtain

a splitting A = A0 tA1 such that i ∈ S̃ ⇒ A0 @ E and i ∈ T̃ ⇒ A1 @ E. Then
f , given by f(i) = the first j such that Xj = A0, is a function computable in
∅′′ as desired. We employ a simple fact from Nies [149, Fact 6.1]. Recall that
we are identifying elements of B and principal ideals.
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Fact 16.4.8. Suppose B ⊂ E is a c.e. ideal such that ∀k B ∩ ek = bk, where bk
is obtained effectively from k. Then B @ E.

Proof of the Fact. Let C = I(D){ek − bk}k∈N. Then B t C = E.
At stage s, we decide whether to put as into A0 or into A1, as follows:

Compute the maximal k such that as ∧ ek /∈ H. Let m be minimal such that
|Zim,s| > k. If m is even or fails to exist put as into A1, else into A0.

To verify (16.7), first suppose i ∈ S̃ and let m be least such that Zi2m = N.
Then Fact 16.4.8 implies B = A0 @ E as follows. Given k, since B is l.p. in A
we can assume that k > maxr<2m |Zir| (because finitely many bi can be fixed
in advance). Compute s such that |Zi2m,s| > k. Then A0 ∩ ek = A0,s ∩ ek, so

let bk = sup(A0,s ∩ ek). If i ∈ T̃ , one proves A1 @ E in a similar fashion. This
completes the proof of Proposition 3.7.

By the uniqueness up to ∅′′ isomorphism of B(A/E), all possible structures
I∗ = I(B(A/E)), where E,A satisfy (16.5), are isomorphic. By Nies [149] and
the effective density of B(A/E), Th(I∗) interprets Th(N). But

I∗ |= φ ⇐⇒ L(H) |= ∃E∃A[(16.5) ∧ ′′I(B(A/E)) |= φ′′],

so Th(I∗) can be interpreted in Th(L(H)).
This demonstrates fact 16.4.8 and completes the proof of Proposition ??,

Theorems 16.4.1 and 16.4.2.

Open question: Characterize those P such that Th(L(P )) is decidable.

16.5 Global Properties of the Lattice

16.6 Almost complemented classes

16.7 Perfect thin classes

The proof of the Low Basis Theorem 3.1.4 shows that every nonempty c.b. Π0
1

class contains a member of c. e. degree a such that a is low, that is, a ⊕ 0′ =
a′ = 0′′. The method of Theorem 2.8.1 can be used to construct a nonempty
Π0

1 class with no computable members and no members of high degree, where
the c. e. degree a is high if a′ = 0′′.

Theorem 16.7.1. There exists a perfect, thin, c.b. Π0
1 class P with no com-

putable members such that if a is the degree of a member of P , then a′ ≤ a⊕0′.

Proof. Let P be the Π0
1 class constructed in Theorem 2.8.1 and let f be the

function defined therein. Then f is the limit of a uniformly computable sequence
of functions and is therefore computable in 0′ by the Limit Lemma. Now let
Ue = {σ : φσe (e) ↑}. It follows from the s-m-n theorem that there is a computable
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function φ such that Ue = Tφ(e) for each e. Then for any element A of P and
any e, we have

e ∈ A′ ⇐⇒ (∃σ ≺ A)σ ∈ Ue ⇐⇒ xdf(2e+ 2) ∈ Tφ(e).
This shows that A′ is computable in A⊕ 0′.

xxx
There will be results here from the paper [45]
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Chapter 17

Degrees of Difficulty

The Medvedev lattice was introduced in [136] to classify problems according to
their degree of difficulty. A mass problem is a subset of NN and is thought of
as representing the set of solutions to some problem. For example, the problem
of separability of sets A and B is S(A,B) = {f : i ∈ A → f(i) = 0 & i ∈ B →
f(i) = 1}. The coloring problem for a given countably infinite graph G may be
given as a set of functions each mapping ω into {1, 2, 3, 4}. A mass problem is
said to be solvable if it contains a computable function. See the survey paper
by Sorbi [183] for more background.

In this chapter we study the Medvedev and Muchnik degrees of nonempty Π0
1

classes. Each of these partial orderings is in fact a distributive lattice with top
element, which can be viewed as the degree of the set of completions of Peano
arithemtic, and bottom element, which is the degree of any set containing a
computable member.

17.1 Reducibility

P is Medvedev reducible to Q (P ≤M Q) if there is a partial computable func-
tional Φ which is defined for all X ∈ Q and maps Q into P . Thus any solution
of Q may be used to compute a solution of P , so we say that P has a lower
(Medvedev) degree of difficulty than Q. There is also a nonuniform notion,
Muchnik reducibility, given by P ≤w Q if every member X of Q computes a
member of P , that is, Y ≤T X for some Y ∈ P . As usual, P ≡M Q means that
both P ≤M Q and Q ≤M P , P <M Q means P ≤M Q but not Q ≤M P , and
the Medvedev degree dgM (P ) of P is the class of all sets Q such that P ≡M Q.
Similar notations applies to Muchnik reducibility. Observe that P ≤M Q im-
plies P ≤w Q, so that the Medvedev degree of P is a subset of the Muchnik
degree of P . Let PM denote the lattice of Medvedev degrees of Π0

1 classes and
let Pw denote the lattice of Muchnik (or weak) degrees.

We will focus primarily on the Medvedev degrees.

359
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First we show that only total functionals are needed for Medvedev reducibil-
ity of Π0

1 classes.

Lemma 17.1.1. For any Π0
1 subclasses P and Q of ωω, if P ≤M Q, then there

exists a total computable functional F : NN → NN such that F [Q] ⊆ P .

Proof. Given that P ≤M Q, there is a partial computable functional Φ which
maps Q into P . This means that there is a partial computable function φ
mapping finite sequences to finite sequences such that Φ(X) = ∪nφ(Xdn) and
with the property that σ ≺ τ implies φ(σ) ≺ φ(τ). Now Q may be expressed as
the set of infinite paths through some computable tree T . Then we can extend
the mapping Φ from Q to a total mapping F representing function f defined
recursively as follows. Let f(∅) = ∅. Then for any finite sequence σ and any n,
define f(σ_n) in two cases. If σ_n ∈ T , let f(σ_n) = φ(σ_n), which must be
defined. If σ_n /∈ T , let f(σ_n) = f(σ)_0.

Simpson [178] has observed that Medvedev reducibility can be viewed as the
analog for degrees of difficulty of the truth-table degrees for the Turing degrees,
whereas Muchnik reducibility is the analog of Turing reducibility.

Proposition 17.1.2. If P ≤M Q, then for any x ∈ Q, there is a y ∈ P such
that y ≤tt x.

Proof. Suppose P ≤M Q for Π0
1 classes P and Q. Then by Lemma 17.1.1, there

is a total computable Φ which maps Q into P . Then for any element x of Q, it
follows from Lemma 1.9.10 that Φ(x) ≤tt x.

The meet and join operations of the Medvedev lattice turn out to be the
standard sum P ⊕ Q and product P ⊗ Q defined earlier. We summarize here
some basic facts about these meet and join operations.

Proposition 17.1.3. For any Π0
1 classes P , Q and R,

(i) P ⊕Q ≡M Q⊕ P and P ⊗Q ≡M Q⊗ P (so that also P ⊕Q ≡w Q⊕ P
and P ⊗Q ≡w Q⊗ P

(ii) The Medvedev (Muchnik) degree of P ⊕ Q is the meet, or greatest lower
bound, of the Medvedev (resp. Muchnik) degrees of P and Q;

(iii) The Medvedev degree of P ⊗ Q is the join, or least upper bound, of the
Medvedev degrees of P and Q

(iv) P⊗(Q⊕R) ≡M (P⊗Q)⊕(P⊗R) and P⊗(Q⊕R) ≡M (P⊗Q)⊕(P⊗R).

(v) If P ≤M Q, then, for any R, (P ⊗R)⊕Q ≡M P ⊗ (Q⊕R); if P ≤w Q,
then, for any R, (P ⊗R)⊕Q ≡w P ⊗ (Q⊕R)

Proof. (i) is obvious since these sets are in fact computably homeomorphic.

(ii) P ⊕ Q ≤M P via the map Φ(x) = 0_x and similarly P ⊕ Q ≤M Q.
Suppose now that R ≤ P via Φ and R ≤ Q via Ψ. Then R ≤ P ⊕ Q via the
map taking 0_x to Φ(x) and 1_x to Ψ(x).
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(iii) P ≤M P ⊗Q via the map Φ(x) = (x(0), x(2), . . . ) and similarly Q ≤M
P⊗Q. Suppose now that P ≤M R via Φ and Q ≤M R via Ψ. Then P⊗Q ≤M R
via the map taking x to 〈Φ(x),Ψ(x)〉.

(iv) To see that P ⊕ (Q⊗R) ≡M (P ⊕Q)⊗ (P ⊕R), we define computable
functionals in each direction. First define Φ : P ⊕ (Q⊗R)→ (P ⊕Q)⊗ (P ⊕R)
by

Φ(0_X) = 〈0_X, 0_X〉

and
Φ(1_〈Y, Z〉) = 〈1_Y, 1_Z〉.

Then define Ψ : (P ⊕ Q) ⊗ (P ⊕ R) → P ⊕ (Q ⊗ R) as follows. Given Z =
〈V,W 〉 ∈ (P ⊕Q)⊗ (P ⊕R), there are three cases.

If V = 0_X, let Ψ(Z) = V ;

if V = 1_Y and W = 0_X, let Ψ(Z) = W ;

if V = 1_Y and W = 1_Z, let Ψ(Z) = 1_〈Y,Z〉.

The other equivalence of (iv) is left as an exercise.
(v) Since P ≤M Q, we have P ⊕Q ≡M P and P ⊗Q ≡M Q. Then

(P ⊗R)⊕Q ≡M (P ⊕Q)⊗ (R⊕Q) ≡M P ⊗ (Q⊕R).

The same argument works for the Muchnik degrees.

Corollary 17.1.4. Both PM and Pw are distributive lattices.

Next we observe that PM has both a least and a greatest element. The least
element 0 consists of all classes P which contain a computable element. To see
this, just let X0 be a computable element of P and define F (X) = X0 for any
X. Then F maps any class Q into P , so that P ≤M Q. In particular, the classes
{0, 1}ω and {0ω} are both in 0. Sorbi points out in [183] that this means that
the solvable Medvedev degree is definable in the lattice (as the least element).

Proposition 17.1.5. PM has a greatest element.

Proof. Since there is an enumeration {Pe}e∈ω of the Π0
1 classes, it seems nat-

ural to take the product of these classes as the univeral set and hence the top
Medvedev degree. There is one hitch in that the empty set is not included in
PM . To enumerate the nonempty Π0

1 classes, first recall the usual enumeration
{Te}e∈N of the primitive recursive trees in {0, 1}∗ and let

σ ∈ T+
e ⇐⇒ [σ ∈ Te ∨ (∀m ≤ |σ|)(σdm /∈ Te → (∀τ ∈ {0, 1}m)τ /∈ Te)].

Now if Pe = ∅ and m is the least such that Te ∩ {0, 1}m+1 = ∅, then it is clear
that P+

e = [T+
e ] =

⋃
{I(σ) : σ ∈ {0, 1}m ∩ Te} and is still a Π0

1 class. If Pe 6= ∅,
P+
e = Pe. We claim that

∏
e P

+
e is the greatest element of PM and hence also of

Pw. That is, for any nonempty Π0
1 class Pe, the projection map πe takes

∏
e P

+
e

to P+
e .
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17.2 Completeness

Let B denote the computable Boolean algebra of clopen sets in {0, 1}N; re-
call that these are finite unions of intervals I(σ). Note that B is computably
isomorphic to the Boolean algebra of propositional logic over an infinite set
of variables–see Section 8.1 of Chapter 8. In particular, let bn ∈ B denote
{x : x(n) = 1}.

Definition 17.2.1. Let P be a nonempty subset of {0, 1}N. A splitting function
for P is a computable function g : N → B such that, for all e, if Pe ⊆ P and
Pe 6= ∅, then Pe ∩ g(e) and Pe − g(e) are both nonempty. P is said to be
productive if it has a splitting function.

Clearly a productive Π0
1 class can have no subset that is a singleton and hence

can have no computable member. It follows in particular that P is nowhere
dense.

We observe that the class DNC2 of diagonally non-computable functions in
{0, 1}N is productive. This will be shown in the next section.

Theorem 17.2.2. (Simpson) For any productive Π0
1 class P ⊆ {0, 1}N and any

nonempty Π0
1 class Q ⊆ {0, 1}N, there is a computable functional Φ from P onto

Q. Thus any productive class is Medvedev complete.

Proof. Let P and Q be Π0
1 subsets of {0, 1}N and suppose that P is productive.

We will define a computable monomorphism f : B → B such that, for all
b ∈ B, Q ∩ b = emptyset ⇐⇒ P ∩ f(b) = ∅. Then the computable map
Φ : P → Q is defined by letting Y = Φ(X) be the unique element of Q such
that X ∈ f(Y dn) 6= ∅ for all n. The approximating function for Φ is something
like the inverse of f . For an arbitrary element Y ∈ Q, Q ∩ I(Y dn) 6= ∅ for all n
and hence P ∩ I(f(Y dn)) 6= ∅ for all n, so that ∩n[P ∩ I(f(Y dn))] 6= ∅ and any
element of this set will map to Y . This shows that Φ will map X onto Y .

It clearly suffices to define f for intervals I(σ) and for ease of notation we
will just write f(σ) for f(I(σ)). Then f(σ) = Φ−1(I(σ)) under the function Φ
defined above. That is, if Y = Φ(X), then X ∈ f(σ) ⇐⇒ σ � Y .

The function f is defined recursively beginning with f(∅) = ∅.
For the recursive step, suppose that f(σ) = a is given so that Q ∩ I(σ) =

∅ ⇐⇒ P ∩ a = ∅ and that a ⊆ I(τ) for some τ with |τ | ≥ |σ|. We will show
how to compute f(σ_0) = a0 and f(σ_1) = a1 such that each ai is included
in some I(τi) with |τi| > |τ | and such that

σ_i ∈ TQ ⇐⇒ P ∩ ai 6= ∅.

Since P is productive, it is nowhere dense so we can partition a non-trivially
into b0 ∪ b1 ∪ b2 so that P ∩ b0 = P ∩ b1 = ∅ and hence P ∩ a = P ∩ b2.
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By the Recursion Theorem, we can compute e ∈ N such that

Pe =


P ∩ b2 if σ_0 ∈ TQ and σ_1 ∈ TQ;

P ∩ b2 ∩ g(e) if σ_0 /∈ TQ and σ_1 ∈ TQ;

P ∩ b2 − g(e) if σ_0 ∈ TQ and σ_1 /∈ TQ;

∅ if σ_0 /∈ TQ and σ_1 /∈ TQ.

Now let a0 = b0 ∪ (b2 ∩ g(e)) and a1 = {0, 1}N− a0 = b1 ∪ (b2− g(e)). We claim
the following:

1. Q ∩ I(σ_0) = ∅ ⇐⇒ P ∩ a0 = ∅;

2. Q ∩ I(σ_1) = ∅ ⇐⇒ P − a1 = ∅.

There are several cases to check. Suppose first that σ /∈ TQ. Then by
assumption P ∩ a = ∅, so that we have P ∩ a0 = P ∩ a1 = ∅ = Q ∩ I(σ_0) =
Q ∩ I(σ_1). Now suppose that σ ∈ TQ, so that Q ∩ I(σ) and P ∩ a are both
nonempty. There are three cases. First suppose that both σ_0 and σ_1 are in
TQ. ThenQ∩I(σ_0) andQ∩I(σ_1) are both nonempty, so that Pe = P∩a 6= ∅.
It follows that P ∩ a0 = P ∩ b2 ∩ g(e) = Pe ∩ g(e) 6= ∅ (since g is a splitting
function for P ) and similarly P ∩ a1 6= ∅. Next suppose that σ_0 /∈ TQ but
σ_1 ∈ TQ, so that Pe = P ∩ b2 ∩ g(e) = P ∩ a0. Then Pe − g(e) = ∅ and, since
g is a splitting function for P , it follows that Pe = ∅, and hence

P ∩ a1 = (P ∩ b1) ∪ (P ∩ b2 ∩ g(e)) = ∅.

The remaining case where σ_0 ∈ TQ and σ_1 /∈ TQ is similar.

This result can be improved for two productive classes.

Theorem 17.2.3. (Simpson) Any two productive Π0
1 classes P,Q ⊆ {0, 1}N are

computably homeomorphic.

Proof. We simply add a back-and-forth argument to the proof of Theorem 17.2.3
to make the monomorphism onto. That is, at stage n, we will have a finite
isomrphism fn : Bn ' B′n where each of Bn and B′n are finite subalgebras
including b0, . . . , bn such that P ∩ a = ∅ if and only if Q ∩ fn(a) = ∅. We start
as above with f((0)) = a0 and f((1)) = a1 as above so that P ∩ ai = ∅ ⇐⇒
Q ∩ I((i)) = ∅. Now use the splitting function for P to obtain bij ⊂ I(i) for
i, j ∈ {0, 1} so that ai ∩ (j) ∩Q = ∅ ⇐⇒ bij ∩ P = ∅ and let B0 be generated
by {bij : i, j ∈ {0, 1}} and B1 be generated by {I((0)), I((1)), a0, a1}. Note that
f−1(I(e)) = be0 ∪ be1. We leave the details to the reader.

Question 17.2.4. Suppose in general that P and Q are Π0
1 subsets of {0, 1}N

and that there there exist mappings Φ from P onto Q and Ψ from Q onto P .
Does it follows that P and Q are computably homeomorphic?

Lemma 17.2.5. (Simpson) Let P and Q be nonempty subsets of {0, 1}N. If
P ≤M Q and P is productive, then Q is productive.
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Proof. Since P ≤M Q, there is a computable function Φ : Q → P . Define
f : B → B by f(b) = Φ−1(b). Let g : N→ B be a splitting function for P . By the
s-m-n Theorem, let h : N→ N be primitive recursive such that Ph(e) = Φ(Pe∩Q)
for all e. We claim that the composition f ◦ g ◦ h is a splitting function for Q.
To see this, suppose that Pe ⊆ Q and Pe 6= ∅. Then Ph(e) = Φ(Pe) ⊂ P and
Ph(e) 6= ∅, so that Ph(e) ∩ g ◦ h(e) 6= ∅ and Ph(e) − g ◦ h(e) 6= ∅ and therefore
Pe ∩ f ◦ g ◦ h(e) 6= ∅.

Corollary 17.2.6. Let P ⊂ {0, 1}N be a nonempty Π0
1 class. Then P is pro-

ductive if and only if P is Medvedev complete.

Proof. By Theorem 17.2.2, if P is productive, then P is Medvedev complete.
Lemma 17.2.5 implies that any complete Π0

1 class is productive.

Simpson and Slaman (unpublished) have shown the following.

Theorem 17.2.7. Every nonzero degree in Pw contains infinitely many Medvedev
degrees from PM .

Proof. xxxx

Exercises

17.2.1. Prove parts (ii) and (iii) of Proposition 17.1.3 for the Muchnik degrees.

17.2.2. Show that P ⊗ (Q⊕R) ≡M (P ⊗Q)⊕ (P ⊗R).

17.2.3. Show that the map taking the Medvedev degree of P to the Muchnik
degree of P is a lattice homomorphism of PM onto Pw.

17.3 Separating Classes

Here is a general result which will provide a large class of Medvedev complete Π0
1

classes. A pair of disjoint c. e. sets A and B are said to be effectively inseparable
if there is a computable function φ such that, for any x and y, if A ⊂ Wx

and B ⊂ Wy and Wx ∩Wy = ∅, then φ(x, y) /∈ Wx ∪Wy. For example, it is
well known that the set PA = A1 of theorems of Peano Arithmetic and the set
B1 of negations of theorems of Peano Arithmetic are effectively inseparable–see
Odifreddi [151], p 356. The following lemma will then imply that S(A1, B1) is
Medvedev complete.

Proposition 17.3.1. If A are B are effectively inseparable c.e. sets, then
S(A,B) is a productive Π0

1 class.

Proof. Let P = S(A,B) where A and B are effectively inseparable c. e. sets
and and let φ be given as above. Define Wf(e) = {n : (∀X ∈ Pe)n ∈ X} and
Wh(e) = {n : (∀X ∈ Pe)n /∈ X}. To see that these are indeed c. e. sets, note
that Wf(e) has an alternate definition, that is,
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n ∈Wf(e) ⇐⇒ (∀σ ∈ {0, 1}n+1)(σ ∈ Te =⇒ σ(n) = 1),

Clearly Wf(e) ∩Wh(e) = ∅, and if Pe ⊂ P , then A ⊂ Wf(e) and B ⊂ Wh(e).
Thus φ(f(e), h(e)) = n /∈Wf(e) ∪Wh(e). Hence there exist X and Y in Pe such
that n ∈ X and n /∈ Y . The splitting function for P can thus be defined by
g(e) = {X : φ(f(e), h(e)) ∈ X}.

Proposition 17.3.2. The Π0
1 class DNC2 is the separating class of a pair of

effectively inseparable c. e. sets.

Proof. Let A = {e : φe(e) = 0} and B = {e : φe(e) = 0}. Then S(A,B) =
DNC2. Now suppose that A ⊆Wx and B ⊆Wy and suppose that Wx ∩Wy =
∅. We will show how to compute φ(x, y) = e such that e /∈ Wx ∪ Wy. Let
ψ(e, x, y) = 1, if e ∈Wx and = 0, if e ∈Wy. That is, ψ(e, x, y) searches for the
least s such that e ∈ Wx,s ∪Wy,s and then outputs 1 if e ∈ Wx,s and outputs
0 if e ∈ Wy,s −Wx,s. Let φ(x, y) = e so that φe(i) = ψ(e, x, y). We claim that
e /∈ Wx ∪Wy. To see this, suppose that e ∈ Wx, so that by definition of ψ, φ
and e, φe(e) = 1. Then e ∈ B, which implies that e ∈ Wy and contradicts
Wx ∩Wy = ∅. The argument when e ∈Wy is similar.

Corollary 17.3.3. DNC2 is Medvedev complete.

Proof. By Propositions 17.3.2 and 17.3.1, DNC2 is productive and hence by
Theorem 17.2.2, it is Medvedev complete.

The family of c.e. separating classes are closed under join, since

S(A,B)⊗ S(C,D) = S(〈A,C〉, 〈B,D〉).

However, there is no non-trivial meet for c.e. separating classes, as shown
by the following.

Lemma 17.3.4. For any Π0
1 class P and any clopen sets G, and H, if P∩G ≤M

P ∩H, then P ∩G ≡M P ∩ (G ∪H).

Proof. First, P ∩ (G ∪H) ≤M P ∩ G via the identity map. Fix a computable
functional Φ : P ∩H → P ∩G and define Ψ : P ∩ (G ∪H)→ P ∩G by

Ψ(X) :=

{
X, if X ∈ G;

Φ(X), otherwise.

Note that Ψ is computable since clopen sets are simply finite unions of intervals.

Lemma 17.3.5. For any c.e. separating class P and any clopen set G, if
P ∩G 6= ∅, then P ∩G ≡M P .



366 CHAPTER 17. DEGREES OF DIFFICULTY

Proof. By Lemma 17.3.4, it suffices to prove this for intervals, and we proceed
by induction on the length n of σ. If n = 0, then I(σ) = 2ω, so P ∩ I(σ) = P .
Assume as induction hypothesis that P ∩I(σ) ≡M P for some σ of length n, and
suppose that P ∩ I(σ_(e)) 6= ∅. If P ∩ I(σ_(1− e)) = ∅, then P ∩ I(σ_(e)) =
P . Otherwise, P ∩ I(σ_(e)) ≡M P ∩ I(σ_(1 − e)) via the computable maps
X 7→ X ∪ {0} and X 7→ X/{0}. Then by Lemma 17.3.4 again,

P ∩ I(σ_(e)) ≡M P ∩
(
I(σ_(e)) ∪ I(σ_(1− e))

)
= P.

Proposition 17.3.6. For any Π0
1 classes P and Q and any c.e. separating

class R, if P ⊕Q ≤M R, then either P ≤M R or Q ≤M R.

Proof. Fix a computable functional Φ : R→ P ⊕Q and set G := {X : Φ(X) ∈
I((0))}. G is clopen as the continuous inverse image of an interval. P ≤M R∩G
via the map X 7→

(
k 7→ Φ(X)(k + 1)

)
. If R ∩ G 6= ∅, then by Lemma 17.3.5

R ∩ G ≡M R, so P ≤M R. Otherwise R \ G 6= ∅ and we have similarly
Q ≤M R.

This suggests that we should consider the sublattice of PM generated by
the family of c.e. separating degrees. This turns out to have a simple direct
characterization.

Definition 17.3.7. For any tree T ⊆ {0, 1}<ω and any Π0
1 class P ⊆ {0, 1}ω,

(i) T is homogeneous iff (∀σ, τ ∈ T )(∀i < 2),

|σ| = |τ | =⇒ (σ_i ∈ T ⇐⇒ τ_i ∈ T );

(ii) T is almost homogeneous iff ∃n(∀σ, τ ∈ T )(∀i < 2),

n ≤ |σ| = |τ | ∧ σ � n = τ � n =⇒ (σ_i ∈ T ⇐⇒ τ_i ∈ T );

The least such n is called the modulus of T ;

(iii) P is (almost) homogeneous iff TP is (almost) homogeneous; a Medvedev
degree is (almost) homogeneous iff it contains an (almost) homogeneous
class; AH denotes the family of almost homogeneous degrees.

Proposition 17.3.8. For any Π0
1 class P ,

P is homogeneous ⇐⇒ P is a c.e. separating class.

Proof. If P = S(A,B) for c.e. sets A and B, then

TP = {σ : (∀i < |σ|)
[
σ(i) = 0 ∧ i /∈ A) ∨ (σ(i) = 1 ∧ i /∈ B)

]
}.

This is clearly a homogeneous tree. Conversely, if TP is homogeneous, then
P = S(A,B) for

A = {n : 0n_0 /∈ TP } and B = {n : 0n_1 /∈ TP }.
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Corollary 17.3.9. For any Π0
1 class P , if P is almost homogeneous with mod-

ulus n, then P is the disjoint union of 2n c.e. separating classes.

Proof. Given P ∈ AH with modulus n, for each sequence σ of length n, let
P [σ] := {X ∈ P : σ ≺ X}. Each P [σ] is homogeneous, so is a c.e. separating
class, and clearly P is the disjoint union of the P [σ].

Proposition 17.3.10. For any Π0
1 classes P and Q, if P and Q are almost

homogeneous, then also P ⊕Q and P ⊗Q are almost homogeneous.

Proof. If P and Q are almost homogeneous with moduli m and n, respectively,
then easily P ⊕ Q is almost homogeneous with modulus max{m,n} + 1 and
P ⊗Q is almost homogeneous with modulus 2 max{m,n}.

Theorem 17.3.11. AH is the smallest sublattice of PM which includes the
family of c.e. separating degrees.

Proof. By the preceding two propositions, AH is a sublattice of PM which
includes the family of c.e. separating degrees. Let L be any other such lattice;
we prove by induction that for all n,

P is almost homogeneous with modulus n =⇒ dgM (P ) ∈ L.

For n = 0 this is true by Proposition 17.3.8, so assume as induction hypothesis
that it holds for n and that P is almost homogeneous with modulus n+1. Then
if for i < 2 we set Pi := {X : (i)X ∈ P}, Pi is almost homogeneous with
modulus n, so dgM (Pi) ∈ L and clearly P = P0 ⊕ P1 so also dgM (P ) ∈ L.

Of particular interest are the generalizations

DNCk = {X ∈ kN : (∀n)X(n) 6= φn(n)}.

The next theorem is due to Jockusch [85]. We will use the following lemma.

Lemma 17.3.12. (Cenzer-Hinman) For any l < k, any s > 0 and any function
F : ks → l, there exists j < l and a tree T ⊆ k≤s such that

(i) for all σ ∈ T , there exist i0 6= i1 < k such that σ_it ∈ T for i = 0, 1;

(ii) for all τ ∈ T ∩ ks, F (τ) = j.

Proof. The proof is by induction on s. For s = 1, this is just the pigeonhole
principle. Now given F : ks+1 → l, define G : ks → l by

G(τ) = (least j < l)[(∃i0 < i1)F (τ_i0) = F (τ_i1) = j];

such a j must exist for each τ by considering the map Fτ : k → l defined by
Fτ (i) = F (τ_i).

Now by induction there exists j < l and a tree TG ⊆ k≤s satisfying (i) and
(ii) above with respect to G. Let

T = TG ∪ {τ_i : τ ∈ TG ∩ ks & F (τ_i) = j}.

It is easy to check that T satisfies conditions (i) and (ii) with respect to F .
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Theorem 17.3.13. For all n > 1, DNCk+1 <M DNCk.

Proof. Note here that in general φe : N → N and we let φke(n) = max{k −
1, φe(n)} to get the eth function in kN. DNCk+1 ≤M DNCk by the the map
Φ(X) = X. Now suppose by way of contradiction that DNCk ≤M DNCk+1

and let Φ : DNCk+1 → DNCk. We will show how to use Φ to compute an
element Y of DNCk, which is the contradiction.

Given n, we can compute Y (n) as follows. First compute a level s such
that Φ(σ, n) ↓ for all σ ∈ (k + 1)s and consider the map F : (k + 1)s → k
defined by F (σ) = Φ(σ, n). By Lemma 17.3.12, there exits jn < k and a tree
T ⊆ (k + 1)≤s such that F (τ) = jn for all τ ∈ T ∩ (k + 1)s and such that any
σ ∈ T ∩ (k + 1)<s has at least two extensions in T . We now show that there is
in fact some τ ∈ T ∩ (k + 1)s such that I(τ) ∩ DNCk+1 6= ∅ and hence some
X ∈ DNCk+1 such that Φ(X)(n) = Φ(σ, n) = jn. Since Φ(X) ∈ DNCk, it
will follow that φn(n) 6= jn and hence we can compute Y ∈ DNCk by taking
Y (n) = jn for each n.

The path τ = (e0, e1, . . . , es−1 ∈ T∩(k+1)s exists by the following (although
we cannot directly compute it). For t = 0, we have (i0) 6= (i1) in T and
at least one of these does not equal φ0(0); let e0 be the least such. Given
σ = (e0, . . . , et−1) ∈ T , again there exist i0 < i1 such that both σ_i0 and σ_i0
are in T and again at least on of i0, i1 is not equal to φt(t) so we can choose e0

to be the least such.

Exercises

17.3.1. Say that c. e. sets A and B are weakly effectively inseparable if there is
a computable function F , mapping ω2 into the family of finite sets of
natural numbers, such that, for any x and y, if A ⊂Wx and B ⊂Wy and
Wx ∩Wy = ∅, then F (x, y) contains at least one element which is not in
Wx ∪Wy. Show that if S(A,B) is productive, then A and B are weakly
effectively inseparable.

17.3.2. Recall from Section 2.2.9 the class CC(T ) of complete consistent exten-
sions of a c. e. propositional theory T . Show that for any c. e. theory U ,
CC(U) is Medvedev complete if and only if, for every c. e. theory T , there
exists a computable function Φ : CC(U)→ CC(T ).

17.3.3. Let the eth c. e. theory Te = {γi : i ∈ We}, where γi : i ∈ N} enumerates
the sentences of propositional logic. Let us say that a theory T is effectively
incompletable if there exists a computable mapping θ : N→ Sent such that
for all a, if T ⊆ Ta and Ta is consistent, then both Wa ∪ {θ(a)} and Wa ∪
{¬θ(a)}are consistent. Show that, for any c. e. theory U , U is effectively
incompletable if and only if CC(U) is productive and hence CC(U) is
Medvedev complete if and only if CC(U) is effectively incompletable.

17.3.4. For a pair A,B of disjoint c. e. sets, let S(A,B) represent the logical
theory U(A,B) with axioms {Ai : i ∈ A} ∪ {¬Ai : i ∈ B}. Show that
for any pair A,B of effectively inseparable c. e. sets, U(A,B) is effectively



17.4. MEASURE 369

incompletable. Hint: There exist computable functions f and g such that
Wf(e) = {i : Ai ∈ Te}and Wg(e) = {i : ¬Ai ∈ Te}.

17.3.5. Let U be an effectively incompletable c. e. theory. Then for any c. e.
theory T , there exists a computable mapping Θ : Sent3 → Sent such that
if both T ∪ {φ} and U ∪ {ψ} are consistent, then

(a) T ∪ {φ, χ} is consistent ←− U ∪ {ψ, θ(φ, ψ, χ)} is consistent;

(b) T ∪ {φ,¬χ} is consistent ←− U ∪ {ψ,¬θ(φ, ψ, χ)} is consistent.

Hint: Use the Recursion Theorem to compute an index a from φ, ψ, χ
such that Ta equals Con(U ∪ {ψ, θa}) if T ∪ {φ, χ} is consistent, equals
Con(U ∪ {ψ,¬θa}) if T ∪ {φ,¬χ} is consistent, and equals Con(U ∪ {ψ})
otherwise.

17.3.6. Show directly that any effectively incompletable c. e. theory U is Medvedev
complete. Hint: given any c. e. theory T , recursively define a mapping ψ :
{0, 1}∗ → Sent taking σ to ψσ by ψ(∅) = p0∨¬p0 and for any σ of length n,
ψ(σ_0) = ψσ ∧ ¬Θ(qσ, ψσ, An) and ψ(σ_1) = ψσ ∧Θ(qσ, ψσ, An), where
qσ denotes the conjunction over i < n of {Ai : σ(i) = 1}∪{¬Ai : σ(i) = 0}.
Then T ∪ {qσ is consistent if and only if U ∪ {ψ(σ)} is consistent and for
X ∈ CC(U), we may define Φ(X) ∈ CC(T ) to be the unique Y such that
X ∈ CC(U ∪ {ψ(Y dn)} for all n.

17.4 Measure

In this section we give the result of Cenzer and Hinman [23] that there is no
Medvedev complete Π0

1 class of positive measure and indeed that no class of
positive measure can be ≤M any separating class. The following lemma is due
to Simpson [178].

Lemma 17.4.1. (Simpson) Let {Fn}n∈ω be a sequence of nonempty finite sub-
sets of N of bounded cardinality and let S =

∏
n Fn. Let P ⊆ {0, 1}N have

positive measure and let Q ⊆ NN be nonempty.

1. If S ≤M P ⊗Q, then S ≤M Q.

2. If S ≤w P ⊗Q, then S ≤w Q.

Proof. (1) The proof is similar to that of Theorem 3.3.11. Suppose that card(Fn) <
k for all n. Let U and V be clopen so that µ(V −P ) < µ(P ) and µ(V −U) are
both < µ(P )/4k and therefore µ(U − P ) < µ(U)/K. It is important here that
µ(U) is rational. Let Φ be a computable function such that Φ(x⊕ y) ∈ S for all
x ∈ P and y ∈ Q. Given y ∈ Q and n ∈ N, we can compute m = Ψ(y)(n) such
that µ({x ∈ U : Φ(x ⊕ y)(n) = m}) > µ(U)/k and therefore m ∈ Fn. Thus Ψ
maps Q onto S and hence S ≤M Q.
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(2) Fix y ∈ Q and note that S ≤w P ⊗ {y}. Now for each x ∈ P , there
is a function Φe(x) such that Φe(x)(x, y) ∈ S. By countable additivity of µ,
there is a single function Φ and a subset Pg of P of positive measure such that
S ≤M Pg ⊗ {y} Now by lemma 17.4.1, S ≤M {g}. It follows that S ≤s Q.

Note that in particular these lemmas apply to any separating class S.

Theorem 17.4.2. (Simpson) Let P,Q be nonempty Π0
1 subsets of {0, 1}N and

suppose that P has positive measure. If Q <M 1, then P⊗Q <M 1 and similarly
if Q <w 1, then P ⊗Q <w 1.

Proof. This follows from Lemma 17.4.1, since there is a Medvedev complete
separating class by Corollary 17.3.3.

Corollary 17.4.3. If P ⊂ {0, 1}N is a Π0
1 class with positive measure, then

P <w 1.

Proof. This follows from Theorem 17.4.2 by letting Q = {0, 1}N.

Exercises

17.4.1. Show that for any Π0
1 classes P and Q, if P has positive measure and

DNCk ≤M P ⊗ Q, then DNCk ≤M Q. Conclude that P ⊗ DNCk >M
P ⊗DNCk+1 for all k.

17.5 Randomness

Recall the notion of 1-randomness from Section 4.3. Let R be the class of all
1-random reals in {0, 1}N. It follows from Theorem 4.3.3.5 that there is a Π0

1

class P with positive measure such that P ⊂ R.

Theorem 17.5.1. (Simpson) For any Π0
1 class P ⊂ R with positive measure,

P ≡w R.

Proof. Since P ⊂ R, it follows that R ≤w P . On the other hand, Theorem
4.3.3.6 tells us that P has elements of every 1-random degree, so for any x ∈ R,
there exists y ∈ P with y ≡T x and hence P ≤w R.

Corollary 17.5.2. If a Π0
1 class P contains a random real, then P ≡w R.

Corollary 17.5.3. (Simpson) The Muchnik degree of R can be characterized
as the unique largest Muchnik degree of any Π0

1 class P ⊆ {0, 1}N such that
µ(P ) > 0.

Proof. By Theorem 17.5.1, there is a Π0
1 class P ⊆ {0, 1}N with positive measure

and with P ≡w R. Now let P be any Π0
1 class P of positive measure. It follows

from Theorem 4.3.3.6 that P ≤w R.

Exercises

17.5.1.
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17.6 Thin Classes

In this section, we prove the following theorem of Simpson.

Theorem 17.6.1. If Q ⊆ {0, 1}N is a nonempty perfect thin Π0
1 class and R ⊂

{0, 1}N is the set of all Martin-Löf random reals, then Q and R and Muchnik
incomparable.

The theorem is proved using a sequence of lemmas.

Lemma 17.6.2. Let Q ⊂ {0, 1}N be nonempty thin Π0
1 class, let x be Martin-

Löf random, and let y ∈ Q be almost computable. Then x is not Turing reducible
to y.

Proof. Suppose by way of contradiction that x ≤T y. Then by Theorem 1.9.13
x ≤tt y. Now by Theorem 1.9.10, there is a total computable functional Φ :
{0, 1}N → {0, 1}N mapping y to x. Now by Lemma 2.8.4, the image Φ[Q] is a
thin Π0

1 class and hence has measure zero by Theorem 3.3.3 But x ∈ Φ[Q] is
Martin-Löf random and hence µ(Φ[Q]) > 0 by Exercise 5.

Since every nonempty Π0
1 class contains an almost computable member by

Theorem 3.1.5, it follows that R is not Muchnik reducible to Q. The following
lemma is due to Demuth [52].

Lemma 17.6.3. Let x ∈ {0, 1}N be Martin-Löf random and let y ≤tt x be
noncomputable. Then there exists z ≡T y such that z is Martin-Löf random.

Lemma 17.6.4. If Q ⊆ {0, 1}N is a nonempty perfect thin Π0
1 class, let y ∈ Q

and let x be Martin-Löf random and almost computable. Then y is not Turing
reducible to x.

Proof. Suppose by way of contradiction that y ∈ Q and y ≤T x. Then y ≤tt x
since x is almost computable. It follows from Lemma 17.6.3 that there is a
random z ≡T y. But then z ≤T x, contradicting Lemma 17.6.2.

To complete the proof of Theorem 17.6.1, let x be random and almost com-
putable and let Q be a nonempty perfect thin Π0

1 class. It follows from Lemma
17.6.4 that no member of Q is computable from x.

Corollary 17.6.5. There is a Π0
1 separating class Q and a Π0

1 class Q′ such
that Q < wQ′, and furthermore, for any separating class P , if P is Muchnik
reducible to Q′, then P is Muchnik reducible to Q.

Proof. Let Q be a perfect thin Π0
1 class which is separating 2.8.1, let R be a Π0

1

class of randoms and let Q′ = Q ⊗ R. It follows from Theorem 17.6.1 that Q′

is not Muchnik reducible to Q. The furthermore remark follows from Lemma
17.4.1.
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Chapter 18

Random Closed Sets

The study of algorithmic randomness has been of great interest in recent years.
The basic problem is to quantify the randomness of a single real number; here
we will extend this problem to the randomness of the set of paths through a
finitely-branching tree. Early in the last century, von Mises [197] suggested that
a random real should obey reasonable statistical tests, such as having a roughly
equal number of zeroes and ones of the first n bits, in the limit. Thus a random
real would be stochastic in modern parlance. If one considers only computable
tests, then there are countably many and one can construct a real satisfying all
tests.

An early approach to randomness was through betting. Effective betting on
a random sequence should not allow one’s capital to grow unboundedly. The
betting strategies used are constructive martingales, introduced by Ville [196]
and implicit in the work of Levy [118], which represent fair double-or-nothing
gambling.

Martin-Löf [133] observed that stochastic properties could be viewed as spe-
cial kinds of meaure zero sets and defined a random real as one which avoids
certain effectively presented measure 0 sets. That is, a real x ∈ {0, 1}N is
Martin-Löf random if for any effective sequence S1, S2, . . . of c.e. open sets
with µ(Sn) ≤ 2−n, x /∈ ∩nSn.

At the same time Kolmogorov [103] defined a notion of randomness for finite
strings based on the concept of incompressibility. For infinite words, the stronger
notion of prefix-free complexity developed by Levin [117], Gács [69] and Chaitin
[43] is needed. Schnorr later proved [170] that the notions of constructive mar-
tingale randomness, Martin-Löf randomness, and prefix-free randomness are
equivalent. In this chapter, we will consider algorithmic randomness on the
space C of nonempty closed subsets P of {0, 1}N.

The betting approach to randomness is formalized as follows:

Definition 18.0.6 (Ville [196]). 1. A martingale is a function d : n<N →

373
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[0,∞) such that for all σ ∈ n<N,

d(σ) =
1

n

n−1∑
i=0

d(σ_i).

2. A martingale d succeeds on X ∈ nN if

lim sup
m→∞

d(Xdm) =∞.

That is, the betting strategy results in an unbounded amount of money
made on the binary string X.

3. The success set of d is the set S∞[d] of all sequences on which d succeeds.

That is, a martingale on 2<N is the representation of a fair double-or-nothing
betting strategy. When working on 3<N the strategy is triple-or-nothing.

Definition 18.0.7. A martingale d is constructive (effective, c.e.) if it is lower

semi-computable; that is, if there is a computable function d̂ : n<N × N → Q
such that

1. for all σ and t, d̂(σ, t) ≤ d̂(σ, t+ 1) < d(σ), and

2. for all σ, limt→∞ d̂(σ, t) = d(σ).

In other words, d(w) is approximated from below by rationals uniformly in
w. A sequence in 2N is considered random in this setting if no constructive
martingale succeeds on it.

Martin-Löf randomness for reals, as defined above, is extended to closed
sets by giving an effective homeomorphism with the space {0, 1, 2}N and simply
carrying over the notion of randomness from that space.

Prefix-free randomness for reals is defined as follows. Let M be a prefix-free
function with domain ⊂ {0, 1}∗; that is, if σ v τ are strings in the domain of M ,
then σ must equal τ . For any finite string τ , let KM (τ) = min{|σ|,∞ : M(σ) =
τ}. There is a universal prefix-free function U such that, for any prefix-free M ,
there is a constant c such that for all τ

KU (τ) ≤ KM (τ) + c.

We let K(σ) = KU (σ). Then x is called prefix-free random if there is a constant
c such that K(xdn) ≥ n− c for all n. This means that the initial segments of x
are not compressible.

For a tree T , we want to consider the compressibility of Tn = T ∩ {0, 1}n.
This has a natural representation of length 2n since there are 2n possible nodes
of length n. We will show that any tree TP can be compressed, that is, K(Tn) ≥
2n − c is impossible for a tree with no dead ends.
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18.1 Martin-Löf Randomness of Closed Sets

In this section, we define a measure on the space C of nonempty closed subsets
of {0, 1}N and use this to define the notion of randomness for closed sets. We
then obtain several properties of random closed sets.

An effective one-to-one correspondence between the space C and the space
3N is defined as follows. Let a closed set Q be given and let T = TQ be the tree
without dead ends such that Q = [T ].

Then define the code x = xQ ∈ {0, 1, 2}N for Q as follows. Let ∅ =
σ0, σ1, σ2, . . . enumerate the elements of T in order, first by length and then
lexicographically. We now define x = xQ = xT by recursion as follows. For each
n, x(n) = 2 if σ_n 0 and σ_n 1 are both in T , x(n) = 1 if σ_n 0 /∈ T and σ_n 1 ∈ T
and x(n) = 0 if σ_n 0 ∈ T and σ_n 1 /∈ T .

Now define the measure µ∗ on C by

µ∗(X ) = µ({xQ : Q ∈ X}).

Informally this means that given σ ∈ TQ, there is probability 1
3 that both

σ_0 ∈ TQ and σ_1 ∈ TQ and, for i = 0, 1, there is probability 1
3 that only

σ_i ∈ TQ. In particular, this means that Q∩ I(σ) 6= ∅ implies that for i = 0, 1,
Q ∩ I(σ_i) 6= ∅ with probability 2

3 .
Let us comment briefly on why some other natural representations were re-

jected. Suppose first that we simply enumerate all strings in {0, 1}∗ as σ0, σ1, . . .
and then represent T by its characteristic function so that xT (n) = 1 ⇐⇒ σn ∈
T . Then in general a code x might not represent a tree. That is, once we have
(01) /∈ T we cannot later decide that (011) ∈ T . Suppose then that we allow
the empty closed set by using codes x ∈ {0, 1, 2, 3}∗ and modify our original
definition as follows. Let x(n) = i have the same definition as above for i ≤ 2
but let x(n) = 3 mean that neither σ_n 0 nor σ_1 is in T . Informally, this
would mean that for i = 0, 1, σ ∈ T implies that σ_i ∈ T with probability 1

2 .
The advantage here is that we can now represent all trees. But this is also a
disadvantage, since for a given closed set P , there are many different trees T
with P = [T ]. The second problem with this approach is that we would have
[T ] = ∅ with positive probability. We briefly return to this subject in Section 6.

Now we will say that a closed set Q is (Martin-Löf) random if the code xQ is
Martin-Löf random. Let Qx denote the unique closed set Q such that xQ = x.
Since random reals exist, it follows that random closed sets exists. Furthermore,
there are ∆0

2 random reals, so we have the following.

Theorem 18.1.1. There exists a random closed set Q such that TQ is ∆0
2.

Note that if TQ is ∆0
2, then Q must contain ∆0

2 elements (Theorem 14.1.6).
Since there exist strong Π0

2 classes with no ∆0
2 elements, there are strong Π0

2

classes Q such that TQ is not ∆0
2.

The following lemma will be needed throughout.

Lemma 18.1.2. For any Q ⊆ 2N which is either closed or open, µ∗({P : P ⊆
Q}) ≤ µ(Q).
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Proof. Let PC(Q) denote {P : P ⊆ Q}. We first prove the result for (nonempty)
clopen sets U by the following induction. Suppose U = ∪σ∈SI(σ), where
S ⊆ {0, 1}n. For n = 1, either µ(U) = 1 = µ∗(PC(U)) or µ(U) = 1

2 and
µ∗(PC(Q)) = 1

3 . For the induction step, let Si = {σ : i_σ ∈ S}, let Ui =
∪σ∈SiI(σ), let mi = µ(Ui) and let vi = µ∗(PC(Ui)), for i = 0, 1. Then consid-
ering the three cases in which S includes both initial branches or just one, we
calculate that

µ∗(PC(U)) =
1

3
(v0 + v1 + v0v1).

Thus by induction we have

µ∗(PC(U)) ≤ 1

3
(m0 +m1 +m0m1).

Now

2m0m1 ≤ m2
0 +m2

1 ≤ m0 +m1,

and therefore

µ∗(PC(U)) ≤ 1

3
(m0 +m1 +m0m1) ≤ 1

2
(m0 +m1) = µ(U).

For a closed set Q, let Q = ∩nUn, with Un+1 ⊆ Un for all n. Then P ⊂ Q if
and only if P ⊆ Un for all n. Thus

PC(Q) = ∩nPC(Un),

so that

µ∗(PC(Q)) = lim
n→∞

µ∗(PC(Un)) ≤ lim
n→∞

µ(Un) = µ(Q).

Finally, for an open set Q, let Q =
⋃
n Un be the union of an increasing sequence

of clopen sets. Then, by compactness,

PC(Q) = ∪nPC(Un),

so that

µ∗(PC(Q)) = lim
n→∞

µ∗(PC(Un)) ≤ lim
n→∞

µ(Un) = µ(Q).

This completes the proof of the lemma.

Next we consider the intersection of a random closed set with an interval
I(σ) and the disjoint union of random closed sets.

Let us call the coding of a closed set Q by the nodes of its representative tree
with no dead ends the canonical code of Q. We wish now to introduce a second
method of coding, the ghost code. A ghost code of Q is an infinite ternary string
whose bits correspond to all nodes of 2<N in lexicographical order. The bits
corresponding to the nodes of Q’s tree (the “canonical nodes”) hold the same
values as the corresponding bits in the canonical code; the remaining “ghost
nodes” may hold any values. Ghost codes are non-unique, and every closed set



18.1. MARTIN-LÖF RANDOMNESS OF CLOSED SETS 377

has a non-random ghost code (if the closed set itself is random take the code
with ghost nodes all equal to zero).

We define randomness for closed sets in the world of ghost codes as possession
of a random code. This method of coding is more convenient for some purposes;
for example, we will use it to show that if Q0, Q1 are closed sets and Q =
{0_x : x ∈ Q0} ∪ {1_x : x ∈ Q1}, Q is random if and only if the Qi are
random relative to each other. With canonical coding it is straightforward to
show relative randomness of the half trees is sufficient for randomness of the full
tree, but not its necessity.

However, the utility of the ghost codes rests entirely on the following corre-
spondence.

Theorem 18.1.3. The canonical code of a closed set Q ⊆ 2N is random if and
only if Q has some random ghost code.

Proof. (⇐) Suppose the canonical code of Q is nonrandom. Then there is a c.e.
martingale m that succeeds on it. From any initial segment σ of a ghost code
g for Q, the subsequence σ̂ of exactly the canonical nodes of σ is computable.
Therefore it is computable whether the bit of g after σ is canonical or ghost.
From m, define the martingale m′ which bets as follows:

m′(σ_i) =

{
m(σ̂_i)
m(σ̂) m′(σ) next bit is a canonical node

m′(σ) next bit is a ghost node.

That is, m′ holds its money on ghost nodes and bets proportionally to m (in
fact, identically) on canonical nodes. It is clear that m′ succeeds on the ghost
code g and thus g is nonrandom.

(⇒) Now suppose the canonical code r for Q is random, and let q be an infinite
ternary string that is random relative to r (so therefore r is also random relative
to q). We claim the ghost code g obtained by using the bits of r as the canonical
nodes and the bits of q in their original order as the ghost nodes is random. It
is clear that g is a ghost code for Q.

Suppose m is a c.e. martingale that bets on g. We define two martingales
from m, mr and mq, that bet on the bits of r and q respectively, with oracle q
and r respectively, according to m’s actions on the corresponding bits of g, and
show that if they do not succeed, m does not succeed. As q and r are relatively
random, mr and mq cannot succeed, and so g will be random.

We define mr only; for mq swap the roles of r and q, and of canonical and
ghost nodes. From a string σ compute the unique initial segment τ of a ghost
code such that

1. σ is the substring of canonical nodes of τ ,

2. the node to follow τ is a canonical node, and

3. the ghost nodes of τ are an initial segment of the oracle q.
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Then mr(σ
_i) = m(τ_i)

m(τ) mr(σ).

Since each of r, q is random relative to the other, neither mr nor mq can
succeed. That is, there is some b such that mr(σ) ≤ b for all σ ⊂ r and likewise
mq(τ) ≤ b for all τ ⊂ q. We claim that the values of m on initial segments of g
are bounded by b2.

At each node of the code r the martingale mr will multiply the capital held
before the node by some constant factor. Let {crn}n∈N be the sequence of level-n
multiplicative factors for mr. Assuming an initial capital of 1, the values mr

achieves on initial segments of r are

∏̀
k=0

crk

for 0 ≤ ` <∞. By assumption, every product of this form is less than or equal
to b. Substituting the corresponding definition for mq, {cqn}n∈N, gives the same
result.

The original martingale m behaves on the subequences r and q exactly as
the martingales mr and mq do, by construction of mr and mq. Therefore it has
the same collection of multiplicative factors. Again assuming initial capital 1,
the values it achieves are thus products of the form(∏̀

k=0

crk

)
·

 `′∏
k=0

cqk

 .

As each of the subproducts is bounded by b, the entire product is bounded
by b2 and m does not succeed on g. Since m was arbitrary, no c.e. martingale
succeeds on g and thus Q has a random ghost code.

Note that this theorem relativizes so we can assert that the canonical code
is, say, A-random for some A if and only if it has an A-random ghost code.

The primary purpose of the ghost codes is to remove the dependence on
the particular closed set under discussion when interpreting bits of the code as
nodes of the tree. This is especially useful when subdividing the tree, as in the
following definition.

Definition 18.1.4. The tree join of closed sets P0 and P1 is the closed set
Q = {0_x : x ∈ P0}∪{1_x : x ∈ P1}. Given ghost codes r0, r1 for the Pi, their
tree join r0 � r1 is the code for Q with the corresponding ghost node values.

This is distinguished from what we will call the recursion-theoretic join r0⊕
r1, where elements of r0 and r1 alternate.

We wish to relate the recursion-theoretic join and the tree join. First recall
van Lambalgen’s theorem.

Theorem 18.1.5 (van Lambalgen [195]). The following are equivalent.

1. A⊕B is n-random.



18.2. MEMBERS OF RANDOM CLOSED SETS 379

2. A is n-random and B is n-A-random (or vice-versa).

3. A is n-B-random and B is n-A-random.

Lemma 18.1.6. Given two ghost codes r0, r1, the tree join r0 � r1 is random
if and only if the recursion theoretic join r0 ⊕ r1 is random.

Proof. We show a Martin-Löf test that contains one version of the join may be
transformed into a test that contains the other version, and therefore if one is
nonrandom, both are nonrandom. To simplify the proof we ignore the initial
bit of the tree join, as it has no matching bit in the recursion-theoretic join.

It is clear that initial segments of the two versions of join may be transformed
into each other via a computable algorithm that is independent of the value of
the bits, provided the strings are of length `n := 2n+1− 1 (i.e., the final node is
the end of a level of the tree). For strings that terminate in the middle of levels,
a single initial segment σ becomes a finite collection of strings τj , one for each
extension of σ to a string of length `n for the least n such that |σ| ≤ `n. There
will be 2`n−|σ| such strings and hence the measure of the intervals around them
will total 2−`n · 2`n−|σ| = 2−|σ|, equal to the measure of the interval around σ.

Therefore, let {Ui : i ∈ N} be a Martin-Löf test failed by r0 ⊕ r1. When
σ enters Ui for some i, enumerate the finite collection of τj as described above

into a new set Ûi. The collection {Ûi : i ∈ N} is clearly a Martin-Löf test, as it
is enumerated simultaneously with the {Ui} and µ(Ûi) = µ(Ui) for all i ∈ N. If
r0 ⊕ r1 extends σ ∈ Ui, r0 � r1 will extend one of the corresponding τj in Ûi.

Therefore since r0⊕r1 fails {Ui}, r0�r1 will fail {Ûi}. Symmetrically, if r0�r1

is nonrandom we may construct a Martin-Löf test that r0 ⊕ r1 also fails.

We now obtain the following corollary of Theorems 18.1.3 and 18.1.5, and
Lemma 18.1.6.

Corollary 18.1.7. Suppose Pi, i = 0, 1, are closed sets with canonical codes ri
and let P be the tree join of P0, P1. Then P is random if and only if r0 ⊕ r1 is
random.

Proof. (⇐) Suppose that r0⊕r1 is random. Then by Theorem 18.1.5, the ri are
mutually relatively random. By Theorem 18.1.3, there are ghost codes gi for
the Pi that are also mutually relatively random. Again by 18.1.5, the recursion-
theoretic join g0⊕ g1 is random; then by Theorem 18.1.6 the tree join g0� g1 is
also random, and hence P possesses a random ghost code and is random.
(⇒) Suppose now that P is random, and therefore possesses a random ghost
code g. The code g may be thought of as a tree join g0 � g1, which is therefore
random, and so by Theorem 18.1.6, g0 ⊕ g1 is random. By Theorem 18.1.5,
the individual codes g0, g1 are therefore mutually relatively random, and so by
Theorem 18.1.3 the canonical codes r0, r1 for the half trees are as well. Thus
again by 18.1.5, r0 ⊕ r1 is random.

18.2 Members of Random Closed Sets
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