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Chapter 1

Introduction

The first problem in the study of the foundations of mathematics is to determine the nature of
mathematics. That is, what are mathematicians supposed to do?

For the sake of discussion, let us consider four kinds of mathematical activity.
The first and most natural activity is computation. That is, the creation and application of

algorithms to use in the solution of mathematical or scientific problems. For example, we learn
algorithms for addition and multiplication of integers in elementary school. In college we may
learn the Euclidean Algorithm, which is used to compute the least common denominator of two
positive integers. It is non-trivial to prove that the Euclidean Algorithm actually works. In this
course we will consider the concept of algorithms and the question of whether certain problems
may or may not be solvable by an algorithm.

The second kind of mathematical activity consists of discovering properties of natural mathemat-
ical structures such as the integers, the real line and Euclidean geometry, in somewhat the same way
that a physicist discovers properties of the universe of matter and energy. That is, by experiment
and by thought. Thus we have commutative law of addition, the density of the ordering of the real
line and the incidence axioms for points and lines. I am thinking in particular here of properties
which cannot be derived from previous principles but which will be taken as axioms or definitions
of our structures. This can also include the discovery of complicated theorems which it is hoped
will follow from previously accepted principles. In this course we will discuss the Incompleteness
Theorem of Godel, which implies that there will always be new properties of the natural numbers
{0, 1,2, ...} with addition and multiplication remaining to be discovered.

The third kind of mathematical activity consists of deriving (or proving) theorems from a
given set of axioms, usually those abstracted from the study of the first kind. These theorems
will now apply to a whole family of models, those which satisfy the axioms. For example, one
may discover that all reasonably small positive integers may be obtained as a sum of 5 or fewer
squares and conjecture that this property is true of all positive integers. Now it remains to prove
the conjecture, using known properties of the integers. Most of the time a proof will apply to more
than one mathematical structure. For example, we have in finite group theory Lagrange’s Theorem
that the order of a subgroup divides the number of elements of the group. This applies to any
structure which satisfies the axioms of group theory. In this course we will consider the concept of
mathematical proof. The Completeness Theorem of Godel tells us that any true theorem can be
proved (eventually).

The fourth kind of mathematical activity consists of constructing new models. As an example,
we have the constuction of the various finite groups, culminating in the monster simple group
recently found by Griess. Most of the models are based on the natural structures of the integers
and the reals, but the powerful ideas of set theory have led to many models which could not have
been found otherwise. This fourth kind of mathematics includes demonstrating the independence
of the axioms found in the first kind and also includes the "give a counterexample" part of the
standard mathematical question: "Prove or give a counterexample." In this course we will consider
the concept of models and use models to show that various conjectures are independent. The most
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2 CHAPTER 1. INTRODUCTION

famous result of this kind is the independence of the parallel Postulate of Euclidean Geometry. A
more recent example is Cohen’s model in which the Continuum Hypothesis is false.

The study of the foundations of mathematics is sometimes called meta- mathematics. The
primary tool in this study is mathematical logic. In particular, mathematical logic provides the
formal language of mathematics, in which theorems are stated. Therefore we begin with the
propositional and predicate calculus and the notions of truth and models.

Set Theory and Mathematical Logic compose the foundation of pure mathematics. Using the
axioms of set theory, we can construct our universe of discourse, beginning with the natural
numbers, moving on with sets and functions over the natural numbers, integers, rationals and real
numbers, and eventually developing the transfinite ordinal and cardinal numbers. Mathematical
logic provides the language of higher mathematics which allow one to frame the definitions, lemmas,
theorems and conjectures which form the every day work of mathematicians. The axioms and
rules of deduction set up the system in which we can prove our conjectures, thus turning them into
theorems.

A separate volume on set theory begins with a chapter introducing the axioms of set theory,
including a brief review of the notions of sets, functions, relations, intersections, unions, com-
plements and their connection with elementary logic. The second chapter introduces the notion
of cardinality, including finite versus infinite, and countable versus uncountable sets. We define
the Von Neumann natural numbers ω = {0,1,2, . . . } in the context of set theory. The methods
of recursive and inductive definability over the natural numbers are used to define operations
including addition and multiplication on the natural numbers. These methods are also used to
define the transitive closure of a set A as the closure of A under the union operator and to define
the hereditarily finite sets as the closure of 0 under the power set operator. The notion of a model
of set theory is introduced. Conditions are given under which a given set A can satisfy certain of the
axioms, such as the union axiom, the power set axiom, and so on. It is shown that the hereditarily
finite sets satisfy all axioms except for the Axiom of Infinity.

Several topics covered here are not typically found in a standard textbook.
An effort is made to connect foundations with the usual mathematics major topics of algebra,

analysis, geometry and topology. Thus we have chapters on Boolean algebras, on non-standard
analysis, and on the foundations of geometry. There is an introduction to descriptive set theory,
including cardinality of sets of real numbers. The topics of inductive and recursive definability plays
an important role in all areas of logic, including set theory, computability theory, and proof theory. As
part of the material on the axioms of set theory, we consider models of various subsets of the axioms,
as an introduction to consisitency and independence. Our development of computability theory
begins with the study of finite state automata and is enhanced by an introduction to algorithmic
randomness, the preeminent topic in computability in recent times. This additional material gives
the instructor options for creating a course which provides the basic elements of set theory and
logic, as well as making a solid connection with many other areas of mathematics.



Chapter 2

Foundations of Geometry

2.1 Introduction

Plane geometry is an area of mathematics that has been studied since ancient times. The roots of
the word geometry are the Greek words ge meaning “earth” and metria meaning “measuring”. This
name reflects the computational approach to geometric problems that had been used before the
time of Euclid, (ca. 300 B.C.), who introduced the axiomatic approach in his book, Elements. He
was attempting to capture the reality of the space of our universe through this abstraction. Thus
the theory of geometry was an attempt to capture the essence of a particular model.

Euclid did not limit himself to plane geometry in the Elements, but also included chapters on
algebra, ratio, proportion and number theory. His book set a new standard for the way mathematics
was done. It was so systematic and encompassing that many earlier mathematical works were
discarded and thereby lost for historians of mathematics.

We start with a discussion of the foundations of plane geometry because it gives an accessible
example of many of the questions of interest.

2.2 Axioms of plane geometry

Definition 2.2.1. The theory of Plane Geometry, PG, has two one-place predicates, Pt and Ln,
to distinguish the two kinds of objects in plane geometry, and a binary incidence relation, In, to
indicate that a point is on or incident with a line.

By an abuse of notation, write P ∈ P t for P t(P) and ` ∈ Ln for Ln(`).
There are five axioms in the theory PG:

(A0) (Everything is either a point or line, but not both; only points are on lines.)

(∀x)((x ∈ Pt∨ x ∈ Ln) & ¬(x ∈ Pt & x ∈ Ln)) & (∀x , y)(xIny → (x ∈ Pt & y ∈ Ln)).

(A1) (Any two points belong to a line.)

(∀P,Q ∈ Pt)(∃` ∈ Ln)(PIn` & QIn`).

(A2) (Every line has at least two points.)

(∀` ∈ Ln)(∃P,Q ∈ Pt)(PIn` & QIn` & P 6=Q).

(A3) (Two lines intersect in at most one point.)

(∀`, g ∈ Ln)(∀P,Q ∈ Pt)((` 6= g & P,QIn` & P,QIng)→ P =Q).

3



4 CHAPTER 2. FOUNDATIONS OF GEOMETRY

(A4) (There are four points no three on the same line.) (∃P0, P1, P2, P3 ∈ Pt)(P0 6= P1 6= P2 6=
P3 & P2 6= P0 6= P3 6= P1 & (∀` ∈ Ln)(

¬(P0In` & P1In` & P2In`) &

¬(P0In` & P1In` & P3In`) &

¬(P0In` & P2In` & P3In`) &

¬(P1In` & P2In` & P3In`)).

The axiom labeled 0 simply says that our objects have the types we intend, and is of a different
character than the other axioms. In addition to these axioms, Euclid had one that asserted the
existence of circles of arbitrary center and arbitrary radius, and one that asserted that all right
angles are equal. He also had another axiom for points and lines, called the parallel postulate,
which he attempted to show was a consequence of the other axioms.

Definition 2.2.2. Two lines are parallel if there is no point incident with both of them.

Definition 2.2.3. For n≥ 0, the n-parallel postulate, Pn, is the following statement:

(Pn) For any line ` and any point Q not on the line `, there are n lines parallel to ` through the
point Q.

P1 is the familiar parallel postulate.
For nearly two thousand years, people tried to prove what Euclid had conjectured. Namely, they

tried to prove that P1 was a consequence of the other axioms. In the 1800’s, models of the other
axioms were produced which were not models of P1.

2.3 Non-Euclidean models

Nikolai Lobachevski (1793-1856), a Russian mathematician, and Janos Bolyai (1802-1860), a
Hungarian mathematician, both produced models of the other axioms together with the parallel
postulate P∞, that there are infinitely many lines parallel to a given line through a given point. This
geometry is known as Lobachevskian Geometry. It is enough to assume P≥2 together with the circle
and angle axioms to get P∞.

Example 2.3.1. (A model for Lobachevskian Geometry): Fix a circle, C , in a Euclidean plane. The
points of the geometry are the interior points of C . The lines of the geometry are the intersection of
lines of the Euclidean plane with the interior of the circle. Given any line ` of the geometry and
any point Q of the geometry which is not on `, every Euclidean line through Q which intersects `
on or outside of C gives rise to a line of the geometry which is parallel to `.
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Example 2.3.2. (A model for Riemannian Geometry): Fix a sphere, S, in Euclidean 3-space. The
points of the geometry may be thought of as either the points of the upper half of the sphere, or as
equivalence classes consisting of the pairs of points on opposite ends of diameters of the sphere
(antipodal points). If one chooses to look at the points as coming from the upper half of the sphere,
one must take care to get exactly one from each of the equivalence classes. The lines of the geometry
are the intersection of the great circles with the points. Since any two great circles meet in two
antipodal points, every pair of lines intersects. Thus this model satisfies P0.
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Bernhard Riemann (1826-1866), a German mathematician, was a student of Karl Gauss (1777-
1855), who is regarded as the greatest mathematician of the nineteenth century. Gauss made
contributions in the areas of astronomy, geodesy and electricity as well as mathematics. While
Gauss considered the possibility of non-Euclidean geometry, he never published anything about the
subject.

2.4 Finite geometries

Next we turn to finite geometries, ones with only finitely many points and lines. To get the theory
of the finite projective plane of order q, denoted PG(q), in addition to the five axioms given above,
we add two more:

(A5(q)) Every line contains exactly q+ 1 points.

(A6(q)) Every point lies on exactly q+ 1 lines.

The first geometry we look at is the finite projective plane of order 2, PG(2), also known as the
Fano Plane.

Theorem 2.4.1. The theory PG(2) consisting of PG together with the two axioms (5)2 and (6)2
determines a finite geometry of seven points and seven lines, called the Fano plane.

Proof. See Exercise 5 to prove from the axioms and Exercise 4 that the following diagram gives a
model of PG(2) and that any model must have the designated number of points and lines.

A

B

C

D

E

F

G

Next we construct a different model of this finite geometry using a vector space. The vector space
underlying the construction is the vector space of dimension three over the field of two elements,
Z2 = {0,1}. The points of the geometry are one dimensional subspaces. Since a one-dimensional
subspace of Z2 has exactly two triples in it, one of which is the triple (0,0,0), we identify the
points with the triples of 0’s and 1’s that are not all zero. The lines of the geometry are the two
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dimensional subspaces. The incidence relation is determined by a point is on a line if the one
dimensional subspace is a subspace of the two dimensional subspace. Since a two dimensional
subspace is picked out as the orthogonal complement of a one- dimensional subspace, each two
dimensional subspace is identified with the non-zero triple, and to test if point (i, j, k) is on line
[`, m, n], one tests the condition

i`+ jm+ kn≡ 0 (mod 2).

There are exactly 23 = 8 ordered triples of 0’s and 1’s, of which one is the all zero vector. Thus
the ordered triples pick out the correct number of points and lines. The following array gives the
incidence relation, and allows us to check that there are three points on every line and three lines
through every point.

In [1,0,0] [0,1,0] [0,0,1] [1,1,0] [1,0,1] [0,1,1] [1,1,1]

(1,0,0) 0 1 1 0 0 1 0
(0,1,0) 1 0 1 0 1 0 0
(0,0,1) 1 1 0 1 0 0 0
(1,1,0) 0 0 1 1 0 0 1
(1,0,1) 0 1 0 0 1 0 1
(0,1,1) 1 0 0 0 0 1 1
(1,1,1) 0 0 0 1 1 1 0

The vector space construction works over other finite fields as well. The next bigger example
is the projective geometry of order 3, PG(3). The points are the one dimensional subspaces of
the vector space of dimension 3 over the field of three elements, Z3 = {0,1,2}. This vector space
has 33 − 1 = 27 − 1 = 26 non-zero vectors. Each one dimensional subspace has two non-zero
elements, so there are 26/2 = 13 points in the geometry. As above, the lines are the orthogonal
or perpendicular complements of the subspaces that form the lines, so there are also 13 of them.
The test for incidence is similar to the one above, except that one must work (mod 3) rather than
(mod 2).

This construction works for each finite field. In each case the order of the projective geometry is
the size of the field.

The next few lemmas list a few facts about projective planes.

Lemma 2.4.2. In any model of PG(q), any two lines intersect in a point.

Lemma 2.4.3. In any model of PG(q) there are exactly q2 + q+ 1 points.

Lemma 2.4.4. In any model of PG(q) there are exactly q2 + q+ 1 lines.

For models built using the vector space construction over a field of q elements, it is easy to
compute the number of points and lines as q3−1

q−1
= q2 + q+ 1. However there are non-isomorphic

projective planes of the same order. For a long time four non-isomorphic planes of order nine were
known, each obtained by a variation on the above vector space construction. Recently it has been
shown with the help of a computer that there are exactly four non-isomorphic planes of order nine.

Since the order of a finite field is always a prime power, the models discussed so far all have
prime power order. Much work has gone into the search for models of non-prime power order. A
well-publicized result showed that there were no projective planes of order 10. This proof required
many hours of computer time.

2.5 Exercises

1. Translate Axioms (5)q and (6)q into the formal language.
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2. Label the three points of intersection of the lines in the illustration of Riemannian geometry
which form a triangle above the “equator”.

3. Define an isomorphism between the two models of PG(2).

4. Prove from the axioms that any two lines in PG(q) must intersect in a point. (Hint: Show
that if g and h do not intersect and P is incident with g, then P is on at least one more line
than h has points.)

5. Construct a model for PG(2) starting with four non-collinear points A, B, C and D and
denoting the additional point on the line AB by E, the additional point on the line AC by F ,
and the additional point on the line BC by G. Use the axioms and exercise 1.4 to justify the
construction.

6. Prove from the axioms that in any model of PG(q) there are exactly q2 + q+ 1 points.

7. Prove from the axioms that in any model of PG(q) there are exactly q2 + q+ 1 lines.

8. List the 13 one-dimensional subspaces ofZ3
3 by giving one generator of each. (Hint: Proceeding

lexicographically, four of them begin with “0” and the other nine begin with “1”.) These
are the points of PG(3). Identify the 13 two dimensional subspaces of Z3

3 as orthogonal
complements of these one-dimensional spaces. These are the lines of PG(3). For each line,
list the four points on the line.

9. Show that the axioms 1,2,3,4 for Plane Geometry are independent by constructing models
which satisfy exactly 3 of the axioms. (There are 4 possible cases here.)
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Chapter 3

Propositional Logic

3.1 The basic definitions

Propositional logic concerns relationships between sentences built up from primitive proposition
symbols with logical connectives.

The symbols of the language of predicate calculus are

1. Logical connectives: ¬, & , ∨,→,↔

2. Punctuation symbols: ( , )

3. Propositional variables: A0, A1, A2, . . . .

A propositional variable is intended to represent a proposition which can either be true or false.
Restricted versions, L , of the language of propositional logic can be constructed by specifying a
subset of the propositional variables. In this case, let PVar(L ) denote the propositional variables of
L .

Definition 3.1.1. The collection of sentences, denoted Sent(L ), of a propositional language L is
defined by recursion.

1. The basis of the set of sentences is the set PVar(L ) of propositional variables of L .

2. The set of sentences is closed under the following production rules:

(a) If A is a sentence, then so is (¬A).

(b) If A and B are sentences, then so is (A & B).

(c) If A and B are sentences, then so is (A∨ B).

(d) If A and B are sentences, then so is (A→ B).

(e) If A and B are sentences, then so is (A↔ B).

Notice that as long as L has at least one propositional variable, then Sent(L ) is infinite. When
there is no ambiguity, we will drop parentheses.

In order to use propositional logic, we would like to give meaning to the propositional variables.
Rather than assigning specific propositions to the propositional variables and then determining
their truth or falsity, we consider truth interpretations.

9



10 CHAPTER 3. PROPOSITIONAL LOGIC

Definition 3.1.2. A truth interpretation for a propositional language L is a function

I : PVar(L )→ {0, 1 } .

If I(Ai) = 0, then the propositional variable Ai is considered represent a false proposition under this
interpretation. On the other hand, if I(Ai) = 1, then the propositional variable Ai is considered to
represent a true proposition under this interpretation.

There is a unique way to extend the truth interpretation to all sentences of L so that the
interpretation of the logical connectives reflects how these connectives are normally understood by
mathematicians.

Definition 3.1.3. Define an extension of a truth interpretation I : PVar(L )→ {0, 1 } for a proposi-
tional language to the collection of all sentences of the language by recursion:

1. On the basis of the set of sentences, PVar(L ), the truth interpretation has already been
defined.

2. The definition is extended to satisfy the following closure rules:

(a) If I(A) is defined, then I(¬A) = 1− I(A).

(b) If I(A) and I(B) are defined, then I(A & B) = I(A) · I(B).
(c) If I(A) and I(B) are defined, then I(A∨ B) = max { I(A), I(B) }.
(d) If I(A) and I(B) are defined, then

I(A→ B) =

(

0 if I(A) = 1 and I(B) = 0,

1 otherwise.
(3.1)

(e) If I(A) and I(B) are defined, then I(A↔ B) = 1 if and only if I(A) = I(B).

Intuitively, tautologies are statements which are always true, and contradictions are ones which
are never true. These concepts can be defined precisely in terms of interpretations.

Definition 3.1.4. A sentence ϕ is a tautology for a propositional language L if every truth inter-
pretation I has value 1 on ϕ, I(ϕ) = 1. ϕ is a contradiction if every truth interpretation I has value
0 on ϕ, I(ϕ) = 0. Two sentences ϕ and ψ are logically equivalent, in symbols ϕ⇔ψ, if every truth
interpretation I takes the same value on both of them, I(ϕ) = I(ψ). A sentence ϕ is satisfiable if
there is some truth interpretation I with I(ϕ) = 1.

The notion of logical equivalence is an equivalence relation; that is, it is a reflexive, symmetric
and transitive relation. The equivalence classes given by logical equivalence are infinite for non-
trivial languages (i.e., those languages containing at least one propositional variable). However,
if the language has only finitely many propositional variables, then there are only finitely many
equivalence classes.

Notice that ifL has n propositional variables, then there are exactly d = 2n truth interpretations,
which we may list as I =

�

I0, I1, . . . , Id−1

	

. Since each Ii maps the truth values 0 or 1 to each of
the n propositional variables, we can think of each truth interpretation as a function from the set
{0, . . . , n− 1} to the set {0, 1}. The collection of such functions can be written as {0, 1}n, which can
also be interpreted as the collection of binary strings of length n.

Each sentenceϕ gives rise to a function T Fϕ : I → {0,1 } defined by T Fϕ(Ii) = Ii(ϕ). Informally,
T Fϕ lists the column underϕ in a truth table. Note that for any two sentencesϕ andψ, if T Fϕ = T Fψ
then ϕ and ψ are logically equivalent. Thus there are exactly 2d = 22n

many equivalence classes.

Lemma 3.1.5. The following pairs of sentences are logically equivalent as indicated by the metalogical
symbol⇔:
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1. ¬¬A ⇔ A.

2. ¬A∨¬B ⇔ ¬(A & B).

3. ¬A & ¬B ⇔ ¬(A∨ B).

4. A→ B ⇔ ¬A∨ B.

5. A↔ B ⇔ (A→ B) & (B→ A).

Proof. Each of these statements can be proved using a truth table, so from one example the reader
may do the others. Notice that truth tables give an algorithmic approach to questions of logical
equivalence.

A B (¬A) (¬B) ((¬A)∨ (¬B)) (A & B) (¬(A & B))

I0 0 0 1 1 1 0 1
I1 1 0 0 1 1 0 1
I2 0 1 1 0 1 0 1
I3 1 1 0 0 0 1 0

↑ ↑

Using the above equivalences, one could assume that ¬ and ∨ are primitive connectives, and
define the others in terms of them. The following list gives three pairs of connectives each of which
is sufficient to get all our basic list:

¬,∨
¬, &

¬,→

In logic, the word “theory” has a technical meaning, and refers to any set of statements, whether
meaningful or not.

Definition 3.1.6. A set Γ of sentences in a language L is satisfiable if there is some interpretation
I with I(ϕ) = 1 for all ϕ ∈ Γ . A set of sentences Γ logically implies a sentence ϕ, in symbols, Γ |= ϕ
if for every interpretation I , if I(ψ) = 1 for all ψ ∈ Γ , then I(ϕ) = 1. A (propositional) theory in a
language L is a set of sentences Γ ⊆ Sent(L ) which is closed under logical implication.

Notice that a theory as a set of sentences matches with the notion of the theory of plane geometry
as a set of axioms. In studying that theory, we developed several models. The interpretations play
the role here that models played in that discussion. Here is an example of the notion of logical
implication defined above.

Lemma 3.1.7. { (A & B), (¬C) } |= (A∨ B).

3.2 Disjunctive Normal Form Theorem

In this section we will show that the language of propositional calculus is sufficient to represent
every possible truth function.

Definition 3.2.1.

1. A literal is either a propositional variable Ai or its negation ¬Ai .

2. A conjunctive clause is a conjunction of literals and a disjunctive clause is a disjunction of
literals. We will assume in each case that each propositional variable occurs at most once.

3. A propositional sentence is in disjunctive normal form if it is a disjunction of conjunctive
clauses and it is in conjunctive normal form if it is a conjunction of disjunctive clauses.
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Lemma 3.2.2.

(i) For any conjunctive clause C = φ(A1, . . . , An), there is a unique interpretation IC : {A1, . . . , An} →
{0,1} such that IC(φ) = 1.

(ii) Conversely, for any interpretation I : {A1, . . . , An} → {0, 1}, there is a unique conjunctive clause
CI (up to permutation of literals) such that I(CI ) = 1 and for any interpretation J 6= I , J(CI ) = 0.

Proof. (i) Let

Bi =

�

Ai if C contains Ai as a conjunct

¬Ai if C contains ¬Ai as a conjunct
.

It follows that C = B1 & . . . & Bn. Now let IC(Ai) = 1 if and only if Ai = Bi . Then clearly I(Bi) = 1
for i = 1, 2, . . . , n and therefore IC(C) = 1. To show uniqueness, if J(C) = 1 for some interpretation
J , then φ(Bi) = 1 for each i and hence J = IC .

(ii) Let

Bi =

�

Ai if I(Ai) = 1

¬Ai if I(Ai) = 0
.

Let CI = B1 & . . . & Bn. As above I(CI) = 1 and J(CI) = 1 implies that J = I .
It follows as above that I is the unique interpretation under which CI is true. We claim that CI

is the unique conjunctive clause with this property. Suppose not. Then there is some conjunctive
clause C ′ such that I(C ′) = 1 and C ′ 6= CI . This implies that there is some literal Ai in C ′ and ¬Ai
in CI (or vice versa). But I(C ′) = 1 implies that I(Ai) = 1 and I(CI) = 1 implies that I(¬Ai) = 1,
which is clearly impossible. Thus CI is unique.

Here is the Disjunctive Normal Form Theorem.

Theorem 3.2.3. For any truth function F : {0,1}n → {0,1}, there is a sentence φ in disjunctive
normal form such that F = T Fφ .

Proof. Let I1, I2, . . . , Ik be the interpretations in {0,1}n such that F(Ii) = 1 for i = 1, . . . , k. For
each i, let Ci = CIi

be the conjunctive clauses guaranteed to hold by the previous lemma. Now let
φ = C1 ∨ C2 ∨ . . . ∨ Ck. Then for any interpretation I ,

T Fφ(I) = 1 if and only if I(φ) = 1 (by definition)

if and only if I(Ci) = 1 for some i = 1, . . . , k
if and only if I = Ii for some i (by the previous lemma)

if and only if F(I) = 1 (by the choice of I1, . . . , Ik)

Hence T Fφ = F as desired.

Example 3.2.4. Suppose that we want a formula φ(A1, A2, A3) such that I(φ) = 1 only for the
three interpretations (0, 1,0), (1, 1,0) and (1, 1,1). Then

φ = (¬A1 & A2 & ¬A3)∨ (A1 & A2 & ¬A3)∨ (A1 & A2 & A3).

It follows that the connectives ¬,&,∨ are sufficient to express all truth functions. By the
deMorgan laws (2,3 of Lemma 2.5) ¬,∨ are sufficient and ¬,∧ are also sufficient.

3.3 Proofs

One of the basic tasks that mathematicians do is proving theorems. This section develops the
Propositional Calculus, which is a system rules of inference for propositional languages. With it
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one formalizes the notion of proof. Then one can ask questions about what can be proved, what
cannot be proved, and how the notion of proof is related to the notion of interpretations.

The basic relation in the Propositional Calculus is the relation proves between a set, Γ of sentences
and a sentence B. A more long-winded paraphrase of the relation “Γ proves B” is “there is a proof
of B using what ever hypotheses are needed from Γ ”. This relation is denoted X ` Y , with the
following abbreviations for special cases:

Formal Version: Γ ` {B } {A} ` B ; ` B
Abbreviation: Γ ` B A` B ` B

Let ⊥ be a new symbol that we will add to our propositional language. The intended interpreta-
tion of ⊥ is ‘falsehood,’ akin to asserting a contradiction.

Definition 3.3.1. A formal proof or derivation of a propositional sentence φ from a collection of
propositional sentences Γ is a finite sequence of propositional sentences terminating in φ where
each sentence in the sequence is either in Γ or is obtained from sentences occurring earlier in the
sequence by means of one of the following rules.

1. (Given rule) Any B ∈ Γ may be derived from Γ in one step.

2. (&-Elimination) If (A & B) has been derived from Γ then either of A or B may be derived from
Γ in one further step.

3. (∨-Elimination) If (A∨ B) has been derived from Γ , under the further assumption of A we can
derive C from Γ , and under the further assumption of B we can derive C from Γ , then we can
derive C from Γ in one further step.

4. (→-Elimination) If (A→ B) and A have been derived from Γ , then B can be derived from Γ in
one further step.

5. (⊥-Elimination) If ⊥ has been deduced from Γ , then we can derive any sentence A from Γ in
one further step.

6. (¬-Elimination) If ¬¬A has been deduced from Γ , then we can derive A from Γ in one further
step.

7. (&-Introduction) If A and B have been derived from Γ , then (A & B) may be derived from Γ in
one further step.

8. (∨-Introduction) If A has been derived from Γ , then either of (A∨ B), (B ∨ A) may be derived
from Γ in one further step.

9. (→-Introduction) If under the assumption of A we can derive B from Γ , then we can derive
A→ B from Γ in one further step.

10. (⊥-Introduction) If (A & ¬A) has been deduced from Γ , then we can derive ⊥ from Γ in one
further step.

11. (¬-Introduction) If ⊥ has been deduced from Γ and A, then we can derive ¬A from Γ in one
further step.

The relation Γ ` A can now be defined to hold if there is a formal proof of A from Γ that uses
the rules given above. The symbol ` is sometimes called a (single) turnstile. Here is a more precise,
formal definition.
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Definition 3.3.2. The relation Γ ` B is the smallest subset of pairs (Γ , B) from P (Sent) × Sent
which contains every pair (Γ , B) such that B ∈ Γ and is closed under the above rules of deduction.

We now provide some examples of proofs.

Proposition 3.3.3. For any sentences A, B, C

1. ` A→ A

2. A→ B ` ¬B→¬A

3. {A→ B, B→ C} ` A→ C

4. A` A∨ B and A` B ∨ A

5. {A∨ B,¬A} ` B

6. A∨ A` A

7. A` ¬¬A

8. A∨ B ` B ∨ A and A & B ` B & A

9. (A∨ B)∨ C ` A∨ (B ∨ C) and A∨ (B ∨ C) ` (A∨ B)∨ C

10. (A & B) & C ` A & (B & C) and A & (B & C) ` (A & B) & C

11. A & (B ∨ C) ` (A & B)∨ (A & C) and (A & B)∨ (A & C) ` A & (B ∨ C

12. A∨ (B & C) ` (A∨ B) & (A∨ C) and (A∨ B) & (A∨ C) ` A∨ (B & C)

13. ¬(A & B) ` ¬A∨¬B and ¬A∨¬B ` ¬(A & B)

14. ¬(A∨ B) ` ¬A & ¬B and ¬A & ¬B ` ¬(A∨ B)

15. ¬A∨ B ` A→ B and A→ B ` ¬A∨ B

16. ` A∨¬A

We give brief sketches of some of these proofs to illustrate the various methods.

Proof.

1. ` A→ A

1 A Assumption

2 A Given

3 A→ A →-Introduction (1-2)
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3. {A→ B, B→ C} ` A→ C

1 A→ B Given

2 B→ C Given

3 A Assumption

4 B →-Elimination 1,3

5 C →-Elimination 2,4

6 A→ C →-Introduction 3-5

4. A` A∨ B and A` B ∨ A

1 A Given

2 A∨ B ∨-Introduction 1

1 A Given

2 B ∨ A ∨-Introduction 1

5. {A∨ B,¬A} ` B

1 A∨ B Given

2 ¬A Given

3 A Assumption

4 A & ¬A & -Introduction 2,3

5 ⊥ ⊥-Introduction 4

6 B ⊥-Elimination 5

7 B Assumption

8 B Given

9 B ∨-Elimination 1-8

6. A∨ A` A

1 A∨ A Given

2 A Assumption

3 A Given

4 A Assumption

5 A Given

6 A ∨-Elimination 1-5
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7. A` ¬¬A

1 A Given

2 ¬A Assumption

3 A & ¬A &-Introduction 1,2

4 ⊥ ⊥-Introduction 3

5 ¬¬A ¬-Introduction 1-4

8. A∨ B ` B ∨ A and A & B ` B & A

1 A∨ B Given

2 A Assumption

3 B ∨ A ∨-Introduction 2

4 B Assumption

5 B ∨ A ∨-Introduction 2

6 B ∨ A ∨-Elimination 1-5

1 A & B Given

2 A &-Elimination

3 B &-Elimination

4 B & A &-Introduction 2-3

10. (A & B) & C ` A & (B & C) and A & (B & C) ` (A & B) & C

1 (A & B) & C Given

2 A & B &-Elimination 1

3 A &-Elimination 2

4 B &-Elimination 2

5 C &-Elimination 1

6 B & C &-Introduction 4,5

7 A & (B & C) &-Introduction 3,6

13. ¬(A & B) ` ¬A∨¬B and ¬A∨¬B ` ¬(A & B)
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1 ¬(A & B) Given

2 A∨¬A Item 6

3 ¬A Assumption

4 ¬A∨¬B ∨-Introduction 4

5 A Assumption

6 B ∨¬B Item 6

7 ¬B Assumption

8 ¬A∨¬B ∨-Introduction 7

9 B Assumption

10 A & B & -Introduction 5,9

11 ⊥ ⊥-Introduction 1,10

12 ¬A∨¬B Item 5

13 ¬A∨¬B ∨-Elimination 6-12

14 ¬A∨¬B ∨-Elimination 2-13

1 ¬A∨¬B Given

2 A & B Assumption

3 A & -Elimination 2

4 ¬¬A Item 8, 3

5 ¬B Disjunctive Syllogism 1,4

6 B & -Elimination 2

7 ⊥ ⊥-Introduction 5,6

8 ¬(A & B) Proof by Contradiction 2-7

15. ¬A∨ B ` A→ B and A→ B ` ¬A∨ B

1 ¬A∨ B Given

2 A Assumption

3 ¬¬A Item 8, 2

4 B Item 5 1,3

5 A→ B →-Introduction 2-4
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1 A→ B Given

2 ¬(¬A∨ B) Assumption

3 ¬¬A & ¬B Item 14, 1

4 ¬¬A &-Introduction 3

5 A ¬-Elimination 4

6 B →-Elimination 1,5

7 ¬B &-Introduction 3

8 B & ¬B &-Introduction 6,7

9 ⊥ ⊥-Introduction 8

10 ¬A∨ B ⊥-Elimination 2-9

16. ` A∨¬A

1 ¬(A∨¬A) Assumption

2 ¬A & ¬¬A Item 14, 1

3 ⊥ ⊥-Introduction 3

4 ¬A∨ A ¬∨-Rule (1-2)

The following general properties about ` will be useful when we prove the soundness and
completeness theorems.

Lemma 3.3.4. For any sentences A and B, if Γ ` A and Γ ∪ {A} ` B, then Γ ` B.

Proof. Γ ∪ {A} ` B implies Γ ` A→ B by→-Introduction. Combining this latter fact with the fact
that Γ ` A yields Γ ` B by→-Elimination.

Lemma 3.3.5. If Γ ` B and Γ ⊆∆, then ∆ ` B.

Proof. This follows by induction on proof length. For the base case, if B follows from Γ on the basis
of the Given Rule, then it must be the case that B ∈ Γ . Since Γ ⊂∆ it follows that B ∈∆ and hence
∆ ` B by the Given Rule.

If the final step in the proof of B from Γ is made on the basis of any one of the rules, then we
may assume by the induction hypothesis that the other formulas used in these deductions follow
from ∆ (since they follow from Γ ). We will look at two cases and leave the rest to the reader.

Suppose that the last step comes by→-Elimination, where we have derived A→ B and A from Γ
earlier in the proof. Then we have Γ ` A→ B and Γ ` B. By the induction hypothesis, ∆ ` A and
∆ ` A→ B. Hence ∆ ` B by→-Elimation.

Suppose that the last step comes from &-Elimination, where we have derived A & B from Γ
earlier in the proof. Since Γ ` A & B, by inductive hypothesis it follows that ∆ ` A & B. Hence
∆ ` B by &-elimination.

Next we prove a version of the Compactness Theorem for our deduction system.

Theorem 3.3.6. If Γ ` B, then there is a finite set Γ0 ⊆ Γ such that Γ0 ` B.
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Proof. Again we argue by induction on proofs. For the base case, if B follows from Γ on the basis of
the Given Rule, then B ∈ Γ and we can let Γ0 = {B}.

If the final step in the proof of B from Γ is made on the basis of any one of the rules, then we
may assume by the induction hypothesis that the other formulas used in these deductions follow
from some finite Γ0 ⊆ Γ . We will look at two cases and leave the rest to the reader.

Suppose that the last step of the proof comes by ∨-Introduction, so that B is of the form C ∨ D.
Then, without loss of generality, we can assume that we derived C from Γ earlier in the proof.
Thus Γ ` C . By the induction hypothesis, there is a finite Γ0 ⊆ Γ such that Γ0 ` C . Hence by
∨-Introduction, Γ0 ` C ∨ D.

Suppose that the last step of the proof comes by ∨-Elimination. Then earlier in the proof

(i) we have derived some formula C ∨ D from Γ ,

(ii) under the assumption of C we have derived B from Γ , and

(iii) under the assumption of D we have derived B from Γ .

Thus, Γ ` C ∨ D, Γ ∪ {C} ` B, and Γ ∪ {D} ` B. Then by assumption, by the induction hypothesis,
there exist finite sets Γ0, Γ1, and Γ2 of Γ such that Γ0 ` C ∨ D, Γ1 ∪ {C} ` B and Γ2 ∪ {D} ` B. By
Lemma 3.3.5,

(i) Γ0 ∪ Γ1 ∪ Γ2 ` C ∨ D

(ii) Γ0 ∪ Γ1 ∪ Γ2 ∪ {C} ` B

(iii) Γ0 ∪ Γ1 ∪ Γ2 ∪ {D} ` B

Thus by ∨-Elimination, we have Γ0 ∪ Γ1 ∪ Γ2 ` B. Since Γ0 ∪ Γ1 ∪ Γ2 is finite and Γ0 ∪ Γ1 ∪ Γ2 ⊆ Γ , the
result follows.

3.4 The Soundness Theorem

We now determine the precise relationship between ` and |= for propositional logic. Our first major
theorem says that if one can prove something in A from a theory Γ , then Γ logically implies A.

Theorem 3.4.1 (Soundness Theorem). If Γ ` A, then Γ |= A.

Proof. The proof is by induction on the length of the deduction of A. We need to show that if there
is a proof of A from Γ , then for any interpretation I such that I(γ) = 1 for all γ ∈ Γ , I(A) = 1.

(Base Case): For a one-step deduction, we must have used the Given Rule, so that A∈ Γ . If the
truth interpretation I has I(γ) = 1 for all γ ∈ Γ , then of course I(A) = 1 since A∈ Γ .

(Induction): Assume the theorem holds for all shorter deductions. Now proceed by cases on
the other rules. We prove a few examples and leave the rest for the reader.

Suppose that the last step of the deduction is given by ∨-Introduction, so that A has the form
B ∨ C . Without loss of generality, suppose we have derived B from Γ earlier in the proof. Suppose
that I(γ) = 1 for all γ ∈ Γ . Since the proof of Γ ` B is shorter than the given deduction of B ∨ C , by
the inductive hypothesis, I(B) = 1. But then I(B ∨ C) = 1 since I is an interpretation.

Suppose that the last step of the deduction is given by &-Elimination. Suppose that I(γ) = 1
for all γ ∈ Γ . Without loss of generality A has been derived from a sentence of the form A & B,
which has been derived from Γ in a strictly shorter proof. Since Γ ` A & B, it follows by inductive
hypothesis that Γ |= A & B, and hence I(A & B) = 1. Since I is an interpretation, it follows that
I(A) = 1.

Suppose that the last step of the deduction is given by→-Introduction. Then A has the form
B→ C . It follows that under the assumption of B, we have derived C from Γ . Thus Γ ∪ {B} ` C in
a strictly shorter proof. Suppose that I(γ) = 1 for all γ ∈ Γ . We have two cases to consider.
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Case 1: If I(B) = 0, it follows that I(B→ C) = 1.

Case 2: If I(B) = 1, then since Γ ∪ {B} ` C ,

it follows that I(C) = 1. Then I(B→ C) = 1. In either case, the conclusion follows.

Now we know that anything we can prove is true. We next consider the contrapositive of the
Soundness Theorem.

Definition 3.4.2. A set Γ of sentences is consistent if there is some sentence A such that Γ 0 A;
otherwise Γ is inconsistent.

Lemma 3.4.3. Γ of sentences is inconsistent if and only if there is some sentence A such that Γ ` A
and Γ ` ¬A.

Proof. Suppose first that Γ is inconsistent. Then by definition, Γ ` φ for all formulas φ and hence
Γ ` A and Γ ` ¬A for every sentence A.

Next suppose that, for some A, Γ ` A and Γ ` ¬A. It follows by &-Introduction that Γ ` A & ¬A.
By ⊥-Introduction, Γ ` ⊥. Then by ⊥-Elimination, for each φ, Γ ` φ. Hence Γ is inconsistent.

Proposition 3.4.4. If Γ is satisfiable, then it is consistent.

Proof. Assume that Γ is satisfiable and let I be an interpretation such that I(γ) = 1 for all γ ∈ Γ .
Now suppose by way of contradiction that Γ is not consistent. Then there is some sentence A such
that Γ ` A and Γ ` ¬A. By the Soundness Theorem, Γ |= A and Γ |= ¬A. But then I(A) = 1 and
I(¬A) = 1 which is impossible since I is an interpretation. This contradiction demonstrates that Γ
is consistent.

In Section 3.5, we will prove the converse of the Soundness Theorem by showing that any
consistent theory is satisfiable.

3.5 The Completeness Theorem

Theorem 3.5.1. (The Completeness Theorem, Version I) If Γ |= A, then Γ ` A.

Theorem 3.5.2. (The Completeness Theorem, Version II) If Γ is consistent, then Γ is satisfiable.

We will show that Version II implies Version I and then prove Version II. First we give alternate
versions of the Compactness Theorem (Theorem 3.3.6).

Theorem 3.5.3. (Compactness Theorem, Version II). If every finite subset of ∆ is consistent, then ∆ is
consistent.

Proof. We show the contrapositive. Suppose that∆ is not consistent. Then, for some B,∆ ` B & ¬B.
It follows from Theorem 3.3.6 that ∆ has a finite subset ∆0 such that ∆0 ` B & ¬B. But then ∆0 is
not consistent.

Theorem 3.5.4. (Compactness Theorem, Version III). Suppose that

(i) ∆=
⋃

n∆n,

(ii) ∆n ⊆∆n+1 for every n, and

(iii) ∆n is consistent for each n.

Then ∆ is consistent.
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Proof. Again we show the contrapositive. Suppose that ∆ is not consistent. Then by Theorem 3.5.4,
∆ has a finite, inconsistent subset F = {δ1,δ2, . . . ,δk}. Since ∆ =

⋃

n∆n, there exists, for each
i ≤ k, some ni such that δi ∈∆i . Letting n=max{ni : i ≤ k}, it follows from the fact that the ∆ j ’s
are inconsistent that F ⊆∆n. But then ∆n is inconsistent.

Next we prove a useful lemma.

Lemma 3.5.5. For any Γ and A, Γ ` A if and only if Γ ∪ {¬A} is inconsistent.

Proof. Suppose first that Γ ` A. Then Γ ∪ {¬A} proves both A and ¬A and is therefore inconsistent.
Suppose next that Γ ∪ {¬A} is inconsistent. It follows from ¬-Introduction that Γ ` ¬¬A. Then

by ¬-Elimination, Γ ` A.

We are already in position to show that Version II of the Completeness Theorem implies Version
I. We show the contrapositive of the statement of Version 1; that is, we show Γ 6` A implies Γ 6|= A.
Suppose it is not the case that Γ ` A. Then by Lemma 3.5.5, Γ ∪ {¬A} is consistent. Thus by Version
II, Γ ∪ {¬A} is satisfiable. Then it is not the case that Γ |= A.

We establish a few more lemmas.

Lemma 3.5.6. If Γ is consistent, then for any A, either Γ ∪ {A} is consistent or Γ ∪ {¬A} is consistent.

Proof. Suppose that Γ ∪ {¬A} is inconsistent. Then by the previous lemma, Γ ` A. Then, for any B,
Γ ∪ {A} ` B if and only if Γ ` B. Since Γ is consistent, it follows that Γ ∪ {A} is also consistent.

Definition 3.5.7. A set∆ of sentences is maximally consistent if it is consistent and for any sentence
A, either A∈∆ or ¬A∈∆.

Lemma 3.5.8. Let ∆ be maximally consistent.

1. For any sentence A, ¬A∈∆ if and only if A /∈∆.

2. For any sentence A, if ∆ ` A, then A∈∆.

Proof. (1) If ¬A∈∆, then A /∈∆ since ∆ is consistent. If A /∈∆, then ¬A∈∆ since ∆ is maximally
consistent.

(2) Suppose that ∆ ` A and suppose by way of contradiction that A /∈ ∆. Then by part (1),
¬A∈∆. But this contradicts the consistency of ∆.

Proposition 3.5.9. Let ∆ be maximally consistent and define the function I : Sent→ {0, 1} as follows.
For each sentence B,

I(B) =

(

1 if B ∈∆;

0 if B 6∈∆.

Then I is a truth interpretation and I(B) = 1 for all B ∈∆.

Proof. We need to show that I preserves the four connectives: ¬, ∨, & , and→. We will show the
first three and leave the last an exercise.

(¬): It follows from the definition of I and Lemma 3.5.8 that I(¬A) = 1 if and only if ¬A∈∆ if
and only if A /∈∆ if and only if I(A) = 0.

(∨): Suppose that I(A∨ B) = 1. Then A∨ B ∈ ∆. We argue by cases. If A ∈ ∆, then clearly
max{I(A), I(B)} = 1. Now suppose that A /∈ ∆. Then by completeness, ¬A ∈ ∆. It follows from
Proposition 3.3.3(5) that ∆ ` B. Hence B ∈∆ by Lemma 3.5.8. Thus max{I(A), I(B)}= 1.

Next suppose that max{I(A), I(B)}= 1. Without loss of generality, I(A) = 1 and hence A∈∆.
Then ∆ ` A∨ B by ∨-Introduction, so that A∨ B ∈∆ by Lemma 3.5.8 and hence I(A∨ B) = 1.

(&): Suppose that I(A & B) = 1. Then A & B ∈∆. It follows from &-Elimination that ∆ ` A and
∆ ` B. Thus by Lemma 3.5.8, A∈∆ and B ∈∆. Thus I(A) = I(B) = 1.

Next suppose that I(A) = I(B) = 1. Then A∈∆ and B ∈∆. It follows from &-Introduction that
∆ ` A & B and hence A & B ∈∆. Therefore I(A & B) = 1.
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We now prove Version II of the Completeness Theorem.

Proof of Theorem 3.5.2. Let Γ be a consistent set of propositional sentences. Let A0, A1, . . . be an
enumeration of the set of sentences. We will define a sequence ∆0 ⊆∆1 ⊆ . . . and let ∆=

⋃

n∆n.
We will show that ∆ is a complete and consistent extension of Γ and then define an interpretation
I = I∆ to show that Γ is satisfiable.
∆0 = Γ and, for each n,

∆n+1 =

(

∆n ∪ {An}, if ∆n ∪ {An} is consistent

∆n ∪ {¬An}, otherwise.

It follows from the construction that, for each sentence An, either An ∈ ∆n+1 or ¬An ∈ ∆n+1.
Hence ∆ is complete. It remains to show that ∆ is consistent.

Claim 1: For each n, ∆n is consistent.

Proof of Claim 1: The proof is by induction. For the base case, we are given that∆0 = Γ is consistent.
For the induction step, suppose that ∆n is consistent. Then by Lemma 3.5.6, either ∆n ∪ {An} is
consistent, or ∆n ∪ {¬An} is consistent. In the first case, suppose that ∆n ∪ {An} is consistent. Then
∆n+1 = ∆n ∪ {An} and hence ∆n+1 is consistent. In the second case, suppose that ∆n ∪ {An} is
inconsistent. Then ∆n+1 =∆n ∪ {¬An} and hence ∆n+1 is consistent by Lemma 3.5.6.

Claim 2: ∆ is consistent.

Proof of Claim 2: This follows immediately from the Compactness Theorem Version III.

It now follows from Proposition 3.5.9 that there is a truth interpretation I such that I(δ) = 1
for all δ ∈∆. Since Γ ⊆∆, this proves that Γ is satisfiable.

We note the following consequence of the proof of the Completeness Theorem.

Theorem 3.5.10. Any consistent theory Γ has a maximally consistent extension.

3.6 Completeness, Consistency and Independence

For a given set of sentences Γ , we sometimes identify Γ with the theory Th(Γ ) = {B : Γ ` B}. Thus
we can alternatively define Γ to be consistent if there is no sentence B such that Γ ` B and Γ ` ¬B.
Moreover, let us say that Γ is complete if for every sentence B, either Γ ` B or Γ ` ¬B (Note that if
Γ is maximally consistent, it follows that Γ is complete, but the converse need not hold. We say
that a consistent set Γ is independent if Γ has no proper subset ∆ such that Th(∆) = Th(Γ ); this
means that Γ is minimal among the sets ∆ with Th(∆) = Th(Γ ).

For example, in the language L with three propositional variables A, B, C , the set {A, B, C} is
clearly independent and complete.

Lemma 3.6.1. Γ is independent if and only if, for every B ∈ Γ , it is not the case that Γ \ {B} ` B.

Proof. Left to the reader.

Lemma 3.6.2.

A set Γ of sentences is complete and consistent if and only if there is a unique interpretation I satisfied
by Γ .

Proof. Left to the reader.

We conclude this chapter with several examples.

Example 3.6.3. Let L = {A0, A1, . . . }.
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1. The set Γ0 = {A0, A0 & A1, A1 & A2, . . . } is complete but not independent.

• It is complete since Γ0 ` An for all n, which determines the unique truth interpretation I
where I(An) = 1 for all n.

• It is not independent since, for each n, (A0 & A1 · · · & An+1)→ (A0 & · · · & An).

2. The set Γ1 = {A0, A0→ A1, A1→ A2, . . . } is complete and independent.

• It is complete since Γ0 ` An for all n, which determines the unique truth interpretation I
where I(An) = 1 for all n.

• To show that Γ1 is independent, it suffice to show that, for each single formula An →
An+1, it is not the case that Γ1 \ {An → An+1} ` (An → An+1). This is witnessed by the
interpetation I where I(A j) = 1 if j ≤ n and I(A j) = 0 if j > n.

3. The set Γ2 = {A0 ∨ A1, A2 ∨ A3, A4 ∨ A5, . . . } is independent but not complete.

• It is not complete since there are many different interpretations satisfied by Γ2. In
particular, one interpretation could make An true if and only if n is odd, and another
could make An true if and only if n is even.

• It is independent since, for each n, we can satisfy every sentence of Γ2 except A2n ∨A2n+1
by the interpretation I where I(A j) = 0 exactly when j = 2n or j = 2n+ 1.

Exercises

1. Prove that (A→ B) and ((¬A)∨ B) are logically equivalent.

2. Construct a proof that { P, (¬P) } `Q.

3. Construct a proof that ((¬A) & (¬B)) ` (¬(A∨ B)).

4. Prove: ` ((¬(A∨ (¬A)))→ B).

5. Prove: ` (A & (¬A))→¬(A∨ (¬A)).

6. Show that the Lindenbaum Algebra satisfies the DeMorgan Laws.

7. Every function T F : {0, 1,2, 3 } → {0,1 } can be represented by means of an expression ϕ in
¬ and and to propositional variables A, B. Produce ϕ so that T Fϕ has the values listed in the
table below.

A B T Fϕ
I0 0 0 0
I1 1 0 1
I2 0 1 1
I3 1 1 0

8. Prove that for any Boolean algebra B = (B ,∨,∧, 0, 1) and any element g of B , the set
F =

�

b ∈B | b ∧ g = g
	

is a filter.
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9. Investigate the following sets of formulas for satisfiability. For those that are satisfiable, give
an interpretation which makes them all true. For those that are not satisfiable, show that a
contradiction of the form P & (¬P) can be derived from the set, by giving a proof.

(a) A→¬(B & C) (c) (A→ B) & (C → D)
(D ∨ E)→ G (B→ D) & (¬C → A)
G→¬(H ∨ I) (E→ G) & (G→¬D)
¬C & E & H ¬E→ E

(b) (A∨ B)→ (C & D) (d) ((A→ B) & C) & ((D→ B) & E)
(D ∨ E)→ G ((G→¬A) & H)→ I
A∨¬G ¬(¬C → E)

(e) The contract is fulfilled if and only if the house is completed in February. If
the house is completed in February, then we can move in March 1. If we
can’t move in March 1, then we must pay rent for March. If the contract
is not fulfilled, then we must pay rent for March. We will not pay rent for
March. (Use C , H, M , R for the various atomic propositions.)



Chapter 4

Predicate Logic

Propositional logic treats a basic part of the language of mathematics, building more complicated
sentences from simple with connectives. However it is inadequate as it stands to express the richness
of mathematics. Consider the axiom of the theory of Plane Geometry, PG, which expresses the
fact that any two points belong to a line. We wrote that statement formally with two one-place
predicates, Pt for points and Ln for lines, and one two-place predicate, In for incidence as follows:

(∀P,Q ∈ Pt)(∃` ∈ Ln)((PIn`) & (QIn`)).

This axiom includes predicates and quantifies certain elements. In order to test the truth of it,
one needs to know how to interpret the predicates Pt, Ln and In, and the individual elements P,
Q, `. Notice that these elements are “quantified” by the quantifiers to “for every” and “there is . . .
such that.” Predicate logic is an enrichment of propositional logic to include predicates, individuals
and quantifiers, and is widely accepted as the standard language of mathematics.

4.1 The Language of Predicate Logic

The symbols of the language of the predicate logic are

1. logical connectives, ¬, ∨, & ,→,↔;

2. the equality symbol =;

3. predicate letters Pi for each natural number i;

4. function symbols F j for each natural number j;

5. constant symbols ck for each natural number k;

6. individual variables v` for each natural number `;

7. quantifier symbols ∃ (the existential quantifier) and ∀ (the universal quantifer); and

8. punctuation symbols (, ).

A predicate letter is intended to represent a relation. Thus each predicate letter P is n-ary for
some n, which means that we write P(v1, . . . , vn). Similarly, a function symbol also is n-ary for some
n.

We make a few remarks on the quantifiers:

(a) (∃x)φ is read “there exists an x such that φ holds.”

(b) (∀x)φ is read “for all x , φ holds.”

25
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(c) (∀x)θ may be thought of as an abbreviation for (¬(∃x)(¬θ )).

Definition 4.1.1. A countable first-order language is obtained by specifying a subset of the predicate
letters, function symbols and constants.

One can also work with uncountable first-order languages, but aside from a few examples in
Chapter 4, we will primarily work with countable first-order languages. An example of a first-order
language is the language of arithmetic.

Example 4.1.2. The language of arithmetic is specified by {<,+,×, 0, 1 }. Here < is a 2-place
relation, + and × are 2-place functions and 0, 1 are constants. Equality is a special 2-place relation
that we will include in every language.

We now describe how first-order sentences are built up from a given language L .

Definition 4.1.3. The set of terms in a language L , denoted Term(L ), is recursively defined by

1. each variable and constant is a term; and

2. if t1, . . . , tn are terms and F is an n-place function symbol, then F(t1, . . . , tn) is a term.

A constant term is a term with no variables.

Definition 4.1.4. Let L be a first-order language. The collection of L -formulas is defined by
recursion. First, the set of atomic formulas, denoted Atom(L ), consists of formulas of one of the
following forms:

1. P(t1, . . . , tn) where P is an n-place predicate letter and t1, . . . , tn are terms; and

2. t1 = t2 where t1 and t2 are terms.

The set of L -formulas is closed under the following rules

3. If φ and θ are L -formulas, then (φ ∨ θ) is an L -formula. (Similarly, (φ & θ), (φ → θ),
(φ↔ θ ), are L -formulas.)

4. If φ is an L -formula, then (¬φ) is an L -formula.

5. If φ is an L -formula, then (∃v)φ is an L -formula (as is (∀v)φ).

An example of an atomic formula in the language of arithmetic

0+ x = 0.

An example of a more complicated formula in the language, of plane geometry is the statement
that every element either has a point incident with it or is incident with some line.

(∀v)(∃x)((xInv)∨ (vInx)).

A variable v that occurs in a formula φ becomes bound when it is placed in the scope of a
quantifier, that is, (∃v) is placed in front of φ, and otherwise v is free. The concept of being free
over-rides the concept of being bound in the sense that if a formula has both free and bound
occurrences of a variable v, then v occurs free in that formula. The formal definition of bound and
free variables is given by recursion.

Definition 4.1.5. A variable v is free in a formula φ if

1. φ is atomic;

2. φ is (ψ∨ θ ) and v is free in whichever one of ψ and θ in which it appears;

3. φ is (¬ψ) and v is free in ψ;
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4. φ is (∃y)ψ, v is free in ψ and y is not v.

Example 4.1.6.

1. In the atomic formula x + 5= 12, the variable x is free.

2. In the formula (∃x)(x + 5= 12), the variable x is bound.

3. In the formula (∃x)[(x ∈ ℜ+) & (|x − 5|= 10)], the variable x is bound.

We will refer to an L -formula with no free variables as an L -sentence.

4.2 Models and Interpretations

In propositional logic, we used truth tables and interpretations to consider the possible truth of
complex statements in terms of their simplest components. In predicate logic, to consider the
possible truth of complex statements that involve quantified variables, we need to introduce models
with universes from which we can select the possible values for the variables.

Definition 4.2.1. Suppose that L is a first-order language with

(i) predicate symbols P1, P2, . . . ,

(ii) function symbols F1, F2, . . . , and

(iii) constant symbols c1, c2, . . . .

Then an L -structure A consists of

(a) a nonempty set A (called the domain or universe of A),

(b) a relation PA
i on A corresponding to each predicate symbol Pi ,

(c) a function FA
i on A corresponding to each function symbol Fi , and

(d) a element cAi ∈ A corresponding to each constant symbol ci .

Each relation PA
i requires the same number of places as Pi , so that PA

i is a subset of Ar for some
fixed r ( called the arity of Ri .) In addition, each function FA

i requires the same number of places
as Fi , so that FA

i : Ar → A for some fixed r (called the arity of R j).

Definition 4.2.2. Given aL -structure A, an interpretation I into A is a function I from the variables
and constants of L into the universe A of A that respects the interpretations of the symbols in L .
In particular, we have

(i) for each constant symbol c j , I(c j) = cAj ,

(ii) for each function symbol Fi , if Fi has parity n and t1, . . . , tn are terms such that I(t1), I(t2), . . . I(tn)
have been defined, then

I(Fi(t1, . . . , tn)) = FA
i (I(t1), . . . , I(tn)).

For any interpretation I and any variable or constant x and for any element b of the universe,
let Ib/x be the interpretation defined by

Ib/x(z) =

(

b if z = x ,

I(z) otherwise.
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Definition 4.2.3. We define by recursion the relation that a structure A satisfies a formula φ via an
interpretation I into A, denoted n A |=I φ:

For atomic formulas, we have:

1. A |=I t = s if and only if I(t) = I(s);

2. A |=I Pi(t1, . . . , tn) if and only if PA
i (I(t1), . . . , I(tn)).

For formulas built up by the logical connectives we have:

3. A |=I (φ ∨ θ ) if and only if A |=I φ or A |=I θ ;

4. A |=I (φ & θ ) if and only if A |=I φ and A |=I θ ;

5. A |=I (φ→ θ ) if and only if A 6|=I φ or A |=I θ ;

6. A |=I (¬φ) if and only if A 6|=I φ.

For formulas built up with quantifiers:

7. A |=I (∃v)φ if and only if there is an a in A such that A |=Ia/x
φ;

8. A |=I (∀v)φ if and only if for every a in A, A |=Ia/x
φ.

If A |=I φ for every interpretation I , we will suppress the subscript I , and simply write A |= φ.
In this case we say that A is a model of φ.

Example 4.2.4. Let L (GT) be the language of group theory, which uses the symbols {+, 0 }. A
structure for this language is A= ({0,1, 2 } ,+ (mod 3), 0). Suppose we consider formulas of L (GT )
which only have variables among x1, x2, x3, x4. Define an interpretation I by I(x i)≡ i mod 3 and
I(0) = 0.

1. Claim: A 6|=I x1 + x2 = x4.
We check this claim by computation. Note that I(x1) = 1, I(x2) = 2, I(x1+ x2) = I(x1)+mod3
I(x2) = 1+mod3 2= 0. On the other hand, I(x4) = 1 6= 0, so A 6|=I x1 + x2 = x4.

2. Claim: A |= (∃x2)(x1 + x2 = x4)
Define J = I0/x2

. As above check that A |=J x1 + x2 = x4. Then by the definition of the
satisfaction of an existential formula, A |=I (∃x2)(x1 + x2 = x4).

Theorem 4.2.5. For every L -formula φ, for all interpretations I, J, if I and J agree on all the
variables free in φ, then A |=I φ if and only if A |=J φ.

Proof. Left to the reader.

Corollary 4.2.6. If φ is an L -sentence, then for all interpretations I and J, we have A |=I φ if and
only if A |=J φ.

Remark 4.2.7. Thus for L -sentences, we drop the subscript which indicates the interpretation of the
variables, and we say simply A models φ.

Definition 4.2.8. Let φ be an L -formula.

(i) φ is logically valid if A |=I φ for every L -structure A and every interpretation I into A.

(ii) φ is satisfiable if there is some L -structure A and some interpretation I into A such that
A |=I φ.

(iii) φ is contradictory if φ is not satisfiable.
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Definition 4.2.9. AL -theory Γ is a set ofL -sentences. AnL -structure A is a model of anL -theory
Γ if and only if A |= φ for all φ in Γ . In this case we also say that Γ is satisfiable.

Definition 4.2.10. For a set of L -formulas Γ and an L -formula φ, we write Γ |= φ and say “Γ
implies φ,” if for all L -structures A and for all L -interpretations I , if A |=I γ for all γ in Γ , then
A |=I φ.

Thus if Γ is an L -theory and φ an L -sentence, then Γ |= φ means every model of Γ is also a
model of φ.

The following definition will be useful to us in the next section.

Definition 4.2.11. Given a term t and an L -formula φ with free variable x , we write φ[t/x] to
indicate the result of substituting the term t for each free occurrence of x in φ.

Example 4.2.12. If φ is the formula (∃y)(y 6= x) is the formula, then φ[y/x] is the formula
(∃y)(y 6= y), which we expect never to be true.

4.3 The Deductive Calculus

The Predicate Calculus is a system of axioms and rules which permit us to derive the true statements
of predicate logic without the use of interpretations. The basic relation in the Predicate Calculus
is the relation proves between a set Γ of L formulas and an L -formula φ, which formalizes the
concept that Γ proves φ. This relation is denoted Γ ` φ. As a first step in defining this relation, we
give a list of additional rules of deduction, which extend the list we gave for propositional logic.

Some of our rules of the predicate calculus require that we exercise some care in how we
substitute variables into certain formulas. Let us say that φ[t/x] is a legal substitution of t for x in
φ if no free occurrence of x in φ occurs in the scope of a quantifier of any variable appearing in t.
For instance, if φ has the form (∀y)φ(x , y), where x is free, I cannot legally substitute y in for x ,
since then y would be bound by the universal quantifier.

10. (Equality rule) For any term t, the formula t = t may be derived from Γ is one step.

11. (Term Substitution) For any terms t1, t2, . . . , tn, s1, s2, . . . , sn, and any function symbol F , if
each of the sentences t1 = s1, t2 = s2, . . . , tn = sn have been derived from Γ , then we may
derive F(t1, t2, . . . , tn) = F(s1, s2, . . . , sn) from Γ in one additional step.

12. (Atomic Formula Substitution) For any terms t1, t2, . . . , tn, s1, s2, . . . , sn and any atomic formula
φ, if each of the sentences t1 = s1, t2 = s2, . . . , tn = sn, and φ(t1, t2, . . . , tn), have been derived
from Γ , then we may derive φ(s1, s2, . . . , sn) from Γ in one additional step.

13. (∀-Elimination) For any term t, if φ[t/x] is a legal substitution and (∀x)φ has been derived
from Γ , then we may derive φ[t/x] from Γ in one additional step.

14. (∃-Elimination) To show that Γ ∪ {(∃x)φ(x)} ` θ , it suffices to show Γ ∪ {φ(y)}, where y is
a new variable that does not appear free in any formula in Γ nor in θ .

15. (∀-Introduction) Suppose that y does not appear free in any formula in Γ , in any temporary
assumption, nor in (∀x)φ. If φ[y/x] has been derived from Γ , then we may derive (∀x)φ
from Γ in one additional step.
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16. (∃-Introduction) If φ[t/x] is a legal substitution and φ[t/x] has been derived from Γ , then
we may derive (∃x)φ from Γ in one additional step.

We remark on three of the latter four rules. First, the reason for the restriction on substitution
in ∀-Elimination is that we need to ensure that t does not contain any free variable that would be
become bound when we substitute t for x in φ. For example, consider the formula (∀x)(∃y)x < y
in the language of arithmetic. Let φ be the formula (∃y)x < y , in which x is free but y is bound.
Observe that if we substitute the term y for x in φ, the resulting formula is (∃y)y < y. Thus,
from (∀x)(∃y)x < y we can derive, for instance, (∃y)x < y or (∃y)c < y, but we cannot derive
(∃y)y < y .

Second, the idea behind ∃-Elimination is this: Suppose in the course of my proof I have derived
(∃x)φ(x). Informally, I would like to use the fact that φ holds of some x , but to do so, I need to
refer to this object. So I pick an unused variable, say a, and use this as a temporary name to stand
for the object satisfying φ. Thus, I can write down φ(a). Eventually in my proof, I will discard this
temporary name (usually by ∃-Introduction).

Third, in ∀-Introduction, if we think of the variable y as an arbitrary object, then when we
show that y satisfies φ, we can conclude that φ holds of every object. However, if y is free in a
premise in Γ or a temporary assumption, it is not arbitrary. For example, suppose we begin with the
statement (∃x)(∀z)(x + z = z) in the language of arithmetic and suppose we derive (∀z)(y + z = z)
by ∃-Elimination (where y is a temporary name). We are not allowed to apply ∀-Introduction here,
for otherwise we could conclude (∀x)(∀z)(x + z = z), an undesirable conclusion.

Definition 4.3.1. The relation Γ ` φ is the smallest subset of pairs (Γ ,φ) from P (Sent)×Sent that
contains every pair (Γ ,φ) such that φ ∈ Γ or φ is t = t for some term t, and which is closed under
the 15 rules of deduction.

As in Propositional Calculus, to demonstrate that Γ ` φ, we construct a proof. The next
proposition exhibits several proofs using the new axiom and rules of predicate logic.
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Proposition 4.3.2.

1. (∃x)(x = x).

2. (∀x)(∀y)[x = y → y = x].

3. (∀x)(∀y)(∀z)[(x = y & y = z)→ x = z].

4. ((∀x)θ (x))→ (∃x)θ (x).

5. ((∃x)(∀y)θ (x , y))→ (∀y)(∃x)θ (x , y).

6. (i) (∃x)[φ(x)∨ψ(x)] ` (∃x)φ(x)∨ (∃x)ψ(x)

(ii) (∃x)φ(x)∨ (∃x)ψ(x) ` (∃x)[φ(x)∨ψ(x)]

7. (i) (∀x)[φ(x) &ψ(x)] ` (∀x)φ(x) & (∀x)ψ(x)

(ii) (∀x)φ(x) & (∀x)ψ(x) ` (∀x)[φ(x)∨ψ(x)]

8. (∃x)[φ(x) &ψ(x)] ` (∃x)φ(x) & (∃x)ψ(x)

9. (∀x)φ(x)∨ (∀x)ψ(x) ` (∀x)[φ(x)∨ψ(x)]

10. (∀x)[φ(x)→ψ( f (x))]→ [(∃x)φ(x) → (∃x)ψ(x)].

Proof. 1. (∃x)(x = x)

1 x = x equality rule

2 (∃x) x = x ∃-Introduction 1

2. (∀x)(∀y)[x = y → y = x].

1 x = y temporary assumption

2 x = x equality rule

3 y = x term substitution 1,2

4 x = y → y = x →-Introduction 1-3

5 (∀y)(x = y → y = x) ∀-Introduction 4

6 (∀x)(∀y)(x = y → y = x) ∀-Introduction 5
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5. (∃x)(∀y)θ (x , y) ` (∀y)(∃x)θ (x , y).

1 (∃x)(∀y)θ (x , y) given rule

2 (∀y)θ (a, y) ∃-Elimination 1

3 θ (a, y) ∀-Elimination 2

4 (∃x)θ (x , y) ∃-Introduction 3

5 (∀y)(∃x)θ (x , y) ∀-Introduction 4

8. (∃x)[φ(x) &ψ(x)] ` (∃x)φ(x) & (∃x)ψ(x)

1 (∃x)[φ(x) &ψ(x)] given rule

2 φ(a) &ψ(a) ∃-Elimination 1

3 φ(a) &-Elimination 2

4 (∃x)φ(x) ∃-Introduction 3

5 ψ(a) &-Elimination 2

6 (∃x)ψ(x) ∃-Introduction 5

7 (∃x)φ(x) & (∃x)ψ(x) &-Introduction 4,6

9. (∀x)φ(x)∨ (∀x)ψ(x) ` (∀x)[φ(x)∨ψ(x)]

1 (∀x)φ(x)∨ (∀x)ψ(x) given rule

2 (∀x)φ(x) temporary assumption

3 φ(x) ∀-Elimination 2

4 φ(x)∨ψ(x) ∨-Introduction 3

5 (∀x)[φ(x)∨ψ(x)] ∀-Introduction 4

6 (∀x)ψ(x) temporary assumption

7 ψ(x) ∀-Elimination 6

8 φ(x)∨ψ(x) ∨-Introduction 7

9 (∀x)[φ(x)∨ψ(x)] ∀-Introduction 8

10 (∀x)[φ(x)∨ψ(x)] ∨-Elimination 1-9
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10. (∀x)[φ(x)→ψ( f (x))] ` (∃x)φ(x) → (∃x)ψ(x).

1 (∀x)[φ(x)→ψ( f (x))] given rule

2 (∃x)φ(x) temporary assumption

3 φ(a) ∃-Elimination 2

4 φ(a)→ψ( f (a)) ∀-Elimination 1

5 ψ( f (a)) →-Elimination 3,4

6 (∃x)ψ(x) ∃-Introduction 5

7 (∃x)φ(x) → (∃x)ψ(x) →-Introduction 2-6

4.4 Soundness Theorem for Predicate Logic

Our next goal is to proof the soundness theorem for predicate logic. First we will prove a lemma,
which connects satisfaction of formulas with substituted variables to satisfaction with slightly
modified interpretations of the original formulas.

Lemma 4.4.1. For every L -formula φ, every variable x, every term t, every structure B and every
interpretation I in B, if no free occurrence of x occurs in the scope of a quantifier over any variable
appearing in t, then

B |=I φ[t/x] if and only if B |=Ib/x
φ

where b = I(t).

Proof. Let B = (B, R1, . . . , f1, . . . , b1, . . . ) be an L -structure, and let x , t, and I be as above. We
claim that for any term r, if b = I(t), then I(r[t/x]) = Ib/x(r). We prove this claim by induction
on the term r.

• If r = a is a constant, then r[t/x] = a so that I(r[t/x]) = aB = Ib/x(r).

• If r is a variable y 6= x , then r[t/x] = y and Ib/x(y) = I(y), so that I(r[t/x]) = I(y) =
Ib/x(r).

• If r = x , then r[t/x] = t and Ib/x(x) = b, so that I(r[t/x]) = I(t) = b = Ib/x(r).

• Now assume the claim holds for terms r1, . . . , rn and let r = f (r1, . . . , rn) for some function
symbol f . Then by induction I(r j[t/x]) = Ib/x(r j) for j = 1,2, . . . , n. Then

r[t/x] = f (r1[t/x], . . . , rn[t/x])

so

Ib/x(r) = f B(Ib/x(r1), . . . , Ib/x(rn))

= f B(I(r1[t/x]), . . . , I(rn[t/x]))
= I( f (r1[t/x], . . . , rn[t/x])
= I(r[t/x]).

To prove the lemma, we proceed by induction on formulas.
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• For an atomic formula φ of the form s1 = s2, we have

B |=I φ[t/x]⇔B |=I s1[t/x] = s2[t/x]
⇔ I(s1[t/x]) = I(s2[t/x])
⇔ Ib/x(s1) = Ib/x(s2) (by the claim)

⇔B |=Ib/x
s1 = s2

⇔B |=Ib/x
φ.

• For an atomic formula φ of the form P(r1, . . . , rn), so that φ[t/x] is P(r1[t/x], . . . , rn[t/x]),
we have

B |=I φ[t/x]⇔B |=I P(r1[t/x], . . . , rn[t/x])

⇔ PB(I(r1[t/x]), . . . , I(rn[t/x]))

⇔ PB(Ib/x(r1), . . . , Ib/x(rn)) (by the claim)

⇔B |=Ib/x
P(r1, . . . , rn)

⇔B |=Ib/x
φ.

• The inductive step for L -formulas is straightforward except for formulas of the form ∀yφ:
Let ψ be ∀yφ, where the Lemma holds for the formula φ. Then

B |=I ψ[t/x]⇔B |=I ∀yφ[t/x]
⇔B |=Ia/y

φ[t/x] (for each a ∈ B)

⇔B |=(Ia/y )b/x
φ (by the inductive hypothesis)

⇔B |=(Ib/x )a/y
φ (for each a ∈ B)

⇔B |=Ib/x
∀yφ

⇔B |=Ib/x
ψ.

Theorem 4.4.2 (Soundness Theorem of Predicate Logic). If Γ ` φ, then Γ |= φ.

Proof. As in the proof of the soundness theorem for propositional logic, the proof is again by
induction on the length of the deduction of φ. We need to show that if there is a proof of φ from Γ ,
then for any structureA and any interpretation I intoA , ifA |=I γ for all γ ∈ Γ , thenA |=I φ.
The arguments for the rules from Propositional Logic carry over here, so we just need to verify the
result holds for the new rules.

Suppose the result holds for all formulas obtained in proofs of length strictly less than n lines.

• (Equality rule) Suppose the last line of a proof of length n with premises Γ is t = t for some
term t. SupposeA |=I Γ . Then since I(t) = I(t), we haveA |= t = t.

• (Term substitution) Suppose the last line of a proof of length n with premises Γ is F(s1, . . . , sn) =
F(t1, . . . , tn), obtained by term substitution. Then we must have established s1 = t1, . . . , sn =
tn earlier in the proof. By the inductive hypothesis, we must have Γ |= s1 = t1, . . .Γ |= sn = tn.
Suppose thatA |=I γ for every γ ∈ Γ . Then I(si) = I(t i) for i = 1, . . . n. So

I(F(s1, . . . , sn)) = FA (I(s1), . . . , I(sn))

= FA (I(t1), . . . , I(tn))
I(F(I(s1), . . . , I(sn))

HenceA |=I F(s1, . . . , sn) = F(t1, . . . , tn).
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• (Atomic formula substitution) The argument is similar to the previous one and is left to the
reader.

• (∀-Elimination) For any term t, if φ[t/x] is a legal substitution and (∀x)φ has been derived
from Γ , then we may derive φ[t/x] from Γ in one additional step.

Suppose that the last line of a proof of length n with premises Γ is φ[t/x], obtained by
∀-Elimination. Thus, we must have derived ∀xφ(x) earlier in the proof. Let A |=I γ for
every γ ∈ Γ . Then by the inductive hypothesis, we have Γ |= ∀xφ(x), which implies that
A |=Ia/x

φ(x) for every a ∈ A. If I(t) = b, then sinceA |=Ib/x
φ(x), by Lemma 4.4.1 we have

A |=I φ[t/x]. SinceA and I were arbitrary, we can conclude that Γ |= φ[t/x].

• (∃-Elimination) To show that Γ ∪ {(∃x)φ(x)} ` θ , it suffices to show Γ ∪ {φ[y/x]} ` θ , where
y is a new variable that does not appear free in any formula in Γ nor in θ .

Suppose that the last line of a proof of length n with premises Γ is given by ∃-Elimination.
Then Γ ` (∃x)φ(x) in less than n lines and Γ ∪{φ[y/x]} ` θ in less than n lines. LetA |=I γ
for every γ ∈ Γ . Then by the inductive hypothesis, we have Γ |= (∃x)φ(x), which implies that
A |=Ib/x

φ(x) for some b ∈ A. Let J = Ib/y , so that J(y) = b. It follows thatA |=Jb/x
φ(x),

since I = J except on possibly y and y does not appear free in φ. Then by Lemma 4.4.1,
A |=J φ[y/x], and henceA |=J θ . It follows thatA |=I θ , since I = J except on possibly
y and y does not appear free in θ . Since A and I were arbitrary, we can conclude that
Γ ∪ (∃x)φ(x) |= θ .

• (∀-Introduction) Suppose that y does not appear free in any formula in Γ , in any temporary
assumption, nor in (∀x)φ. If φ[y/x] has been derived from Γ , then we may derive (∀x)φ from
Γ in one additional step.

Suppose that the last line of a proof of length n with premises Γ is (∀x)φ(x), obtained by
∀-Introduction. Thus, we must have derived φ[y/x] from Γ earlier in the proof (where y
satisfies the necessary conditions described above). Let A |=I γ for every γ ∈ Γ . Since y
does not appear free in Γ , then for any a ∈ A,A |=Ia/y

Γ . For an arbitrary a ∈ A, let J = Ia/y ,
so that J(y) = a. By the inductive hypothesis, we have Γ |= φ[y/x], which implies that
A |=J φ[y/x]. Then by Lemma 4.4.1, A |=Ja/x

φ. Since Ia/x = Ja/x except on possibly y,
which does not appear free in φ, we have A |=Ia/x

φ. As a was arbitrary, we have shown
A |=Ia/x

φ for every a ∈ A. Hence A |=I (∀x)φ(x). Since A and I were arbitrary, we can
conclude that Γ |= (∀x)φ(x).

• (∃-Introduction) If φ[t/x] is a legal substitution and φ[t/x] has been derived from Γ , then we
may derive (∃x)φ from Γ in one additional step.

Suppose that the last line of a proof of length n with premises Γ is (∃x)φ(x), obtained by
∃-Introduction. Thus, we must have derived φ[t/x] from Γ earlier in the proof, where t is
some term. LetA |=I γ for every γ ∈ Γ . Then I(t) = a for some a ∈ A. Since Γ ` φ[t/x] in
less than n lines, by the inductive hypothesis, it follows thatA |=I φ[t/x]. Then by Lemma
4.4.1,A |=Ia/x

φ, which implies thatA |=I (∃x)φ(x). SinceA and I were arbitrary, we can
conclude that Γ |= (∃x)φ(x).
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Chapter 5

Models for Predicate Logic

5.1 Models

In this chapter, we will prove the completeness theorem for predicate logic by showing how to
build a model for a consistent first-order theory. We will also discuss several consequences of the
compactness theorem for first-order logic and consider several relations that hold between various
models of a given first-order theory, namely isomorphism and elementary equivalence.

5.2 The Completeness Theorem for Predicate Logic

Fix a first-order theory L . For convenience, we will assume that our L -formulas are built up only
using ¬,∨, and ∃. We will also make use of the following key facts (the proofs of which we will
omit):

1. If A is a tautology in propositional logic, then if we replace each instance of each propositional
variable in A with an L -formula, the resulting L -formula is true in all L -structures.

2. For any L -structureA and any interpretation I intoA ,

A |=I (∀x)φ⇔A |=I ¬(∃x)(¬φ).

We will also use the following analogues of results we proved in Chapter 2, the proofs of which
are the same:

Lemma 5.2.1. Let Γ be an L -theory.

1. If Γ is not consistent, then Γ ` φ for every L -sentence φ.

2. For an L -sentence φ, Γ ` φ if and only if Γ ∪ {¬φ} is inconsistent.

3. If Γ is consistent, then for anyL -sentence φ, either Γ ∪{φ} is consistent or Γ ∪{¬φ} is consistent.

The following result, known as the Constants Theorem, plays an important role in the proof of
the completeness theorem.

Theorem 5.2.2 (Constants Theorem). Let Γ be an L -theory. If Γ ` φ(c) and c does not appear in Γ ,
then Γ ` (∀x)φ(x).

Proof. Given a proof of φ(c) from Γ , let v be a variable not appearing in Γ . If we replace every
instance of c with v in the proof of φ(c), we have a proof of φ(v) from Γ . Then by ∀-Introduction,
we have Γ ` (∀x)φ(x).

Gödel’s completeness theorem can be articulated in two ways, which we will prove are equivalent:

37
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Theorem 5.2.3 (Completeness theorem, Version 1). For any L -theory Γ and any L -sentence φ,

Γ |= φ⇒ Γ ` φ.

Theorem 5.2.4 (Completeness theorem, Version 2). Every consistent theory has a model.

We claim that the two versions are equivalent.

Proof of claim. First, suppose that every consistent theory has a model, and suppose further that
Γ |= φ. If Γ is not consistent, then Γ proves every sentence, and hence Γ ` φ. If, however, Γ is
consistent, we have two cases to consider. If Γ ∪ {¬φ} is inconsistent, then by Lemma 5.2.1(2), it
follows that Γ ` φ. In the case that Γ ∪{¬φ} is consistent, by the second version of the completeness
theorem, there is some L -structureA such thatA |= Γ ∪{¬φ}, from which it follows thatA |= Γ
andA |= ¬φ. But we have assumed that Γ |= φ, and henceA |= φ, which is impossible. Thus, if
Γ is consistent, it follows that Γ ∪ {¬φ} is inconsistent.

For the other direction, suppose the first version of the completeness theorem holds and let
Γ be an arbitrary L -theory. Suppose Γ has no model. Then vacuously, Γ |= ¬(φ ∨ ¬φ), where
φ is the sentence (∀x)x = x . It follows from the first version of the completeness theorem that
Γ ` ¬(φ ∨¬φ), and hence Γ is inconsistent.

We now turn to the proof of the second version of the completeness theorem. As in the proof
of the completeness theorem for propositional logic, we will use the compactness theorem, which
comes in several forms (just as it did in with propositional logic).

Theorem 5.2.5. Let Γ be an L -theory.

1. For an L -sentence φ, if Γ ` φ, there is some finite Γ0 ⊆ Γ , Γ0 ` φ.

2. If every finite Γ0 ⊆ Γ is consistent, then Γ is consistent.

3. If Γ = ∪nΓn is , Γn ⊆ Γn+1 for every n, and each Γn is consistent, then Γ is consistent.

As in the case of propositional logic, (1) follows by induction on proof length, while (2) follows
directly from (1) and (3) follows directly from (2).

Our strategy for proving the completeness theorem is as follows. Given Γ , we want to extend it
to a maximally consistent collection of L -formulas, like the proof of the completeness theorem for
propositional logic. The problem that we now encounter (that did not occur in the propositional
case) is that it is unclear how to make sentences of the form (∃x)θ .

The solution to this problem, due to Henkin, is to extend the language L to a language L ′ by
adding new constants c0, c1, c2, . . . , which we will use to witness the truth of existential sentences.

Hereafter, let us assume that L is countably infinite (which is not a necessary restriction), so
that we will only need to add countably many new constants to our language. Using these constants,
we will build a model of Γ , where the universe of our model consists of certain equivalence classes
on the set of all L ′ -terms with no variables (the so-called Herbrand universe of L ′ ). The model
will satisfy a collection ∆ ⊇ Γ that is maximally consistent and Henkin complete, which means that
for each L ′ -formula θ (v) with exactly one free variable v, if (∃v)θ (v) is in ∆, then there is some
constant c in our language such that θ (c) is in ∆.

Proof of Theorem 5.2.4. Let φ0,φ1, . . . be an enumeration of all L ′ -sentences. We define a se-
quence Γ =∆−1 ⊆∆0 ⊆∆1 ⊆ . . . such that for each n ∈ N,

∆2n =

(

∆2n−1 ∪ {φn} if ∆2n−1 ∪ {φn} is consistent,

∆2n−1 ∪ {¬φn} otherwise

and

∆2n+1 =

(

∆2n ∪ {θ (cm)} if φn is of the form (∃v)θ (v) and is in ∆2n,

∆2n otherwise
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where cm is the first constant in our list of new constants that has not appeared in ∆2n. Then we
define ∆= ∪n∆n.

We now prove a series of claims.
Claim 1: ∆ is complete (that is, for every L ′ -sentence φ, either φ ∈∆ or ¬φ ∈∆).

Proof of Claim 1: This follows immediately from the construction.

Claim 2: Each ∆k is consistent.

Proof of Claim 2: We prove this claim by induction. First, ∆−1 = Γ is consistent by assumption.
Now suppose that ∆k is consistent. If k = 2n for some n, then clearly ∆k is consistent, since if
∆2n−1 ∪ {φn} is consistent, then we set ∆k = ∆2n−1 ∪ {φn}, and if not, then by Lemma 5.2.1(3),
∆2n−1 ∪ {¬φn} is consistent, and so we set ∆k =∆2n−1 ∪ {¬φn}.

If k = 2n+1 for some n, then if φn is not of the form (∃v)θ (v) or if it is but it is not in∆2n, then
∆2n+1 =∆2n is consistent by induction. If φn is of the form (∃v)θ (v) and is in ∆2n, then let c = cm
be the first constant not appearing in∆2n. Suppose that∆k =∆2k+1 =∆2n∪{θ (c)} is not consistent.
Then by Lemma 5.2.1(2), ∆2n ` ¬θ(c). Then by the Constants Theorem, ∆2n ` (∀x)¬θ(x). But
since φn is the formula (∃v)θ (v) and is in ∆2n, it follows that ∆2n is inconsistent, contradicting our
inductive hypothesis. Thus ∆k =∆2n+1 is consistent.

Claim 3: ∆= ∪n∆n is consistent.

Proof of Claim 3: This follows from the third version of the compactness theorem.

Claim 4: ∆ is Henkin complete (that is, for each L ′ -formula θ(v) with exactly one free variable
and (∃v)θ (v) ∈∆, then θ (c) ∈∆ for some constant c).

Proof of Claim 4: Suppose that (∃v)θ (v) ∈∆. Then there is some n such that (∃v)θ (v) is the formula
φn. Since ∆2n−1 ∪ {φn} ⊆∆ is consistent, (∃v)θ (v) ∈∆2n. Then by construction, θ (c) ∈∆2n+1 for
some constant c.

Our final task is to build a modelA such thatA |=∆, from which it will follow thatA |= Γ
(since Γ ⊆∆). We define an equivalence relation on the Herbrand universe of L ′ (i.e., the set of
constant L ′ -terms, or equivalently, the L ′ -terms that contain no variables). For constant terms s
and t, we define

s ∼ t⇔ s = t ∈∆.

Claim 5: ∼ is an equivalence relation.

Proof of Claim 5:

• Every sentence of the form t = t must be in ∆ since ∆ is complete, so ∼ is reflexive.

• If s = t ∈∆, then t = s must also be in ∆ since ∆ is complete, so ∼ is symmetric.

• If r = s, s = t ∈∆, then r = t must also be in ∆ since ∆ is complete, so ∼ is transitive.

For a constant term s, let [s] denote the equivalence class of s. Then we define an L ′ -structure
as follows:

(i) A= {[t] : t is a constant term of L ′};

(ii) for each function symbol f of the language L , we define

f A ([t1], . . . , [tn]) = [ f (t1, . . . , tn)],

where n is the arity of f ;
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(iii) for each predicate symbol P of the language L , we define

PA ([t1], . . . , [tn]) if and only if P(t1, . . . , tn) ∈∆,

where n is the arity of P; and

(iv) for each constant symbol c of the language L ′ , we define

cA = [c].

Claim 6: A = (A, f , . . . , P, . . . , c, . . . ) is well-defined.

Proof of Claim 6: We have to show in particular that the interpretation of function symbols and
predicate symbols inA is well-defined. Suppose that s1 = t1, . . . , sn = tn ∈∆ and

f A ([t1], . . . , [tn]) = [ f (t1, . . . , tn)]. (5.1)

By our first assumption, it follows that ∆ ` si = t i for i = 1, . . . , n. Then by term substitution,
∆ ` f (s1, . . . , sn) = f (t1, . . . , tn), and so f (s1, . . . , sn) = f (t1, . . . , tn) ∈∆. It follows that

[ f (s1, . . . , sn)].= [ f (t1, . . . , tn)]. (5.2)

Combining (7.1) and (5.2) yields

f A ([t1], . . . , [tn]) = [ f (t1, . . . , tn)] = [ f (s1, . . . , sn)] = f A ([s1], . . . , [sn]).

A similar argument shows that the interpretation of predicate symbols is well-defined.

Claim 7: Let I be an interpretation intoA . Then I(t) = [t] for every constant term t.

Proof of Claim 7: We verify this inductively for constant symbols and then for function symbols
applied to constant terms.

• Suppose t is a constant symbol c. Then I(c) = cA = [c].

• Suppose that t is the term f (t1, . . . , tn) for constant symbol f and constant terms t1, . . . , tn,
where I(t i) = [t i] for i = 1, . . . , n. Then

I( f (t1, . . . , tn)) = f A (I(t1), . . . , I(tn)) = f A ([t1], . . . , [tn]) = [ f (t1, . . . , tn))].

Claim 8: A |=∆. We verify this by proving that for every interpretation I intoA and every L ′
-sentence φ,A |=I φ if and only if φ ∈∆.

• If φ is s = t for some terms s, t, then

A |=I s = t⇔ I(s) = I(t)
⇔ [s] = [t]
⇔ s ∼ t
⇔ s = t ∈∆.

• If φ is P(t1, . . . , tn) for some predicate symbol P, then

A |=I P(t1, . . . , tn)⇔ PA (I(t1), . . . , I(tn))

⇔ PA ([t1], . . . , [tn])
⇔ P(t1, . . . , tn) ∈∆.
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• If φ is ¬ψ for some L ′ -sentence ψ, then

A |=I ¬ψ⇔A 6|=ψ
⇔ψ /∈∆
⇔¬ψ ∈∆.

• If φ is ψ∨ θ for some L ′ -sentences ψ and θ , then

A |=I ψ∨ θ⇔A |=ψ orA |= θ
⇔ψ ∈∆ or θ ∈∆
⇔ψ∨ θ ∈∆.

• If φ is (∃v)θ (v) for some L ′ -formula θ with one free variable v, then

A |=I (∃v)θ (v)⇔A |=Ib/v
θ (v) for some b ∈ A

⇔A |=I θ (c) where b = [c]
⇔ θ (c) ∈∆
⇔ (∃v)θ (v) ∈∆.

Since A |= ∆, it follows that A |= Γ . Note that A is an L ′ -structure while Γ is only an L
-theory (as it does not contain any expression involving any of the additional constants). Then let
A ∗ be the L -structure with the same universe asA and the same interpretations of the function
symbols and predicate symbols, but without interpreting the constants symbols that are in L ′ \L
(the so-called reduct ofA ). Then clearlyA ∗ |= Γ , and the proof is complete.

5.3 Consequences of the completeness theorem

The same consequences we derived from the Soundness and Completeness Theorem for Propositional
Logic apply now to Predicate Logic with basically the same proofs.

Theorem 5.3.1. For any set of sentences Γ , Γ is satisfiable if and only if Γ is consistent.

Theorem 5.3.2. If Σ is a consistent theory, then Σ is included in some complete, consistent theory.

We also have an additional version of the compactness theorem, which is the most common
formulation of compactness.

Theorem 5.3.3 (Compactness Theorem for Predicate Logic).
An L -theory Γ is satisfiable if and only if every finite subset of Γ is satisfiable.

Proof. (⇒) IfA |= Γ , then it immediately follows thatA |= Γ0 for any finite Γ0 ⊆ Γ .

(⇐) Suppose that Γ is not satisfiable. By the completeness theorem, Γ is not consistent. Then
Γ ` φ & ¬φ for some L -sentence φ. Then by the first formulation of the compactness theorem
there is some finite Γ0 ⊆ Γ such that Γ0 ` φ & ¬φ. It follows that Γ0 is not satisfiable.

We now consider two applications of the compactness theorem, the first yielding a model of
arithmetic with infinite natural numbers and the second yielding a model of the real numbers with
infinitesimals.
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Example 5.3.4. Let Ł= {+,×,<, 0, 1} be the language of arithmetic, and let Γ = Th(N), the set of
L -sentences true in the standard model of arithmetic. Let us expand L to L ′ by adding a new
constant c to our language. We extend Γ to an L ′ -theory Γ ′ by adding all sentences of the form

ψn : c > 1+ . . .+ 1
︸ ︷︷ ︸

n times

We claim that every finite Γ ′0 ⊆ Γ
′ is satisfiable. Given any finite Γ ′0 ⊆ Γ

′, Γ ′0 consists of at most
finitely many sentences from Γ and at most finitely many sentences of the form ψi . It follows that

Γ ′0 ⊆ Γ ∪ {ψn1
,ψn2

, . . . ,ψnk
}

for some n1, n2, . . . , nk ∈ N, where these latter sentences assert that c is larger than each of the
values n1, n2, . . . , nk. Let n=max{n1, . . . , nk} then letA = (N,+,×,<, 0, 1, n), so that cA = n and
henceA |= Γ ′0. Then by the compactness theorem, there is someL ′ -structureB such thatB |= Γ ′.
In the universe ofB , we have objects that behave exactly like 0, 1, 2, 3, . . . (in a sense we will make
precise shortly), but the interpretation of c inB satisfies cB > n for every n ∈ N and hence behaves
like an infinite natural number. We will write the universe ofB as N∗.

Example 5.3.5. Let L consist of

• an n-ary function symbol F f for every f : Rn→ R;

• an n-ary predicate symbol PA for every A⊆ Rn; and

• a constant symbol cr for every r ∈ R.

Let R be the L -structure with universe R satisfying

• FR
f = f for every function symbol F f ;

• PR
A = A for every predicate symbol PA; and

• cRr = r for every constant symbol cr .

Let us expand L to L ′ by adding a new constant d to our language. We extend Γ to an L ′ -theory
Γ ′ by adding all sentences of the form

θr : c0 < d < cr

for r ∈ R>0. As in the previous example, every finite Γ ′0 ⊆ Γ
′ is satisfiable. Hence by the compactness

theorem, Γ ′ is satisfiable. Let A |= Γ . The universe of A contains a copy of R (in a sense we
will make precise shortly). In addition, dA is infinitesimal object. For every real number in A ,
0< dA < r holds. We will write the universe ofA as R∗.

Now we consider a question that was not appropriate to consider in the context of propositional
logic, namely, what are the sizes of models of a given theory? Our main theorem is a consequence
of the proof of the Completeness Theorem. We proved the Completeness Theorem only in the case
of a countable language L, and we built a countable model (which was possibly finite). By using a
little care (and some set theory), one can modify steps (1) and (2) for an uncountable language to
define by transfinite recursion a theory ∆ and prove by transfinite induction that ∆ has the desired
properties. The construction leads to a model whose size is at most the size of the language with
which one started. Thus we have:

Theorem 5.3.6 (Löwenheim-Skolem Theorem). If Γ is an L -theory with an infinite model, then Γ
has a model of size κ for every infinite κ with |Ł| ≤ κ.
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Proof Sketch. First we add κ new constant symbols 〈dα | α < κ〉 to our language L . Next we
expand Γ to Γ ′ by adding formulas that say dα 6= dβ for the different constants:

Γ ′ = Γ ∪
�

¬dα = dβ : α < β < κ
	

.

Since Γ has an infinite model, each finite Γ ′0 ⊆ Γ
′ has a model. Hence by the compactness

theorem, Γ ′ has a model. By the soundness theorem, Γ ′ is consistent. Then use the proof of the
completeness theorem to define a model B ′ of Γ ′ the universe of which has size |B| ≤ κ. Since
B ′ |= dα 6= dβ for α 6= β , there are at least κ many elements. Thus |B|= κ and so Γ ′ has a model
B ′ of the desired cardinality. LetB be the reduct ofB ′ obtained by removing the new constant
symbols from our expanded language. ThenB is a model of the desired size for Γ .

5.4 Isomorphism and elementary equivalence

We conclude this chapter with a discussion of isomorphic models and the notion of elementary
equivalence.

Definition 5.4.1. Given L -structuresA andB , a bijection H :A →B is an isomorphism if it
satisfies:

1. For every constant c ∈ Ł, H(cA ) = cB .

2. For every k-ary predicate symbol P ∈ Ł and every a1, . . . , ak ∈ A,

PA (a1, . . . , ak)⇔ PB(H(a1), . . . , H(ak)).

3. For every k-ary function symbol F ∈ Ł and every a1, . . . , ak ∈ A,

H(FA (a1, . . . , ak)) = FB(H(a1), . . . , H(ak)).

Furthermore,A andB are isomorphic, denotedA ∼=B , if there exists an isomorphism between
A andB .

Example 5.4.2. The ordered group (R,+,<) of real numbers under addition is isomorphic to
the ordered group (R>0, ·,<) of positive real numbers under multiplication under the mapping
H(x) = 2x . The key observation here is that H(x + y) = 2x+y = 2x · 2y = H(x) ·H(y).

We compare the relation of isomorphism with the following relation between models.

Definition 5.4.3. L -structuresA andB are elementarily equivalent, denotedA ≡B , if for any
L -sentence φ,

A |= φ⇔B |= φ.

How do the relations of ∼= and ≡ compare? First, we have the following theorem.

Theorem 5.4.4. IfA andB are L -structures satisfyingA ∼=B , thenA ≡B .

The proof is by induction on the complexity of L -sentences. The converse of this theorem does
not hold, as shown by the following example.

Example 5.4.5. (Q,≤) and (R,≤), both models of the theory of dense linear orders without
endpoints, are elementarily equivalent, which follows from the fact that the theory of dense linear
orders without endpoints is complete (which we will prove in Chapter 6). Note, however, that these
structures are not isomorphic, since they have different cardinalities.

We conclude this chapter with one last set of definitions and examples.

Definition 5.4.6. LetA andB be L -structures with corresponding domains A⊆ B.
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1. A is a submodel ofB (A ⊆B) if the following are satisfied:

(a) for each constant c ∈ Ł, cA = cB ;

(b) for each n-ary function symbol f ∈ Ł and each a1, . . . , an ∈ A,

f A (a1, . . . , an) = f B(a1, . . . , an);

(c) for each n-ary relation symbol R ∈ Ł and each a1, . . . , an ∈ A,

RA (a1, . . . , an)⇔ RB(a1, . . . , an).

2. A is an elementary submodel ofB (writtenA B) if

(a) A is a submodel ofB;

(b) for each L -formula φ(x1, . . . , xn) and each a1, . . . , an ∈ A,

A |= φ(a1, . . . , an)⇔B |= φ(a1, . . . , an).

Example 5.4.7. Consider the rings (Z, 0, 1,+, ·) ⊆ (Q, 0, 1,+, ·) ⊆ (R, 0, 1,+, ·).

• (Z, 0, 1,+, ·) is a submodel of (Q, 0, 1,+, ·) and (Q, 0, 1,+, ·) is a submodel of (R, 0, 1,+, ·).

• (Z, 0, 1,+, ·) is not an elementary submodel of (Q, 0, 1,+, ·), since Q |= (∃x)x + x = 1 which
is false in Z.

• Neither (Z, 0, 1,+, ·) nor (Q, 0, 1,+, ·) is an elementary submodel of (R, 0, 1,+, ·) since R |=
(∃x)x · x = 2, which is false in both Z and Q.

Example 5.4.8. The following elementary submodel relations hold:

• (Q,≤) (R,≤)

• (N, 0, 1,+, ·) (N∗, 0, 1,+, ·).

• (R, 0, 1,+, ·) (R∗, 0, 1,+, ·).

The latter two items in the previous example justify the claims that the natural numbers are
contained in models of non-standard arithmetic and that the real numbers are contained in models
of non-standard analysis.

We conclude with one last example.

Example 5.4.9. Z3 = {0,1,2} with addition modulo 3 is not a submodel of Z6 = {0,1,2,3,4,5}
with addition modulo 6 because they have different addition functions: In Z3, 2+ 2 = 1 whereas in
Z6, 2+ 2= 4. However, Z3 is isomorphic to the subgroup of Z6 consisting of {0,2, 4}.

Just as every subset X of a group G generates a subgroup 〈X 〉 of G, every subset X of an arbitrary
structure generates a substructure 〈X 〉.

Definition 5.4.10. LetA be a structure with universe A for some language Ł and let X be a subset
of A. Then 〈X 〉 is the smallest substructure ofA which inclludes X .

Example 5.4.11. In Z,+), 〈{20, 30}〉= 〈10〉= {10x : x ∈ Z}.

Example 5.4.12. In the Boolean algebraB = (P ({1,2,3,4},∧,∨,′ ), 〈{{2,3}, {4}}〉 contains the
sets ;, {1}, {4}, {1, 4}, {2,3}, {1,2, 3}, {2,3, 4}, {1,2, 3,4}.

Example 5.4.13. In (ℜ, 0, 1,+, ·), 〈
p

2〉= {m+ n
p

2 : m, n ∈ Z}.

Proposition 5.4.14. For any structureA with universe Aand any subset X of A, 〈X 〉 = {t(x1, x2, . . . , xn) :
t is a term and x1, . . . , xn ∈ X }.
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Proof. Let C = {t(x1, x2, . . . , xn) : t is a term and x1, . . . , xn ∈ X }. For any substructure B of A
with universe B which includes X , we must have C ⊆ B, since B is closed under all functions and
hence all terms. It follows that C ⊆ 〈X 〉. For the other direction, we note that C is closed under all
functions and hence is a substructure ofA which incluldes X . It follows from the definition of 〈X 〉
that 〈X 〉 ⊂ C .

A submodelA of a structureB satisfies the same quantifier-free formulas φ(a1, . . . , an) asB .
IfA is an elementary submodel, then it satisfies the same first order formulas φ(a1, . . . , an) asB .
Next we consider some intermediate versions of this notion, whereA agrees withB on a certain
class of formulas.

Definition 5.4.15. A formula φ is said to be universal if there is a quantifier-free formula θ and
variables y1, . . . , ym such that φ = (∀y1)(∀y2) · · · (∀ym)θ , and is said to be logically universal if it is
logically equivalent to a universal formlula. Existential and logically existential formulas are similarly
defined using existential quantifiers (∃yi). A formula φ is said to be Existential-Universal-Existential
(∃∀) if there is a universal formula θ and variables y1, . . . , ym such that φ = (∃y1)(∃y2) · · · (∃ym)θ ,
and is said to be logically ∃∀ if it is logically equivalent to a ∀∃ formlula. Universal-Existential
formulas are similarly defined.

Example 5.4.16. The axioms for a group in the language {e,∗,−1 } are universal.

(a) (∀x)x ∗ e = x = e ∗ x

(b) (∀x)x ∗ x−1 = e = x ∗ x−1.

(c) ( f oral l x)(∀y)(∀z)x ∗ (y ∗ z) = (x ∗ y) ∗ z

If we removed the unary function symbol −1 from the language and modified (b) to say that
(∀x)(∃y)x ∗ y = e = y ∗ x)
then this would no longer be a universal sentence.

The importance of universal sentences is in the following notion of persistence.

Definition 5.4.17. A sentence φ is said to be downward persistent if wheneverA ⊆B andB |= φ,
then A |= φ. This can also apply to a formula φ(x1, . . . , xn) where B |= φ(a1, . . . , an) should
imply that A |= φ(a1, . . . , an) when a1, . . . , an ∈ A. Similarly, φ is upward persistent if whenever
A ⊆B andA |= φ(a1, . . . , an), thenB |= φ(a1, . . . , an).

It is immediate from these definitions that φ is upward persistent if and only if ¬φ is downward
persistent.

Proposition 5.4.18. Any universal formula φ is downward persistent.

Proof. Let φ(x1, . . . , xn) have the form (∀y1)( f oral l y2) · · · (∀ym)θ(x1, . . . , xn, y1, . . . , ym), where
θ is quantifier-free. Suppose thatA ⊆B and thatB |= φ(a1, . . . , an)where a1, . . . , an ∈ A. Now let
c1, . . . , cn ∈ Abe arbitrary. ThenB |= θ (a1, . . . , an, c1, . . . , cm) (sinceB |= (∀y1)( f oral l y2) · · · (∀ym)θ (a1, . . . , an, y1, . . . , ym)).
SinceA ⊆B and θ is quantifier-free, it follows thatA |= θ (a1, . . . , an, c1, . . . , cm), Since c1, . . . , cm
are arbitrary elements of A, we may now conclude thatA |= (∀y1)( f oral l y2) · · · (∀ym)θ (a1, . . . , an, y1, . . . , ym)),
as desired.

It follows that existential formulas are upward persistent.
The converse of this proposition, that any downward persistent formula is logically universal,

is also true but beyond the scope of this book. We know that the family of universal formulas
is closed under conjunction and disjunction, so it must be the case that the family of downward
persistent formulas is also closed under conjunction and disjunction. To see this for conjunction,
let us suppose that φ and ψ are downward persistent and show that φ ∨ψ is also downward
persistent. That is, suppose thatA ⊆B andB |= φ ∨ψ. Then without loss of generality,B |= φ.
Since φ is downward persistent,A |= φ, and it follows thatA |= φ ∨ψ.
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Other interesting notions of persistence include product persistence and persistence under unions
of chains.

If A and B are two structures over the same language, with universes A and B, respec-
tively, then A ×B is the structure C with universe A× B defined as follows. For each con-
stant symbol c, cC = (cA, cB). For each n-afry function symbol f , f C((a1, b1), . . . , (an, bn)) =
( f A(a1, . . . , an), f B(b1, . . . , bn)). For each n-ary relation symbol R RC(((a1, b1), . . . , (an, bn)) ⇐⇒
RA(a1, . . . , an)) ∧ RB(b1, . . . , bn)). We say that a formula φ is product persistent if wheneverA |= φ
andB |= φ, thenA ×B |= φ.

For example, the group axioms given above are all product persistent, as the product of two
groups is a group. The axioms for a commutative ring with unity in the language (+, ·, 0, 1) are
also product persistent. However, consider the additional axiom for being an integral domain, that
there are no zero-divisors.

(∀x)(∀y)[x · y = 0 =⇒ (x = 0 ∨ y = 0)]

The natural example here is that Z2 and Z3 are both integral domains, but the product Z2 ×Z3
has zero divisors (0,1) · (1,0) = (0,0).

Definition 5.4.19. The family of Horn formulas is the smallest family of formulas generated as fol-
lows. For all atomic formulasρ1, . . . ,ρn,θ , the formulas¬(ρ1&ρ2& · · ·&ρn) and (ρ1&ρ2& · · ·&ρn)→
θ are Horn formulas. If φ and ψ are Horn formulas, then the conjunction φ&ψ is a Horn formula
and both (∃x)φ and (∀x)φ are Horn formulas.

We note that the statement about zero-divisors above is NOT a Horn formula.

Proposition 5.4.20. Any Horn formula φ is product persistent.

Definition 5.4.21. A sequenceA0 ⊆A1 ⊆ · · · is said to be a chain. The union C of such a chain
has universe

⋃

i Ai, where each structureAi has universe Ai, and is defined as follows. For each
constant symbol c, cC = cA0 . For each n-ary function symbol and for elements a1, . . . , an, let k be
the least such that each a1, . . . , an ∈ Ak and let f C(a1, . . . , ak) = f Ak(a1, . . . , an). For each n-ary
relation symbol and for elements a1, . . . , an, let k be the least such that each a1, . . . , an ∈ Ak and let
RC(a1, . . . , ak) ⇐⇒ RAk(a1, . . . , an).

Proposition 5.4.22. If C is the union of a chainA0 ⊆A1 ⊆ · · · , then for each k,Ak ⊆ C .

Unions of chains preserve formulas with two levels of quantification.

Definition 5.4.23. A formula φ is said to be existential-universal (∃∀) if there is a universal formula
θ such that φ = (∀y1) · · · (∀ym)θ . Similarly, φ is universal-existential (∀∃) if there is an existential
formula θ such that φ = (∃y1) · · · (∃ym)θ .

As for universal and existential formulas, we can define the notion of logically ∃∀ as being
logically equivalen to a ∃∀ formulas and similarly for the ∀∃ formulas.

As an example, the statement about an ordering that it has no greatest element can be written

(∀y)(∃x)(y < x)

and is therefore seen to be universal-existential.
It turnes out that ∀∃ formulas are preserve under unions of chains.

Theorem 5.4.24. For any ∀∃ formula φ and any chain A0 ⊆ A1 ⊆ · · · , if Ak |= φ for all k, then
the union C of the chain also satisfies φ.

Proof. Let φ have the form (∀y1) · · · (∀ym)θ (y1, . . . , ym), where θ is existential and suppose that C
is the union of a chainA0 ⊆A1 · · · such thatAk |= φ for each k. Let c1, . . . , cm ∈ C be given and take
k large enough so that each ci ∈Ak. SinceAk |= φ, it follows thatAk |= θ (c1, . . . , cm). Now θ is an
existential formula andAk ⊆ C , hence it follows from Proposition 5.4.18 that C |= θ (c1, . . . , cm).
Since c1, . . . , cm are arbitrary, it follows that C |= (∀y1) · · · (∀ym)θ , as desired.
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Now we can see that the negation of the sentence above, which states that there is a greatest
element in a linear ordering, cannot be logically ∀∃, because the union of the chain Ak = [0, k]
(under the usual ordering on the real numbers) would have no greatest element, whereas each
[0, k] does have a greatest element.

5.5 Axioms and Theories

Given a set Γ of sentences in a fixed language L , we let Mod(Γ ) be the set of structuresA such
that A mod γ for all γ ∈ Γ . For a single sentence γ, we let Mod(γ) = Mod({gamma}). Given
a class K of models in a fixed language L , we let Th(K) be the set of sentences γ such that A
mod γ for allA ∈ K . For a single structureA , we let Th(A ) = Th({A }).

For example, in the language L = {<}, consider the axioms of a partial ordering:

(a) (∀x)¬x < x

(b) (∀x)(∀y)¬x < y&y < x

(c) (∀x)(∀y)(∀z)(x < y&y < z)→ x < z)

These axioms state that < is irreflexive, antisymmetric, and transitive. If Γ0 is the set of these
three sentences, then Mod(Γ ) is the class of partial orderings. If we add the axiom of trichotomy

(d) (∀x)(∀y)(x < y ∨ x = y ∨ y < x)

then the resulting set of four axioms define the class of linear orderings. Note that all of these
axioms are universal, so that any substructure of a linear ordering is also a linear ordering.

It is easy to see that K ⊆ Mod(Th(K)) for any class K of models and that Γ ⊆ Th(Mod(Γ ) for
any theory Γ . However, Th(K) is always closed under implication, so Γ may be a proper subset.
For example, if Γ = ;, then Mod(Γ ) would consist of all possible structures for the given language
and Th(Mod(Γ ) would consist of all logically valid sentences.

A class K of models is said to be axiomatizable if K = Mod(Γ ) for some set Γ of sentences. K
is said to be finitely axiomatizable if K = Mod(Γ ) for a finite set Γ ; equivalently K = Mod(γ) for
some single sentence γ. If K is not axiomatizible, then clearly K 6= Mod(Th(K).

For a finite language L , any finite structure A is finitely axiomatizable. For example, let
A = ({1, 2},<) where 1< 2. Then the axiom forA is the following:

(∃x)(∃y)[(x 6= y & (∀z)(x = z lor y = z) & x < y]

In general, the axiom for a finite structureA just states the existence of the distinct elements
and defines the constants, relations and functions onA for those elements.

The language of pure equality provides a very interesting illustration of these notions, as well as
the use of compactness.

Let γn be the sentence stating that there are at least n distinct elements, that is

(∃x1)(∃x2) · · · (∃xn)[x1 6= x2&x1 6= x3&x2 6= x3& · · ·&xn−1 6= xn]

The conjunct inside the quantifiers can be abbreviated as
∧

i 6= j x i 6= x j . Note that γn+1→ γn for
each n.

It is clear that a structureA is infinite if and only ifA |= γn for all n. Let ΓIN F = {γ1,γ2, . . . }.
Then the class IN F of infinite structures equals Mod(ΓIN F ). Hence IN F is axiomatizable.

Proposition 5.5.1. IN F is not finitely axiomatizable.

Proof. Suppose by way of contradiction that IN F = Mod(γ) for some sentence γ. This means that
a structure A is infinite if and only if Γ |= γ. Then ΓIN F ` γ. By Compactness, there must be a
finite subset Γn = {γ1, . . . ,γn} of Γ such that Γn ` γ. Now consider the structure {1, 2, . . . , n}, which
satisfies Γn but is not infinite, and hence does not satisfy γ. This contradicts the statment above that
Γn ` γ.
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Now consider the complementary set F IN of finite models.

Proposition 5.5.2. F IN is not axiomatizable.

Proof. Suppose by way of contradiction that there were a set ∆ of sentences such that F IN =
Mod(∆). Then∆∪ΓIN F is inconsistent. So by Compactness, there is a finite subset Γn = {γ1, . . . ,γn}
such that ∆∪ Γn is inconsistent. But the structure {1, 2, . . . , n} satisfies Γn and it is finite, so it must
satisfy ∆. This contradiction proves the result.

We finish this chapter with a brief introduction to the notion of quantifier-elimination. We
assume that the relevant language is finite.

Definition 5.5.3. A theory Γ is said to have quantifier elimination if for any formula φ(x1, . . . , xn),
there is a quantifier-free formula θ such that Γ ` φ ⇐⇒ θ .

Note that in a relational language (with no functions or constants) a quantifier-free sentence can
only be either the trivial true statement or the trivial false statement. Thus a theory with quantifier
elimination is complete. If there is an algorithm to produce from any sentence φ a quantifier-free
θ such that Γ ` φ ⇐⇒ θ , then this algororithm also decides whether Γ ` φ or Γ ` ¬φ. Structures
with functions and constants are a bit more complicated.

The theory of infinity, where Γ = {γ1,γ2, . . . } as above, is a natural example of a theory which
satisfies quantifier elimination.

Theorem 5.5.4. The theory of infinity satisfies quantifier-elimination, and there is an algorithm which
produces the equivalent quantifier-free formula from any given formula.

Proof. In the language of equality, the atomic formulas have the form "u= v" where u and v are
two variables, possibly identical. Now by disjunctive normal form, any quantifier-free formula
θ(x1, . . . , xn) is a disjunction C1 ∨ · · · ∨ Ck of conjuncts C1, . . . , Ck where each Ci is a conjunct of
literals, either of the form u= v or the form u 6= v.

The result is proved by induction on the set of formulas. For the base case, any atomic formula
is quantifier-free already. For the connectives ¬,∨,&, if two formulas φ1 and φ2 are logically
equivalent to quantifier-free formulas θ1 and θ2 (under Γ ), then ¬φ1 is logically equivalent to ¬θ1,
φ1 ∨φ2 is logically equivalent to θ1 ∨ θ2 and φ1&φ2 is logically equivalent to θ1&θ2. But these
formula (¬θ1, θ1 ∨ θ2, θ1&θ1) are all quantifier-free.

Since ∀x)θ is logically equivalent to ¬(∃x)¬θ , it suffices to show that if θ(x , x1, . . . , xn) is
quantifier-free, then there is a quantifier-free formula psi such that

Γ ` (∃x)θ (x , x1, . . . , xn) ⇐⇒ ψ(x1, . . . , xn)

Now for any disjunction C1 ∨ · · · ∨ Ck), (∃x)[C1 ∨ · · · ∨ Ck] is logically equivalent to (∃x)C1 ∨
(∃x)C2 ∨ · · · ∨ (∃x)Ck, thus we may assume without loss of generality that θ is a conjunct of literals.

There are three cases.
Case 0: One of the literals has the form x 6= x . In this case, (∃x)θ is simply false.
Case 1: One of the literals has the form x = x i. In this case we can modify the formula θ

by replacing every occurrence of x with an occurrence of x i to obtain the desired quantifier-free
formula ψ= θ (x i , x1, . . . , xn) which is equivalent to (∃x)θ .

Case 2: Each of the literals has the form x 6= x i. Then the sentence γn+1 from Γ implies the
existence of an element x which is different from each of x1, . . . , xk. Thus we can modify θ by
eliminating each literal in which x occurs to obtain the desired quantifier-free formula ψ.

5.6 Exercises

1. Show that Mod(Th(K)) = K for any axiomatizable class K of models.

2. Show that if a theory Γ is closed under implication, then Th(Mod(Γ ) = Γ .



5.6. EXERCISES 49

3. Write the sentence γ such thatA = Mod(γ) whereA = ({0,1},+) with addition mod 2.

4. Show that the theory of dense linear orderings without endpoints satisfies quantifier elimina-
tion.

5. Show that the class of equivalence structures with exactly three elements in each equivalence
class is not downward persistent and therefore cannot have a universal axiomatization.

6. Show that the familly of product persistent formulas is closed under conjunctions.

7. Show that the class of well-orderings is not closed under unions of chains and therefore
cannot have a ∀∃ axiomatization.

8. Show that the class of graphs of infinite degree is not finitely axiomatizable and that the class
of graphs of finite degree is not axiomatizable. An unordered graph G = (V, E) consists of a
set V of elements (called vertices) and a binary edge relation E. The degree of a vertex v is
the cardinality of {u : uEv}. G has finite degree k if k is the maximum of the degrees of the
vertices in V . If no such finite maximum exists, then G is said to have infinite degree.

9. Show by induction on Horn formulas that every Horn formula is product persistent.

10. If C is the union of a chainA0 ⊆A1 ⊆ · · · , then for each k,Ak ⊆ C .
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Chapter 6

Computability Theory

6.1 Introduction and Examples

There are many different approaches to defining the collection of computable number-theoretic
functions. The intuitive idea is that a function F : N → N (or more generally F : Nk → N) is
computable if there is an algorithm or effective procedure for determining the output F(m) from
the input m. To demonstrate that a particular function F is computable, it suffices to give the
corresponding algorithm.

Example 6.1.1. Basic computable functions include

(i) the successor function S(x) = x + 1,

(ii) the addition function +(x , y) = x + y , and

(iii) the multiplication function ·(x , y) = x · y .

Example 6.1.2. Some slightly more complicated examples of computable functions:

(i) The Division Algorithm demonstrates that the two functions that compute, for inputs a and
b, the unique quotient q = q(a, b) and remainder r = r(a, b), with 0 ≤ r < a, such that
b = qa+ r, are both computable.

(ii) The Euclidean Algorithm demonstrates that the function gcd(a, b)which computes the greatest
common divisor of a and b is computable. It follows that least common multiple function
lcm(a, b) = (a · b)/gcd(a, b) is also computable

The notion of computability for functions can be extended to subsets of N or relations on Nk

for some k as follows. First, a set A⊆ N is said to be computable if the characteristic function of A,
defined by

χA(n) =

�

1 if n ∈ A
0 if n /∈ A,

is a computable function. Similarly, a relation R ⊆ Nk is said to be computable if its characteristic
function

χA(n1, . . . , nk) =

�

1 if (n1, . . . , nk) ∈ R
0 if (n1, . . . , nk) /∈ R

is computable. These definitions are equivalent to saying that there is an algorithm for testing
whether a given number is in A or whether a given finite sequence (n1, . . . , nk) is in R.

Example 6.1.3. The following are computable:

(i) The set of perfect squares is computable, since given a number n, we can test whether it is a
square by computing m2 for all m≤ n and checking whether m2 = n.

51
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(ii) The relation x | y (“x divides y”) is computable, since by the Division Algorithm, x | y if and
only if the remainder r(x , y) = 0.

(iii) The set of even numbers is computable, since n is even if and only if 2 | n.

(iv) The set of prime numbers is computable, since p is prime if and only if

(∀m< p)[(m 6= 0 & m 6= 1)→ m 6 | p].

Two formalizations of the class of computable functions that will we consider are the collection
of Turing machines and the collection of partial recursive functions.

The first general model of computation that we will consider is the Turing machine, developed
by Alan Turing in the 1930’s. The machine consists of one or more infinite tapes with cells on which
symbols from a finite alphabet may be written, together with heads which can read the contents of
a given cell, write a new symbol on the cell, and move to an adjacent cell. A program for such a
machine is given by a finite set of states and a transition function which describes the action taken
in a given state when a certain symbol is scanned. Possible actions are (1) writing a new symbol in
the cell; (2) moving to an adjacent cell; (3) switching to a new state.

6.2 Finite State Automata

As a warm-up, we will first consider a simplified version of a Turing machine, known as a finite
state automaton. A finite state automaton over a finite alphabet Σ (usually {0,1}) is given by a
finite set of states Q = {q0, q1, . . . , qk} and a transition function δ : Q×Σ→Q. There may also be
an output function F : Q×Σ→ Σ. The state q0 is designated as the initial state and there may be a
set A⊆Q of accepting states.

The action of a finite automaton M on input w = a0a1 . . . ak occurs in stages.

• At stage 0, the machine begins in state q0, scans the input a0, and then and transitions to
state s1 = δ(q0, a0), possibly writing b0 = F(q0, a0).

• At stage n, the machine (in state sn) scans an, transitions to state sn+1 = F(sn, an), and possibly
writes bn = F(sn, an).

• After reading ak during stage k, the machine halts in state sk+1. The input word w is accepted
by M if sk+1 ∈ A. If there is an ouput function, then the output word will be written as
M(w) = b0 b1 . . . bk.

The language L(M) is the set of words accepted by M . We will sometimes refer to such a
collection as a regular language.

Example 6.2.1. Let M1 be the machine, depicted by the state diagram below, with transition
function

δ(qi , j) =

�

q1−i if i = j
qi if i 6= j,

for i = 0,1 and j = 0, 1. Thus L(M1) is the set of words which end in a 0.
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q0 q1

q0 q1

0

0

11

0

1

01

Example 6.2.2. Let M2 be the machine, depicted by the state diagram below, with transition
function

δ(qi , j) =

�

q1−i if j = 0

qi if j = 1,

for i = 0,1. Thus L(M2) is the set of words which contain an even number of 0’s.

q0 q1

q0 q1

0

0

11

0

1

01
Next we consider some finite state automata which compute functions. These are called finiet

state transducers. We want to express natural numbers in reverse binary notation, so that the word
a0a1 . . . ak represents a0 + 2a1 + · · ·+ 2kak.

Example 6.2.3. The successor machine M3 computes S(x) = x + 1. State q0 is the carry state and
state q1 is the no-carry state. The edges in the state diagram below are labelled with symbols of the
form i : j, which means that i is an input bit and j is an output bit.

For reasons that will be clear shortly, we require that any number of the form 2n − 1 (normally
represented by a string of the form 1n) to be represented by 1n0. For any other number, adding
additional zeros to the end of its representation will make no difference.

Starting in state q0, the machine outputs (i + 1) mod 2 on input i and transitions to state q1−i .
From state q1 on input i, the machine outputs i and remains in state q1. We take the liberty of
adding an extra 0 at the end of the input in order to accommodate the carry.

q0 q1

0:1

0:0, 1:11:0
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More precisely, the transition function and output function of M3 are defined by

δ(qi , j) =

�

q0 if i = 0 & j = 1

q1 if (i = 0 & j = 0)∨ i = 1

and

F(qi , j) =

�

1− j if i = 0

j if i = 1
.

We see that this computes S(x) by the following reasoning. Assume that x ends with 0 (if x
represents the number 2n−1 for some n, then this terminal 0 is necessary to end up in an accepting
state; if x does not, then the terminal 0 is inconsequential).

We consider two cases:

• Case 1: x contains a 0. Let i be least such that ai = 0. Then M will write i− 1 1’s and remain
in state q0 until arriving at the i-th bit, which is a 0. Then it will output bi = 1 and transition
to state q1. After that it will simply write b j = a j for all j > i.

• Case 2: If x consists of all 1’s, then M will write n 0’s and remain in state q0 until reaching
the extra 0, when M will output a final 1 and transition to q1.

In each case, b1 . . . bn = M(x) is the reverse binary representation of S(x) and we will end up
in an accepting state.

Using the carry and no-carry states, we can also perform addition with a finite state automaton.

Example 6.2.4. The addition machine M4 computes S(x , y) = x + y . Unlike the previous example,
state q0 is the no-carry state and state q1 is the carry state. Moreover, we work with a different

input alphabet: the input alphabet consists of pairs

�

i
j

�

∈ {0, 1} × {0,1}. To add two numbers n1

and n2 represented by σ1 and σ2, if σ1 is shorter than σ2, we append 0s to σ1 so that the resulting
string has the same length as σ2. As in the previous example, we will also append an additional 0
to the end of σ1 and σ2, which is necessary in case that the string representing n1 + n2 is strictly
longer than the strings representing n1 and n2.

The state diagram is given by:

q0 q1

:0( )0
0

( )0
0 :1

( )0
1 :0( )0

1 :1 ( )1
0 :0( )1

0 :1

( )1
1 :0

( )1
1 :1

The transition function and output function of M3 are defined in the following tables:

δ

�

0

0

� �

0

1

� �

1

0

� �

1

1

�

q0 q0 q0 q0 q1
q1 q0 q1 q1 q1
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F

�

0

0

� �

0

1

� �

1

0

� �

1

1

�

q0 0 1 1 0
q1 1 0 0 1

For any finite state automaton M , the set L(M) of words accepted by M is a computable set.
Moreover, if M computes a function f , then f is also computable. However, many computable sets
and functions cannot be computed by a finite automaton.

Proposition 6.2.5. L = {an bn : n ∈ω} is not a regular set.

Proof. Suppose by way of contradiction that L = L(M) for some FSA M and let k be the number of
states of M . Consider the sequence of states s0, s1, . . . , sk resulting when M reads the input ak. It
follows from the pigeonhole principle that si = s j for some i < j ≤ k. Thus M ends up in the same
state si after reading ai and after reading a j. But this means that M ends up in the same state q
after reading ai bi that it ends up in after reading a j bi. By assumption, M accepts ai bi, so that q
is an accepting. However, M does not accept ai b j, so that q is not accepting. This contradiction
shows that L 6= L(M).

Example 6.2.6. The function f (x) = x2 is not computable by a finite state transducer. Suppose
that M computes x2 on input x , where we have appended a sufficient number of 0’s to the end
of the input so that we can output x2 (recall that each input bit yields at most one output bit). In
particular, for any n, M will output 02n1 on input 0n1, since f (2n) = (2n)2 = 22n. Thus, on input
0n1, after reading the first n+ 1 bits, M needs to examine at least n additional 0’s and write at
least n additional 0’s before it finishes the output with a final 1. Now suppose that M has k states
and let n> k+ 1. Let s j be the state of the machine after reading 0n10 j . Then there must be some
i, j ≤ k+ 1< n such that si = s j . Furthermore, every time M transitions from state si upon reading
a 0, M must output a 0. But the machine is essentially stuck in a loop and hence can only print
another 0 after reading 0n10n when it needs to print the final 1.

6.3 Exercises

1. Define a finite automaton M such that L(M) is the set of words from {0,1}∗ such that all
blocks of zeroes have length a multiple of three.

2. Define a finite automaton M such that L(M) is the set of words from {0, 1}∗ such that every
occurence of 11 is followed by 0.

3. Show that there is no finite automaton M such that L(M) is the set of words with an equal
number of 1’s and 0’s.

4. Define a finite automaton M on the alphabet {0, 1, 2} such that M(w) is the result of erasing
all 0’s from w.

5. Define a finite automaton M such that M(w) = 3 ·w where w is a natural number expressed
in reverse binary form.

6. Show that if L1 and L2 are regular languages, then L1 ∪ L2 is a regular language.

7. Show that if L is a regular language, then L∗ is a regular language.

Hint: Use a non-deterministic FSA.

8. Show that the set {1n : n is a square} is not a regular language.
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6.4 Turing Machines

A Turing machine is a simple model of a computer that is capable of computing any function that
can be computed. It consists of these items:

1. a finite state control component with a finite number of read/write heads; and

2. a finite number of unbounded memory tapes (one or more for the input(s), one for the output,
and the rest for scratchwork), each of which is divided into infinitely many consecutive squares
in which symbols can be written.

Furthermore, it must satisfy these conditions:

1. there is a specified initial state q0 and a specified final qH , or halting, state; and

2. each read/write head reads one cell of each tape and either moves one cell to the left (L),
moves one cell to the right (R), or stays stationary (S) at each stage of a computation.

The notion of Turing machine is formalized in the following definition.

Definition 6.4.1. A k-tape Turing machine M for an alphabet Σ consists of

(i) a finite set Q = {q0, . . . , qn} of states;

(ii) an alphabet Σ;

(iii) a transition function δ : Q×Σk→ Σk × {L,R,S}k;

(iv) q0 ∈Q is the start state; and

(v) qH ∈Q is the halting or final state.

A move of M in a given state qi, scanning the symbols a1, . . . , ak on the k tapes, where
δ(qi , a1, . . . , ak) = (q j , b1, . . . , bk, D1, . . . , Dk), consists of the following actions:

1. switching from state qi to state q j;

2. writing bi (and thus erasing ai) on tape i; and

3. moving the head on tape i in the direction Di .

A computation always begins with

(i) the machine in state q0;

(ii) some finite input on each of the input tapes; and

(iii) each of the input heads scanning the first symbol on each of the input tapes.

The configuration of a machine at a given stage of a computation consists of

(i) the current state of the machine;

(ii) the contents of each tape; and

(iii) the location of each of the heads on each tape.

M machine halts after n moves if it transitions to the halting state in the n-th stage of the computation.
A machine M accepts a word w, denoted M(w)↓, if the machine halts (i.e. ends up in the halting
state) when given the input w. In this case, we say M halts on the input w. Otherwise, we say that
M diverges on input w, denoted M(w)↑.

It is an essential feature of Turing machines that they may fail to halt on some inputs. This gives
rise to the partial computable function fM which has domain {w : M(w) ↓}. That is, fM (w) = y if
and only if M halts on input w and y appears on the output tape when M halts, meaning that the
output tape contains y surrounded by blanks on both sides. (For the sake of elegance, we may
insist that the first symbol of y is scanned at the moment of halting.) Sometimes we will write the
value fM (w) as M(w).
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Example 6.4.2. We define a Turing machine M1 that computes x + y. There are two input tapes
and one output tape. The numbers x and y are written on separate input tapes in reverse binary
form. M has the states: the initial state q0, a carry state q1 and the halting state qH . The two input
tapes are read simultaneously in the form a/b. We need to consider blanks squares as symbols # in
case one input is longer and/or there is a carry at the end. The behavior of M1 is summed up in the
following table.

State Read Write Move New State
q0 0/0 0 R q0
q0 0/# 0 R q0
q0 #/0 0 R q0
q0 0/1 1 R q0
q0 1/0 1 R q0
q0 1/# 1 R q0
q0 #/1 1 R q0
q0 1/1 0 R q1
q0 #/# # S qH
q1 0/0 1 R q0
q1 0/# 1 R q0
q1 #/0 1 R q0
q1 0/1 0 R q1
q1 1/0 0 R q1
q1 1/# 0 R q1
q1 #/1 0 R q1
q1 1/1 1 R q1
q1 #/# 1 S qH

Example 6.4.3. We roughly describe a Turing machine M2 that computes x · y. Again there are
two input tapes and one output tape. The idea is that if y =

∑

i∈I 2i for some finite I ⊆ N, then
x · y =

∑

i∈I 2i · x . For each i, 2i · x has the form of i 0’s followed by x . For example, if x = 1011
(thirteen), then 4 · x = 001011 (fifty-two).

To multiply 1011 by 100101 we add

20 · 13+ 23 · 13+ 25 · 13= 1011+ 0001011+ 000001011.

We begin in state q0 with x and y each written on one of the input tapes (tapes 1 and 2) in
reverse binary notation, and all three reader heads lined up. We first add a terminal 0 to the end of
y , which is necessary to ensure that our computation will halt.

Suppose there are k initial 0’s in y . For each such 0, we replace it with a #, write a 0 on tape 3
in the corresponding cell, move the heads above tapes 2 and 3 one cell to the right, and stay in
state q0.

When we encounter the first 1 of y, we replace this 1 with a # and transition to a state qC in
which we copy x to tape 3 (the output tape), beginning in the i-th cell of this tape. As the contents
of tape 1 are being copied onto tape 3, we also require that head above tape 2 moves in the same
directions as the head above tapes one and three until we encounter the first # on tape one. (One
can verify that the heads above tapes 2 and 3 will always be lined up). We then transition to a
state in which we reset the position of the tape 1 head to scanning the first bit of x , and then the
tape 2 head is scanning the leftmost bit in y that has not been erased (i.e. replaced with a #). As
above, we require that the tape 3 head moves in the same directions as the tape 2 head during this
phase (which will ensure that we begin copying x in the correct place on the tape if the next bit of
y happens to be a 1. We then transition back to state q0 and continue as before.
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Suppose that the next bit of y that is equal to 1 is the i-th bit of y . Then we start the addition
by adding the first bit of x to the i-th bit of the output tape. We note that we may need to utilize a
carry state during the addition. When we reach the # at the end of y , the computation is complete,
and we transition to the halting state. For an example of the product 7 . . . 8= 7 · 8= 56, see the
supplementary document

Like finite state automata, Turing machines can be represented a state diagram.

Example 6.4.4. There is a Turing machine that accepts every string in the set {an bncn | n > 0}
over the alphabet Σ= {a, b, c, 0, #}.

Here we will use the “0” as a special marking symbol, although we can do without it (and use
“a” instead). The following state diagram gives a Turing machine which accepts this every string in
the above set.

q0 q1

……

……

a a a a b b b b c c c c

q2q3

a,# a,R
#,R

a,# a,R

# # # # # # # # # # # # # # # #

# # # #

0,R

1

2

b,# b,R
#,L

b,0 b,R
0,L

c,# c,R
c,0 c,R

0,R

#,# #,S
#,SqH

#,R

q4

Observe that q4 functions as a reject state. Any input not listed on any of the edges will cause a
transition to state q4. To see that this Turing machine accepts the desired set, see the supplementary
document for an example with input aaaabbbbcccc.

Example 6.4.5. We define a Turing machine M that computes the function f (x) = |x | (the length
of a string x). There are two tapes, the input tape and the output tape. The input tape is read-only
but we allow writing on the output tape. Let the input alphabet be Σ= {a}. Let α/β indicate that
the machine is currently reading α on the input tape and β on the output tape. Similarly D1/D2
indicates that the head on the input tape moves in direction D1 while the head on the output tape
moves in direction D2. The idea is to add one to the output tape after reading each symbol of the
input tape. State q1 arises when we need to add one to the output by carrying. State q2 simply
brings the output tape back to the first bit. Certain transitions are omitted from the table since
they lead to divergent computation (we will assume that incorrect inputs will immediately cause
a transition to a reject state). For example, we only get to state q1 when we have read a on the
first tape and we continute to read that a, so that the input #/0 is not a legal input when we have
reached state q1.

The following table describes the behavior of the three main states.
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state read write move new state
q0 a/# a/1 R/S q0
q0 a/0 a/1 R/S q0
q0 a/1 a/0 S/R q1
q0 #/0 #/0 S/S qH
q0 #/1 #/0 S/S qH
q0 #/# #/0 S/S qH
q1 a/# a/1 S/L q2
q1 a/0 a/1 S/L q2
q1 a/1 a/0 S/R q1
q2 a/# a/# R/R q0
q2 a/0 a/0 S/L q2
q2 a/1 a/1 S/L q2

We now prove some general facts about certain kinds of languages that are central to the study
of Turing machines.

For a fixed alphabet Σ, a language is simply a set L ⊆ Σ∗ (recall that Σ∗ is the collection of all
finite sequences of elements of Σ).

Definition 6.4.6. A language L is said to be Turing semicomputable if there is a Turing machine M
such that L = {w : M(w)↓}. L is a Turing computable language if the characteristic function of L is
Turing computable.

Example 6.4.7. Here is a simple Turing machine M such that M(w)↓ if and only if w contains a 0.
In state q0, M moves right and remains in state q0 upon reading a 1 or a blank. M immediately
halts upon reading a 0.

Proposition 6.4.8. Every Turing computable language is also Turing semicomputable.

Proof. Let M be a Turing machine that computes the characteristic function of L. We modify M to
define a machine M ′ as follows. First we introduce new states qA and qB. Replace any transition
that goes to the halting state qH with a transition that goes the the state qA. For the qA state, add
two transitions. If the output tape reads 1, then transition to the halting state qH . If the output tape
reads 0, then move the output tape head one cell to the right and transition to state qB. In state qB,
move the output tape head one cell to the left and return to state qA. Then M ′(w) will halt if and
only if M(w) = 1 and will endlessly alternate between states qA and qB if and only if M(w) = 0.

Proposition 6.4.9. L is Turing computable if and only if both L and its complement are Turing
semicomputable.

Proof. First observe that if L ⊆ Σ∗ is Turing computable, then Σ∗ \ L is Turing computable. Indeed,
if M computes the characteristic function of L, then define M ′ to be the machine that behaves
exactly like M except that for i = 0, 1 whenever M writes i on its output tape, M ′ writes 1− i on its
output tape. It follows from Proposition 6.4.8 that if L is Turing computable, then both L and its
complement are semicomputable.

Now suppose that L = {w : M0(w)↓} and that Σ∗ \ L = {w : M1(w)↓} for two Turing machines
M0 and M1. We define a Turing machine M such that the function fM computed by M is the
characteristic function of L. Suppose for the sake of simplicity that M0 and M1 each have one input
tape and have no output tape. Then M will have one input tape, two scratch tapes, and one output
tape. The states of M will include pairs (q, q′) where q is a state of M0 and q′ is a state of M1.
Given w on the input tape of M , M will begin by copying w onto each of the scratch tapes and
transitioning to the pair (q0, q′0) of initial states of M0 and M1. On the first scratch tape, M will
simulate M0, while on the second scratch tape, M will simulate M1. Eventually M will enter a state
of one of the two forms: (qH , r), where qH is the halting state of M0 and r is a non-halting state of
M1, or (q, q′H), where q′H is the halting state of M1 and q is a non-halting state of M0.
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• If M enters a state of the form (qH , r), this means that the machine M0 has halted on w, and
hence w ∈ L. M will thus write a 1 on its output tape and transition to its halting state.

• If M enters a state of the form (q, q′H), this means that the machine M1 has halted on w, and
hence w /∈ L. M will thus write a 0 on its output tape and transition to its halting state.

Note that M will never enter the state (qH , q′H), since M0 and M1 can never accept the same word.
It thus follows that M computes the characteristic function of L.

Given two Turing machines M0 and M1, we write M0(x) ' M1(x) to mean that (i) M0(x)↓ if
and only if M1(x)↓ and (ii) M0(x)↓ implies that M0(x) = M1(x).

Theorem 6.4.10. Fix a finite alphabet Σ = {0,1, q,#,∗, L, R, S, H,↓}. There is a universal Turing
machine U : Σ∗ × Σ∗ → Σ∗ such that, for any Turing machine M : {0,1}∗ → {0,1}∗, there exists
wM ∈ Σ∗ such that, for all inputs x ∈ {0,1}∗, U(wM , x)' M(x).

We will only sketch the main ideas in the proof of Theorem 6.4.10. To simplify matters, we will
use the following lemma.

Lemma 6.4.11. Let M be a k-tape Turing machine for some k > 1. Then there is a single-tape Turing
machine M ′ such that M(x)' M ′(x) for all x ∈ Σ∗.

Before beginning the proof, we want to consider further the notion of a Turing machine configu-
ration. Suppose that M is a single-tape Turing machine working on the alphabet Σ= {0,1} with
states q0, q1, . . . , qk. The computation of M(w) on an input w is accomplished in a series of steps
which may be given by a configuration. The configuration ua ∗ qi ↓ bv indicates that M is in state
qi , that the word uabv is written on the tape and that the head is located at the symbol b; here u
and v are words in the language {0,1}∗. The next configuration of M in the computation may be
determined by looking at the transition δ(qi , b). This configuration indicates the current state of
M , the symbols written on the tape (for any squares which have been used), and the position of the
pointer.

Proof of Theorem 6.4.10. (Sketch) We define a universal Turing machine with two input tapes, a
scratch tape, and an output tape. For each machine M , we would like to define a word wM ∈ Σ∗
that encodes all of the information of M . We will let wM be the entire transition table of M written
as one long string in the alphabet Σ∗, with a ∗ separating each entry on a given row of a table and
∗∗ separating each row of the table. The string q0 will stand for the initial state, qH will stand for
the halting state, and all other states will be coded by a q followed by a finite string of 1s (q1, q11,
q111, etc.)

Now, given the code wM for a machine M , to compute U(wM , x) (i.e. M(x)), U proceeds by
writing the initial configuration of M with input x on its scratch tape. Suppose, for example that
x = 000. Then U will write

q0 ↓ 000

where the ↓ specifies that the reader head is above the first 0 on the input tape of M . To proceed,
U simply consults the transition table wM written on its first input tape and writes the resulting
configuration of M after one move on its scratch tape. Continuing the example from above, if the
first move of M is to change to state q1, replace the first 0 of x with a 1 and move the head one cell
to the right, the resulting configuration will be

1 ∗ q1 ↓ 00

Continuing in this way, if M(x)↓, then U will eventually come to a stage in which a halting
configuration is written on its scratch tape. In this halting configuration, the value y = M(x) will
be written, and so U can simply copy this value y to its output tape and transition to its own halting
state. Lastly, if M(x)↑, then U(wM , x)↑.
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It is important to note that our use of the alphabet Σ in the definition of a universal Turing
machine is not strictly necessary. For instance, we can also define a universal Turing machine
U : {0,1}∗ × {0,1}∗→ {0,1}∗ by representing each of the symbols in Σ as a unique binary string.
Some caution is necessary to make sure the coding is unambiguous. We will not discuss the details
of such a coding here, but we will assume that for each Turing machine M , there is some unique
wM ∈ {0,1}∗ that codes M . Moreover, we will assume that every x ∈ {0,1}∗ codes some Turing
machine, which we will write as Mx . (We will justify these assertions in Chapter 7 when we discuss
Gödel numbering.)

Programs nearly always have bugs, so they may not do want we want them to do. The problem
of determining whether a given Turing machine M halts on input string w is the Halting Problem.
Let us define the halting set to be H = {(x , y) ∈ {0,1} ∗ ×{0,1}∗ : Mx(y)↓}. Observe that H is
semicomputable: (x , y) ∈ H if and only if U(x , y)↓. By contrast, we have the following.

Theorem 6.4.12. The Halting Problem is not computable.

Proof. We will show that the complement of H is not semicomputable, so that by Proposition 6.4.9,
H is not computable. Suppose by way of contradiction that there is a Turing machine M such that,
for all x , y ∈ {0,1}∗,

M(x , y)↓ ⇐⇒ Mx(y)↑.

We can define a Turing machine N so that N(w)' M(w, w). Then

N(w)↓ ⇐⇒ Mw(w)↑.

But this Turing machine N must have some code e. So for all w,

Me(w)↓ ⇐⇒ Mw(w)↑.

The contradiction arises when w = e.

Thus there exists a set which is semicomputable but not computable.

6.5 Recursive Functions

In this section, we define the primitive recursive and the (partial) recursive functions and show
that they are all Turing computable. Each function f maps from Nk to N for some fixed k (the arity
of f ).

Definition 6.5.1. The collection of primitive recursive functions is the smallest collection F of
functions from Nk to N for each k > 0 that includes the following initial functions

1. the constant function c(x) = 0,

2. the successor function s(x) = x + 1,

3. the projection functions pk
i (x1, . . . , xk) = xk for each k ∈ N and i = 1, . . . , k,

and are closed under the following schemes for defining new functions:

(4) (composition) if f : Nk→ N and gi : N j → N for i = 1, . . . , k (where j, k > 0) are in F , then
the function h : N j → N defined by

h(x1, . . . , x j) = f (g1(x1, . . . , x j), . . . , gk(x1, . . . , x j))

is in F , and
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(5) (primitive recursion) if g : Nk→ N and h : Nk+2→ N are inF , then the function f : Nk+1→ N
defined by

f (0, x1, . . . , xk) = g(x1, . . . , xk)
f (n+ 1, x1, . . . , xk) = h(n, x1, . . . , xk, f (n, x1, . . . , xk))

is in F .

Example 6.5.2.

1. For any constant c ∈ N, the function h(x) = c is primitive recursive. The proof is by induction
on c. For c = 0, this follows from the fact that the initial function c(x) = 0 is primitive
recursive. Supposing that g(x) = c is primitive recursive and using the fact that s(x) = x+1 is
primitive recursive, we can use composition to conclude that h(x) = s(g(x)) = g(x)+1 = c+1
is primitive recursive.

2. For any k and any c, the constant function f : Nk → N with f (x1, . . . , xk) = c is primitive
recursive. We have h(x) = c by (1) and we have pk

1(x1, . . . , xk) = x1 as a basic function, so
that f (x1, . . . , xk) = h(pk

1(x1, . . . , xk)) = h(x1) = c is also primitive recursive.

3. The addition function f (x , y) = x+ y is primitive recursive. Let g(y) = p1
1(y) and h(x , y, z) =

c(p3
3(x , y, z)). Then f is given by

f (0, y) = g(y) = y
f (n+ 1, y) = h(n, y, f (n, y)) = f (n, y) + 1.

4. The predecessor function f (x) = x .− 1=

(

x − 1, if x > 0

0, if x = 0
is primitive recursive. Let g(x) =

c(x) and h(x , y) = p2
1(x , y). Then f is given by

f (0) = g(y) = 0

f (n+ 1) = h(n, f (n)) = n.

5. The truncated subtraction function f (x , y) =

(

y .− x , if x ≤ y

0, otherwise
is primitive recursive. Let

g(y) = p1
1(y) and h(x , y, z) = z .− 1. Then f is given by

f (0, y) = g(y) = y
f (n+ 1, y) = h(n, y, f (n, y)) = f (n, y) .− 1.

6. The function sg=

(

0, if x = 0

1, if x > 0
is clearly primitive recursive.

7. The multiplication function f (x , y) = x · y is primitive recursive. Let g(x) = c(x) = 0 and let
h(x , y, z) = p3

3(x , y, z) + p3
2(x , y, z). Then f is given by

f (0, y) = g(y) = 0

f (n+ 1, y) = h(n, y, f (n, y)) = f (n, y) + y.
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We can extend the collection of primitive recursive functions to the collection of partial recursive
functions by adding one additional scheme for defining new functions from previously defined
ones. It is this scheme that allows for the possibility that a function be undefined on a given input.
Given a function f : Nk → N, if f is defined on input (x1, . . . , xk), we write f (x1, . . . , xk)↓; if f is
undefined on (x1, . . . , xk), we write f (x1, . . . , xk)↑.

Definition 6.5.3. The collection of partial recursive functions is the smallest collectionF of functions
from Nk to N for each k > 0 that includes the primitive recursive functions and is closed under the
following scheme:

(6) (unbounded search) if g : Nk+1→ N is in F , then the function f : Nk→ N defined by

f (x1, . . . , xk) = the least n such that g(n, x1, . . . , xk) = 0 and g(i, x1, . . . , xk)↓ for i =
0, . . . n (and f (x1, . . . , xk)↑ otherwise)

is in F .

We will refer to total recursive functions simply as recursive functions.
We say that f is defined from the total function g by bounded search if f (n, x) equals the least

i < n such that g(i, x) = 0 and otherwise f (n, x) = n. Certainly if g is a recursive function, then f
will be recursive function. We note that if we add a scheme of bounded search to the collection of
primitive recursive functions, we do not add any new functions.

Lemma 6.5.4. If g is primitive recursive and f is defined from g by bounded search, then f is primitive
recursive.

Proof. We have f (0, x) = 0 and for each n,

f (n+ 1, x) =

(

f (n, x) if g( f (n, x), x) = 0

n+ 1 otherwise
.

The collection of partial recursive functions is equivalent to the collection of Turing computable
functions, in the sense that every partial recursive function can be computed by a Turing machine,
and every Turing computable function is partial recursive. We will prove one direction of this
equivalence.

Theorem 6.5.5. Every partial recursive function can be computed by a Turing machine.

Proof. The proof is by induction on the family of partial recursive functions. For the base case,
it is clear that the initial functions are Turing computable. We now verify that the schemes of
composition, primitive recursion, and unbounded search yield Turing computable functions when
applied to Turing computable functions.

Composition. For simplicity let f (x) = h(g(x)) where h is computable by machine Mh and g is
computable by machine Mg . Assume without loss of generality that each machine uses one input
tape and one output tape and that the sets of states of the two machines are disjoint. We define a
machine M f that computes f with six tapes:

1. the input tape;

2. a scratch tape to serve as the input tape of g;

3. a scratch tape to serve as the output tape of g;

4. a scratch tape to serve as the input tape for h;

5. a scratch tape to serve as the output tape of h; and
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6. an output tape.

M will have the states of g and h together plus a few new states to handle the transfer from Mg to
Mh. The transition function for Mg will be changed so that instead of halting when the output g(x)
is ready, M will go into a subroutine which copies from the g-output tape to the h-input tape and
then hands over the controls to Mh. The halting states of M will be the halting states of Mh.

Primitive Recursion. For simplicity let f (0, x) = g(x) and f (n+ 1, x) = h(n, x , f (n, x)). Let Mg
compute g and let Mh compute h. Assume without loss of generality that each machine uses one
input tape and one output tape and that the sets of states of the two machines are disjoint. We
define a machine M that computes f (n, x) with nine tapes:

1. the input tape for n;

2. the input tape for x;

3. a scratch tape to serve as the input tape for g;

4. a scratch tape to serve as the output tape of g;

5. a tape to keep track of the ongoing value of m< n;

6. a tape to keep track of the ongoing value of f (m, x);

7. a scratch tape to serve as the input tape for h;

8. a scratch tape to serve as the output tape of h(m, x , f (m, x)); and

9. an output tape.

M will have the states of g and h together plus a few new states to handle the transfer from Mg to
Mh and the ongoing recursion. The transition function for Mg will be changed so that instead of
halting when the output g(x) is ready, M will copy the value g(x) onto tape (6), write m= 0 onto
tape (5), and then hand over control to Mh. The inputs for Mh are found on tapes (2), (5) and (6).
Mh uses these to compute h(m, x , f (m, x)) = f (m+ 1, x). When Mh is ready to halt and give its
output, M does the following:

(i) M compares m from tape (5) with n from tape (1); if n= m+ 1, then the value on tape (8)
equals the desired f (n, x), so M copies this to tape (9) and halts.

(ii) Otherwise, M erases tape (6) and then copies the value from tape (8) onto tape (6).

(iii) Then M adds one to the value of m on tape (5), erases tapes (7) and (8) and hands control
back to Mh again.

Unbounded Search. For simplicity let f (x) = the least n such that g(n, x)↓ = 0 and for all
i ≤ n g(i, x)↓. Let Mg compute g using one input tape and one output tape.

We define a machine M that computes f (x) with five tapes:

1. the input tape for x;

2. a tape for the ongoing value of n;

3. a scratch tape to serve as the input tape for g;

4. a tape to keep track of the ongoing value of g(n, x); and

5. an output tape.

M will have the states of g plus a few new states to handle the the ongoing computations of g(n, x).
M begins by writing n= 0 on tape (2) and handing control to Mg . The transition function for Mg
will be changed so that instead of halting when the output g(x) is ready, M will do the following:
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(i) Compare the value g(n, x) from tape (4) with 0. If g(n, x) = 0, then the value n on tape (2)
equals the desired f (x), so M copies this to tape (5) and halts.

(ii) Otherwise, M increments the value of n on tape (2), erases tapes (3) and (4) and hands
control back to Mg again.

For the other direction, we need to associate to each Turing machine a natural number. We will
consider now the problem of coding words on a finite alphabet Σ= {a1, . . . , ak} into words over
{0, 1}∗ and then into natural numbers.

For the first part, we can code the word w = ai1 ai2 · · · ain into the string 0i
110i21 · · ·0in1. For

the second part, we can code the word v = i0 · · · in ∈ {0, 1}∗ by the reverse binary natural number
i0 · · · in1. Note that this will work for an arbitrary finite alphabet and even for the potentially infinite
alphabet N. Let < w > be the natural number code for the word w.

It is clear that we can use a Turing machine to compute the code < w > for a string w ∈
{1, 2, . . . , k}∗ by going into state qi when reading each symbol (i) and then writing i 0’s followed by
a 1 and returning to state q0.

For the other direction, given a binary number 0r10r21 · · ·0rk 1, we can compute a sequence
n0 = n, r0, n1, r1, . . . , nk, rk as follows. Recall the primitive recursive functions Q(a, b), the quotient
when a is divided by b and the corresponding remainder R(a, b), and note that b divides a if
the remainder is 0. Now let r0 be the least r such that 2r+1 does not divide n and then let
n1 =Q(n, 2r0)− 1. After this, let ri+1 = (least r)R(ni , 2

r+1) 6= 0 and let ni+1 =Q(ni , 2
ri )− 1. Thus

the function which computes ri from n and i is computable.
For example, if n= 03105101, then r0 = 3, n1 = 05101, r1 = 5, n2 = 01, r2 = 1, n3 = 0.
Then we may use the universal Turing machine U to provide an enumeration {Me : e ∈ω} of all

Turing computable functions by letting Me be the machine whose program may be coded by the
natural number e. Then the proof of Theorem 6.4.10 also proves the following.

Proposition 6.5.6. For natural numbers s, e, w, let F(s, e, w) be the natural number which codes the
sth configuration in the computation of Me on input word coded by w. Let M s

e(w) be the output given
by Me if the computation halts by stage s. Then

1. The function F is primitive recursive.

2. The set {(e, s, w) : M s
e(w) ↓} is primitive recursive.

3. The set {e, s, w, v) : M s
e(w) is the string coded by v} is primitive recursive.

If we consider Turing computable functions on natural numbers, then we have primitive recursive
functions coding the string 1n into < 1n >= (01)n1 and back again, so the result above holds for
natural numbers v and w.

Now given any Turing computable function Me, Me(w) may be computed by searching for the
least s such that M s

e(w) ↓ and then the least v ≤ s such that M s
e(w) = v.

Since we can code finite sequences as strings and hence as natural numbers, the equivalence of
Turing computable functions from Nk→ N easily follows. This completes the proof that any Turing
computable function is recursive, and hence verifies this case of Church’s Thesis, as described below.

All of the formalizations of the intuitive notion of a computable number-theoretic function
has given rise to the same collection of functions. For this and other reasons, the community of
mathematical logicians have come to accept the Church-Turing thesis, which is the claim that the
collection of Turing computable functions is the same as the collection of intuitively computable
functions. In practice, the Church-Turing thesis has two main consequences:

(1) if we want to show that a given problem cannot be solved by any algorithmic procedure, it
suffices to show that solutions to the problem cannot be computed by any Turing computable
functions;
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(2) to show that a given function is computable, it suffices to give an informal description of an
effective procedure for computing the values of the function.

Given the equivalence of the various notions of computable function, we will hereafter refer to
the formal notions as computable functions and partial computable functions (as opposed to recursive
functions and partial recursive functions).

We now recast the earlier definitions of computability and semi-computability in terms of natural
numbers and introduce a new notion, namely, computable enumerability.

Definition 6.5.7. Let A⊆ N.

1. A is said to be primitive recursive if the characteristic function χA is primitive recursive.

2. A is said to be computable if the characteristic function χA is computable.

3. A is said to be semi-computable if there is a partial computable functionφ such that A= dom(Φ).

4. A is said to be computably enumerable if there is some computable function f such that
A= ran( f ). That is, A can be enumerated as f (0), f (1), f (2), . . . .

Example 6.5.8. The set of even numbers is primitive recursive since its characteristic function may
be defined by f (0) = 1 and f (n+ 1) = 1− f (n).

Example 6.5.9. Define the functions Q and R as follows. Let Q(a, b) be the quotient when b is
divided by a+ 1 and let R(a, b) be the remainder, so that b =Q(a, b) · (a+ 1) + R(a, b). Then both
Q and R are primitive recursive. That is, Q(a, b) is the least i ≤ b such that i · (a + 2) ≥ b and
R(a, b) = b−Q(a, b) · (a+ 1).

Example 6.5.10. The relation x | y (x divides y) is primitive recursive, since x | y if and only if
(∃q < y + 1) x · q = y .

Example 6.5.11. The set of prime numbers is primitive recursive and the function P which enu-
merates the prime numbers in increasing order is also primitive recursive. To see this, note that
p > 1 is prime if and only if (∀x < p)[x | p→ p = 1]. Now we know that for any prime p, there is
another prime q > p with q < p!+ 1. By one of the exercises, the factorial function is primitive
recursive. Then we can recursively define P by P(0) = 2 and, for all i,

P(i + 1) = (least x < P(i + 1)!+ 1) x is prime.

We conclude this chapter with the following result.

Theorem 6.5.12. A is computably enumerable if and only if A is semicomputable.

Proof. Suppose first that A is computably enumerable. If A= ;, then certainly A is semicomputable,
so we may assume that A = rng( f ) for some computable function f . Now define the partial
computable function φ by φ(x) = (least n) f (n) = x for x ∈ N. Then A = dom(φ), so that A is
semicomputable.

Next suppose that A is semicomputable and let φ be a partial computable function so that
A= dom(φ). If A is empty, then it is computably enumerable. If not, select a ∈ A and define the
computable function f by

f (2s · (2m+ 1)) =

(

m, if φ(m)↓ in < s steps,

a, otherwise.

Then A= rng( f ), so that A is computably enumerable.
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6.6 Exercises

1. Define a Turing machine M such that M(w) = ww for any word w ∈ {a, b}∗. (For example,
M(aab) = aabaab.)

2. Define a Turing machine M such that M(u, v) halts exactly when u = v for u, v ∈ {a, b}∗.
(M begins with u on one input tape and with v on a second input tape. There might be a
scratchwork tape.)

3. Define a Turing machine M which halts on input (u, v) if and only if u≤ v (in the lexicographic
order on alphabet {a, b, c}.

4. Define a Turing machine M such that M(1n) = n, that is, M converts a string of n 1’s into the
reverse binary form of n.

5. Show that function F(a, b) = LC M(a, b) is primitive recursive.

6. Show that the factorial function is primitive recursive.

7. Show that the general exponentiation function f (x , y) = y x is primitive recursive.

8. S ⊆ Nk is said to be Σ0
1 if there is a computable relation R such that S(x1, . . . , xk) ⇐⇒

(∃y)R(y, x1, . . . , xk). Prove that S is Σ0
1 if and only if S is semi-computable.

9. Suppose that f is a (total) recursive function and let g(x , y) =
∏

i<y f (x , i). Show carefully
that g is also recursive. Use this to show that the function f (n) = n! is recursive.

10. 13 Suppose that f : N→ Nis a (total) recursive one-to-one function. Show that f −1 is also
recursive.
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Chapter 7

Decidable and Undecidable Theories

7.1 Introduction

In this chapter we bring together the two major strands that we have considered thus far: logical
systems (and, in particular, their syntax and semantics) and computability theory. We will briefly
discuss decidable and undecidable logical systems, but our primary focus will be decidable and
undecidable first-order theories.

7.1.1 Gödel numbering

We began to consider coding of strings from a finite alphabet in Chapter 6 in order to define a
universal Turing machine. In order to apply the tools of computability theory to the study of various
logical systems and first-order theories, we need to represent the objects such as formulas and
proofs as objects that we can give as input to computable functions (such as strings over some
fixed alphabet or natural numbers). Here we will code formulas as natural numbers in the binary
notation.To do so, we first need to code each symbol in our logical language as a natural number.
Below are two such coding schemes for the symbols used in propositional and predicate logic.

A coding of the symbols of proposition logic:

symbol code symbol code

( 1 ∨ 5

) 2 → 6

& 3 ↔ 7

¬ 4 Pi 8+ i

A coding of the symbols of predicate logic:

69
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symbol code symbol code

( 1 = 8

) 2 ∃ 9

& 3 ∀ 10

¬ 4 vi 11+ 4i
∨ 5 ci 12+ 4i
→ 6 Pi 13+ 4i
↔ 7 Fi 14+ 4i

Then, for instance, the propositional formula P0 & P1 will be represented by the number
081031091.

7.2 Decidable vs. Undecidable Logical Systems

Let us consider some examples of decidable and undecidable logical systems.

Definition 7.2.1. A logical system is decidable if there is an effective procedure that, given the
Gödel number of a sentence φ, outputs 1 if φ is logically valid and outputs 0 if φ is not logically
valid.

For a given logical system such as propositional logic or predicate logic, we say that the decision
problem for this system is the problem of determining whether a given formula is logically valid.
Moreover, for a decidable logical system, we say that its decision problem is solvable; similarly, for
an undecidable logical system, we say that its decision problem is unsolvable.

We now turn to our examples.

Example 7.2.2. The decision problem for propositional logic is solvable.

The method of truth-tables provides an algorithm for determining whether a given propositional
formula φ is logically valid.

Example 7.2.3. The decision problem for monadic predicate logic is solvable.

Monadic predicate logic is first-order logic with only 1-place predicates such as R(x), B(y), etc.
A key result needed to show the decidability of monadic predicate logic is the following:

Theorem 7.2.4. Ifφ is a sentence of monadic predicate logic consisting of k distinct monadic predicates
and r distinct variables, then if φ is satisfiable, it is satisfiable in a model of size at most 2k · r.

As a corollary, we have:

Corollary 7.2.5. Ifφ is a sentence of monadic predicate logic consisting of k distinct monadic predicates
and r distinct variables and is not logically valid, then there is a model of size at most 2k · r in which
¬φ is satisfied.

Thus to determine if a sentence of monadic predicate logic is logically valid, we must check to
see whether φ is true in all models of cardinality less than some finite bound, which can be done
mechanically.

We now turn to some examples of undecidable logical systems.

Example 7.2.6. The decision problem for predicate logic is unsolvable.



7.3. DECIDABLE THEORIES 71

To show this, one can prove that, given the transition table of a Turing machine M , there is
a finite set ΓM of L -sentences in some first-order language L and an additional collection of
Ł-sentences {φn}n∈N such that for every n,

ΓM |= φn⇔ M(n)↓.

By the Completeness Theorem, it follows that

ΓM ` φn⇔ M(n)↓,

which is equivalent to
` ΓM → φn⇔ M(n)↓.

Now suppose there is an effective procedure that, given the Gödel number of any first-order sentence
φ, will output a 1 if ` φ and outputs a 0 otherwise. Then for all sentences of the form ΓM → φn,
this procedure will output a 1 if and only if ` ΓM → φn, which holds if and only if M(n)↓. But
this contradicts the unsolvability of the halting problem, and thus there can be no such effective
procedure.

Example 7.2.7. The decision problem for dyadic first-order logic is unsolvable.

Dyadic predicate logic is first-order logic with only 2-place predicates such as R(x , y), B(y, z),
etc. One can in fact show that if our language includes just one 2-place predicate, this is sufficient
to create a collection of sentences for which the decision problem is unsolvable.

7.3 Decidable Theories

In this section we identify a sufficient condition for a theory T to have an algorithm that enables us
to determine the consequences of T . Then we will provide a specific example of a theory satisfying
this condition, namely, the theory of dense linear orders without endpoints.

Hereafter, let us fix a first-order languageL . Given a set ofL -sentences S, we will often identify
it with the set of Gödel numbers of the sentences in S. Thus, when we say that a set S of formulas
is, say, computably enumerable, we really mean that the set of Gödel numbers of the formulas in S
is computably enumerable.

Definition 7.3.1. An L -theory Γ is decidable if there is an algorithm to determine for any L -
sentence ϕ whether Γ ` ϕ or Γ 6` ϕ.

Recall that for an L -theory Γ , Th(Γ ) = {φ : Γ ` φ}.

Definition 7.3.2. Let Γ be an L -theory.

(i) Γ is finitely axiomatizable if there is a finite set Σ of L -sentences such that Th(Σ) = Th(Γ ).

(ii) Γ is computably axiomatizable if there is a computable set Σ ofL -sentences such that Th(Σ) =
Th(Γ ).

Lemma 7.3.3. If Γ is a computably axiomatizable L -theory, then Th(Γ ) is computably enumerable.

Proof Sketch. Let Σ be a computable collection of L -sentences such that Th(Σ) = Th(Γ ). Since the
collection of all possible proofs with premises from Σ is computably enumerable, the collection
of L -sentences that are the conclusion of some proof with premises from Σ is also computably
enumerable. This collection of L -sentences is precisely the collection of consequences of Σ and
hence of Γ . It follows that Th(Γ ) is computably enumerable.

Theorem 7.3.4. If Γ is a computably axiomatizable, complete L -theory, then Γ is decidable.
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Sketch of Proof. By the previous lemma, Th(Γ ) is computably enumerable. Let f be a total com-
putable function whose range is Th(Γ ). Since Γ is complete, for every sentence ϕ, either the
sentence or its negation is in Th(Γ ). Thus the characteristic function χ of Th(Γ ) can be defined in
terms of f as follows. First, suppose that the Gödel numbers of the collection of L -sentences is
precisely N. Then for an L -sentence φ with Gödel number n, we let

χ(n) =

(

1, if φ is in the range of f

0, if ¬φ is in the range of f .

We now give an example of a computably axiomatizable, complete theory, namely the theory of
dense linear orders without endpoints.

The theory of linear orders, denoted LO, in the language {≤} has four sentences in it, which
state that the relation ≤ is reflexive, antisymmetric, transitive and that the order is total. The last
statement for total order is the following:

(∀x)(∀y)(x ≤ y ∨ y ≤ x).

Not that this theory does not rule out the possibility that two points in the relation x ≤ y are
actually equal. Since we include equality in every language of predicate logic, we can also define
the strict order x < y to be x ≤ y & x 6= y .

Next, the theory of dense linear orders, denoted DLO, is obtained from the theory of linear orders
by the addition of the density property:

(∀x)(∀y)(x < y → (∃z)(x < z < y))

Consider two more sentences that state the existence of endpoints of our linear order, REnd for
right endpoint and LEnd for left endpoint:

(∃x)(∀y)(x ≤ y)
(∃x)(∀y)(y ≤ x)

The theory of dense linear orders without first and last element, denoted DLOWE, is the theory
DLO with the addition of the negations of REnd and LEnd. It is this theory that we will show is
decidable.

One model of the theory is quite familiar, since the rationals with the usual order is a model:

〈Q,≤〉 |= DLOWE

To show that DLOWE is decidable, we only need to show that it is complete, since it is clearly
finitely axiomatizable (and hence computably axiomatizable). We will establish the completeness
of DLOWE by proving a series of results.

Theorem 7.3.5. Any non-empty model of DLOWE is infinite.

Proof. Left to the reader.

Theorem 7.3.6. Any two non-trivial countable models of DLOWE are isomorphic.

Proof. Suppose thatA =



A,≤A

�

andB =



B,≤B

�

are two non-empty countable models of DLOWE.
Suppose that




ai | i <ω
�

and



bi | i <ω
�

are enumerations of A and B, respectively. We define an
isomorphism h : A→ B by defining h in a sequence of stages.

At stage 0 of our construction, set h(a0) = b0. Suppose at stage m> 0, h has been defined on
{ai1 , . . . , aik} where the elements of A are listed in increasing order under the relation ≤A. Further
suppose that we denote by br j

the value of h(ai j
). Then since by hypothesis h is an isomorphism on
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the points on which it is defined, the elements br1
, . . . , brk

are listed in increasing order under the
relation ≤B.

At stage m = 2n of our construction, we ensure that an is in the domain of h. If h(an) has already
been defined at an earlier stage, then there is nothing to do at stage m = 2n. Otherwise, either
(i) an <A ai1 , (ii) aik <A an, (iii) or for some `, ai` <A an <A ai`+1

. Choose br as the element of B of
least index in the enumeration




bi | i <ω
�

that has the same relationship to br1
, . . . , brk

that an has
to ai1 , . . . , aik . It is possible to choose such a br in (i) the first case because B has no left endpoint,
(ii) the second case because B has no right endpoint, and (iii) the last case because the order is
dense. Extend h to an by setting h(an) = br .

At stage m = 2n+ 1 of our construction, we ensure that the point bn is in the range of h. As
above, if bn is in the range of h, then there is nothing to do at stage m = 2n+ 1. Otherwise, it has a
unique position relative to br1

, . . . , brk
. As above, either it is a left endpoint, a right endpoint, or it

lies strictly between br` and br`+1
for some `. As in the previous case, choose ar as the element of A

of least index in the enumeration of



ai | i <ω
�

which has the same relationship to ai1 , . . . , aik as
bn has to br1

, . . . , brk
, and extend h to ar by setting h(ar) = bn.

This completes the recursive definition of h. One can readily prove by induction that the domain
of h is A, the range of h is B, and that h is an isomorphism.

This property of DLOWE is an example of a more general property.

Definition 7.3.7. A theory Γ is κ-categorical for some infinite cardinal κ if and only if every two
models of Γ of cardinality κ are isomorphic.

Corollary 7.3.8. The theory DLOWE is ℵ0-categorical.

The key result here is that theories that are categorical in some power and have only infinite
models are also complete.

Theorem 7.3.9 (Los-Vaught Test). Suppose that Γ is a theory of cardinality κ with no finite models.
If Γ is λ-categorical for some (infinite) λ≥ κ, then Γ is complete.

Proof. Suppose by way of contradiction that Γ is not complete, but is λ-categorical for some λ≥ κ.
Then there is a sentence ϕ in the language of Γ such that neither Γ ` ϕ nor Γ ` ¬ϕ. Let Γ1 = Γ ∪{ϕ}
and Γ2 = Γ ∪ {¬ϕ}. Since Γ is consistent, so are Γ1 and Γ2. By the Completeness Theorem, each
of these theories has a model. Since both of these models are also models of Γ , by hypothesis,
they must be infinite. Therefore by the Löwenheim-Skolem Theorem, they each have models of
cardinality λ. Let N1 and N2 be models of Γ1 and Γ2 of cardinality λ. Both N1 and N2 are models
of Γ of power λ, so they are isomorphic. By recursion on the definition of |=, one can prove that
they model the same set of sentences. However N1 is a model of ϕ while N2 is a model of ¬ϕ.
This contradiction proves that Γ is complete.

Corollary 7.3.10. The theory DLOWE is complete and hence decidable.

Other examples of decidable theories are:

1. Presburger arithmetic (arithmetic without multiplication);

2. arithmetic with only multiplication and no addition;

3. the theory of real closed fields (fields F in which every polynomial of odd degree has a root
in F);

4. the first-order theory of algebraically closed fields of a fixed characteristic; and

5. the first-order theory of Euclidean geometry.
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7.4 Gödel’s Incompleteness Theorems

We now turn to undecidable theories. We will prove Gödel’s first incompleteness theorem (G1),
which states that any computably axiomatizable theory that contains elementary arithmetic (such
as Peano Arithmetic and ZFC) is incomplete and hence undecidable. Gödel’s second incompleteness
theorem (G2) states that any computably axiomatizable theory that contains a sufficient amount of
arithmetic cannot prove its own consistency. We will show this holds for Peano Arithmetic.

Just how much arithmetic is sufficient to prove the incompleteness theorems? For G1, it suffices
to satisfy the theory of arithmetic in the language {+,×, S, 0} known as Robinson’s Q, given by the
following axioms:

(Q1) ¬(∃x)S(x) = 0

(Q2) (∀x)(∀y)(S(x) = S(y)→ x = y)

(Q3) (∀x)(x 6= 0→ (∃y)x = S(y))

(Q4) (∀x)(x + 0= x)

(Q5) (∀x)(∀y)(x + S(y) = S(x + y))

(Q6) (∀x)(x × 0= 0)

(Q7) (∀x)(∀y)(x × S(y) = (x × y) + x)

Note that Q is finitely axiomatizable and hence is computably axiomatizable.
To carry out the proof of G2, a stronger theory of arithmetic is necessary (while there is a version

of G2 for Q, it is generally accepted that Q lacks the resources to recognize that the statement
asserting its consistency really is its own consistency statement). Such a theory can be obtained by
expanding our language to include symbols for every primitive function, adding axioms to Q that
define every primitive recursive function, and adding mathematical induction for quantifier-free
formulas (that is, for every quantifier-free formula φ in our language, we include as an axiom the
sentence (φ(0) & (∀n)(φ(n)→ φ(S(n)))→ (∀n)φ(n)). The resulting theory is known as primitive
recursive arithmetic, which one can verify is computably axiomatizable.

We will restrict our attention to Peano Arithmetic (hereafter, PA), which is obtained by adding
to Q the schema of mathematical induction for all formulas in the language of arithmetic. PA is
also computably axiomatizable.

In order to prove Gödel’s theorems, we have to represent the notion of provability within PA.
To do so requires us to code much of the meta-theory of PA inside of PA. We begin by coding the
natural numbers in the language of arithmetic as follows:

number name abbreviation
0 0 0
1 S(0) 1
2 S(S(0)) 2
...

...
...

Hereafter, the name of each n ∈ N in PA will be written n.
Next, we represent functions in PA.

Definition 7.4.1. A function f : Nk → N is definable in PA by a formula φ if the following
equivalence holds: For every u1, . . . , uk, v ∈ N

PA` φ(u1, . . . , uk, v) if and only if f (u1, . . . , uk) = v.

A relation is definable if its characteristic function is definable.
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We now code sequences of natural numbers in a computable and definable fashion. Although
we could use a coding like the one using prime numbers as in Section 7.1, we will use an alternative
coding.

Lemma 7.4.2. The following relations are both computable and definable in PA.

1. x ≤ y;

2. rem(x , y) = z where z is the remainder x is divided by y;

3. Code(x , y, z) = rem(x , 1+ (z + 1)y).

Proof. 1. (x ≤ y): The formula that defines this relation in PA is

x ≤ y if and only if (∃z)(x + z = y).

To see that the relation is computable, notice that since x ≤ y if and only if x−̇y = 0, the
characteristic function of the relation x ≤ y is

χ≤(x , y) = 1−̇(x−̇y)

2. (rem(x , y)): The formula that defines this relation in PA is

rem(x , y) = z if and only if (∃q)((x = yq+ z)&(0≤ z < y)).

To see that the relation is computable, notice that the desired value of q is the least q so that
y(q+ 1)> x . That is, this is the least q ≤ x such that it is not the case that y(q+ 1)≤ x , or
equivalently, the least q ≤ x such that χ≤(y(q+ 1), x) = 0, which can be found by bounded
search. If such a q exists, then we check to see if z = x − yq, which can be done computably.

3. (Code(x , y, z)): The definition of Code in PA is given above. Since addition, multiplication
and rem are all computable, so is Code.

Theorem 7.4.3. For any sequence k1, k2, . . . , kn of natural numbers, there exist natural numbers a, b
such that Code(a, b, 0) = n and Code(a, b, i) = ki for i = 1,2, . . . , n.

Proof. We prove this using the Chinese Remainder Theorem, which is as follows: Let m1, . . . , mn be
pairwise relatively prime (i.e., gcd(mi , m j) = 1 for i 6= j). Then for any a1, . . . , an ∈ N, the system
of equations

x ≡ a1 mod m1
...

x ≡ an mod mn

has a unique solution modulo M = m1 · . . . ·mn. To use the Chinese Remainder Theorem to prove
the theorem, let s =max{n, k1, . . . , kn} and set b = s!. We claim that the numbers

s!+ 1, 2s!+ 1, . . . , (n+ 1)s!+ 1

are pairwise relatively prime. Suppose not. Then there are c, d ∈ N such that 0 ≤ c < d ≤ n+ 1
and p ∈ N such that p | (cs! + 1) and p | (ds! + 1). Note that p > s, since p ≤ s implies that
rem(cs!+ 1, p) = 1. p | (cs!+ 1) and p | (ds!+ 1) together imply that

p | ((ds!+ 1)− (cs!+ 1)) = (d − c)s!.

However, p - s!, since p | s! implies p - (cs!+ 1). It follows that p | (d − c). But d − c < n ≤ s, so
p ≤ s, which contradicts our earlier statement. By the Chinese Remainder Theorem, there is a
unique solution x to
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x ≡ n mod s!+ 1
x ≡ k1 mod 2s!+ 1

...
x ≡ kn mod (n+ 1)s!+ 1

modulo M =
∏n+1

i=1 is!+ 1. Let a = x .
We now check that a and b are the desired values. First,

Code(a, b, 0) = rem(a, b+ 1)
= rem(a, s!+ 1) = n.

For i = 1, . . . , n,

Code(a, b, i) = rem(a, (i + 1)b+ 1)
= rem(a, (i + 1)s!+ 1) = ki .

Hereafter, let us fix a Gödel number of the symbols in the language of arithmetic:

symbol code symbol code

( 1 = 8

) 2 ∃ 9

& 3 ∀ 10

¬ 4 + 11

∨ 5 × 12

→ 6 S 13

↔ 7 vi 14+ i

Using the function Code, we now code as natural numbers the following objects: L -formulas,
L -sentences, sequences of L -sentences, and proofs. First, we note that a pair of natural numbers
(a, b) can be coded as a single natural number, denoted 〈a, b〉, by means of the following function:

〈x , y〉=
1

2
(x + y)(x + y + 1) + y.

Now, given an L -formula φ, if a, b are natural numbers such that Code(a, b, z) outputs the Gödel
numbers of the symbols that make up φ, then we will set ðφñ= 〈a, b〉. That is, ðφñ will denote
the Gödel number of φ.

Next, if φ1, . . . ,φk is a sequence of L -formulas, then n is the Gödel number of this sequence if
n= 〈c, d〉 and

Code(c, d, 0) = k
Code(c, d, i) = ðφiñ

for i = 1, . . . , k.
Recall that a proof Σ ` φ is a finite sequence of L -formulas ψ1, . . . ,ψn,φ, where each ψi ∈ Σ

or follows from some subcollection of {ψ1, . . . ,ψi−1} by one of the rules of inference. We will make
use of the following, which can be proved by showing that each of the rules of inference in the
predicate calculus can effectively verified to hold.

Lemma 7.4.4. There is a computable, definable predicate Proof(n, m) ⊆ N2 (represented by an L -
formula that we will also denote Proof(n, m) such that PA` Proof(n, m) if and only if m is the code of
a sequence of L -sentences ψ1, . . . ,ψn,φ such that {ψ1, . . . ,ψn} ` φ and ðφñ= n.
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We will make use of the following in the proof of Gödel’s first incompleteness theorem.

Theorem 7.4.5. The partial computable functions are exactly the functions definable in PA.

We prove two auxiliary lemmas.

Lemma 7.4.6. f : Nk→ N is partial computable if and only if

Graph( f ) = {(x1, . . . , xk, y) : f (x1, . . . , xk) = y}

is a computably enumerable set.

Proof. (⇒) If f is partial computable, then we can define an effective procedure that enumerates a
tuple (n1, . . . , nk, m) into Graph( f ) whenever we see f (n1, . . . , nk)↓= m.

(⇐) To compute f (n1, . . . , nk), enumerate Graph( f ) until we see some tuple (n1, . . . , nk, m) that
belongs to Graph( f ). If no such tuple exists, then we will wait forever and hence f (n1, . . . , nk)↑.

Lemma 7.4.7. S ⊆ Nk is computably enumerable if and only if there is a computable relation R ⊆ Nk+1

such that
S = {(n1, . . . , nk) : ∃z R(n1, . . . , nk, z)}.

We will omit the proof this lemma.

Proof of Theorem 7.4. (⇐): Suppose that f : Nk → N is definable in PA. Then there is some
L -formula φ f such that for all u1, . . . , uk, v ∈ N,

PA` φ(u1, . . . , uk, v)⇔ f (u1, . . . , uk) = v

⇔ (u1, . . . , uk, v) ∈ Graph( f ).

However, PA` φ(u1, . . . , uk, v) if and only if there is some finite X ⊆ PA such that X ` φ(u1, . . . , uk, v).
Equivalently, there is some m such that Proof(m,ðφ f (u1, . . . , uk, v)ñ) holds (where m codes a se-
quence ψ1, . . . ,ψ j ,φ f (u1, . . . , uk, v) where {ψ1, . . . ,ψ j} ` φ f (u1, . . . , uk, v)). It follows that

Graph( f ) = {(u1, . . . , uk, v) : ∃m R(u1, . . . , uk, v, m)}

where R(u1, . . . , uk, v, m) is the computable relation Proof(m,ðφ f (u1, . . . , uk, v)ñ). By Lemma 7.4.7,
Graph( f ) is computably enumerable, and so by Lemma 7.4.6, f is partial computable.

(⇒) We show all partial computable functions are definable in PA by induction. It is not hard to
show that the initial functions are definable.

1. (Constant function): The defining formula φc(x , y) for the constant function c(x) = 0 is

(y = 0) & (x = x).

2. (Projective functions): The defining formula φpk
j
(x1, . . . , xk, y) for the projection function

pk
j (x1, . . . , xk) = x j is

(y = x j) & (x1 = x1) & . . . & (xk = xk).

3. (Successor function): The defining formula φS(x , y) for the successor function S(x) = x + 1
is y = S(x).

For the induction step of the proof, we must show that the set of PA-definable functions is closed
under the production rules for the set of partial computable functions.
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(4) (Composition): Suppose that f and g1, g2, . . . , gk are definable in PA by the formulas φ f and
φg1

, . . . ,φgk
, respectively and that h is the function h(~x) = f (g1(~x), . . . , gk(~x)). Then the

defining formula φh(~x , y, z) for h is

(∃y1)(∃y2) . . . (∃yk)(φg1
(~x , y1) & . . . & φgk

(~x , yk) & φ f (y1, . . . , yk, z)).

(5) (Primitive Recursion): Suppose that f and g are definable in PA by φ f and φg , respectively,
and that h is the function defined by recursion with

h(~x , 0) = f (~x)
h(~x , y + 1) = g(~x , y, h(~x , y)).

To define h, we will use a pair of numbers a and b that code up the sequence

h(~x , 0), h(~x , 1), . . . , h(~x , y),

via the function Code, where h(~x , 0) = f (~x) and h(~x , n+ 1) = g(~x , n, h(~x , n)) for every n< y .
Thus the defining formula φh(~x , y, z) for h is

(∃a)(∃b)(φ f (~x , Code(a, b, 1))

& (∀i < y)(φg(~x , i, Code(a, b, i + 1), Code(a, b, i + 2))

& (z = Code(a, b, y + 1))).

(6) (Unbounded search): Left to the reader.

Thus the class of functions definable in PA includes all the initial functions and is closed under
the production rules. Therefore every partial computable function is definable in PA.

The following is a key ingredient of the proofs of the incompleteness theorems.

Lemma 7.4.8 (Diagonal lemma). Let φ(x) be an L -formula with one free variable. Then there is an
L -sentence ψ such that

PA`ψ↔ φ(ðψñ).

Proof. First, observe that the operation that, given inputs n ∈ N and a formula A(x) with one free
variable, outputs A(n) is purely mechanical. Similarly, the operation that, given inputs n ∈ N and
the Gödel number of such a formula A(x), outputs ðA(n)ñ, the Gödel number of A(n), is also purely
mechanical, and hence is intuitively computable.

Let subst(ðA(x)ñ, n) = ðA(n)ñ be this function, which is partial computable (since it may receive
as input some number that is not the Gödel number of any formula, or the Gödel number of a
formula with more than one free variable, etc.). By Theorem 7.4, there is a formula S(x , y, z) that
defines subst in PA.

The key observation to make here is that for any L -formula A(x) with one free variable, we can
consider the value subst(ðA(x)ñ,ðA(x)ñ). Given φ(x) as above, let θ (x) be the formula

(∃y)(φ(y) & S(x , x , y)).

That is, θ (x) says “There is some y satisfying φ that is obtained by substituting x into the formula
with Gödel number x .” Let k = ðθ (x)ñ and consider the sentence θ (k), which has Gödel number
ðθ (k)ñ. Call this sentence ψ.

Unpacking the sentence θ (k), we have

(∃y)(φ(y) & S(k, k, y))
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Moreover, since subst(k, k) = ðθ (k)ñ, one can show that

PA` (∀y)(S(k, k, y)↔ y = ðθ (k)ñ). (7.1)

Then by definition of ψ
PA`ψ↔ (∃y)(φ(y) & S(k, k, y)).

However, by Equation 7.1,

PA`ψ↔ (∃y)(φ(y) & y = y = ðθ (k)ñ).

Equivalently,
PA`ψ↔ φ(ðθ (k)ñ),

which can be rewritten as
PA`ψ↔ φ(ðψñ).

One last necessary result that we will state without proof is the following.

Lemma 7.4.9. Given an L -sentence ψ of the form (∃x)φ(x), if ψ is true in the standard model of
arithmetic, then ψ is provable in PA. That is,

N |= (∃x)φ(x)⇔ PA` (∃x)φ(x).

Theorem 7.4.10 (Gödel’s First Incompleteness Theorem). If PA is consistent, then PA is not complete.
That is, there is a sentence ψG true in the standard model of arithmetic such that PA 6` ψG and
PA 6` ¬ψG .

Proof. We apply the Diagonal Lemma to the formula ¬(∃x)Proof(x , y), which we will abbreviate
as ¬Prov(y) (Informally, this sentence asserts that there is no proof of the sentence with Gödel
number y). Thus, there is some L -sentence ψG (the “Gödel sentence") such that

PA`ψG ↔¬Prov(ðψGñ). (7.2)

That is, ψG is equivalent to the L -sentence that asserts that ψG is not provable.
We now show that if PA is consistent, then PA 6`ψG and PA 6` ¬ψG . In fact, we will show that

PA`ψG if and only if PA` ¬ψG , which is clearly impossible if PA is consistent and from which the
desired conclusion follows.

Observe that PA ` ψG if and only if (∃n)Proof(n,ðψGñ) holds, which is equivalent to PA `
(∃n)Proof(n,ðψGñ) by Lemma 7.4.9. This is equivalent to PA` Prov(ðψGñ), which is equivalent to
PA` ¬ψG by (7.2).

Lastly, if PA is consistent, then N |=ψG . Suppose instead that N |= ¬ψG . Since ¬ψG is equivalent
to (∃n)Proof(n,ðψGñ), it follows that N |= (∃n)Proof(n,ðψGñ). But then by Lemma 7.4.9, it follows
that PA ` (∃n)Proof(n,ðψGñ), i.e., PA ` Prov(ðψGñ). But this implies that PA ` ¬ψG, which we
have shown is impossible.

We now turn to Gödel’s second incompleteness theorem. Informally, Gödel’s second theorem
states that if PA is consistent, then it cannot prove that it is consistent. To express this formally, we
need to formalize that statement that PA is consistent within PA. The standard way to do this by
the formula ¬Prov(ð0= 1ñ).

Theorem 7.4.11 (Godel’s Second Incompleteness Theorem). If PA is consistent, then

PA 6` ¬Prov(ð0= 1ñ).
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To prove G2, one can show (with a considerable amount of work) that the proof of G1 can be
carried out entirely within PA. We proved above that if PA is consistent, then PA 6`ψG; within PA,
this yields

PA` ¬Prov(ð0= 1ñ)→¬Prov(ðψGñ).

By G1, we have
PA`ψG ↔¬Prov(ðψGñ).

It follows from the previous two statements that

PA` ¬Prov(ð0= 1ñ)→ψG .

Thus if PA ` ¬Prov(ð0 = 1ñ), it would follow that PA ` ψG, which is impossible by G1. Hence
PA 6` ¬Prov(ð0= 1ñ).

Let us take a more general approach to proving G2. Let B(x) be an L -formula with one free
variable. The following three conditions are referred to as derivability conditions:

(D1) If PA` φ, then PA` B(ðφñ).

(D2) PA` B(ðφ→ψñ)→ (B(ðφñ)→ B(ðψñ)).

(D3) PA` B(ðφñ)→ B(ðB(ðφñ)ñ).

With some effort, one can prove that if we let B(x) be the formula Prov(x), then (D1)-(D3) hold.
We can now formulate an abstract version of G2:

Theorem 7.4.12 (Abstract G2). If B(x) satisfies (D1)-(D3), then PA 6` ¬B(ð0= 1ñ).

To prove this theorem, we will first prove the following, which tells us that PA can only prove
that soundness for sentences that it can prove to hold.

Theorem 7.4.13 (Löb’s Theorem). If B(x) satisfies (D1)-(D3), then for any L -sentence φ, if PA`
B(ðφñ)→ φ, then PA` φ.

Proof. Suppose that B(x) satisfies (D1)-(D3) and that

PA` B(ðφñ)→ φ. (7.3)

Let θ (y) be the formula B(y)→ φ. By the Diagonal Lemma there is an L -sentence ψ such that

PA`ψ↔ (B(ðψñ)→ φ) (7.4)

and hence
PA`ψ→ (B(ðψñ)→ φ). (7.5)

From (7.5) and (D1) it follows that

PA` B(ðψ→ (B(ðψñ)→ φ)ñ). (7.6)

By (D2)
PA` B(ðψ→ (B(ðψñ)→ φ)ñ)→ (B(ðψñ)→ B(ðB(ðψñ)→ φñ)) (7.7)

Then by applying modus ponens to (7.6) and (7.7), we have

PA` B(ðψñ)→ B(ðB(ðψñ)→ φñ). (7.8)

Again by (D2),
PA` B(ðB(ðψñ)→ φñ)→ (B(ðB(ðψñ)ñ)→ B(ðφñ)). (7.9)

From (7.8) and (7.9) we have

PA` B(ðψñ)→ (B(ðB(ðψñ)ñ)→ B(ðφñ)). (7.10)
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By (D3),
PA` B(ðψñ)→ B(ðB(ðψñ)ñ), (7.11)

and so from (7.10) and (7.11) we can conclude

PA` B(ðψñ)→ B(ðφñ). (7.12)

By (7.3) and (7.12) we have
PA` B(ðψñ)→ φ. (7.13)

From (7.4) and (7.13) it follows that
PA`ψ. (7.14)

From (D1) we can infer from (7.14) that

PA` B(ðψñ). (7.15)

Applying modus ponens to (7.13) and (7.15) gives the desired conclusion

PA` φ.

Proof of Abstract G2. Suppose B(x) satisfies (D1)-(D3) and that PA` ¬B(ð0= 1ñ). Then

PA` B(ð0= 1ñ)→ φ

for any L -sentence φ. In particular,

PA` B(ð0= 1ñ)→ 0= 1.

Then by Löb’s Theorem, it follows that PA ` 0 = 1, which contradicts our assumption that PA is
consistent. Thus PA 6` ¬B(ð0= 1ñ).

7.5 Exercises

1. Find the Gödel number for the predicate logic formula

(∃v1)(∀v2)F0(v1, v2) = v2
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Chapter 8

Computable Mathematics

In this chapter, we will examine computability for several problems in mathematics. We are looking
for families of problems which may have a general solution, where the methods have an algorithmic
flavor. Our goal is to determine whether there is really an algorithm to solve the problem. This
will include the problems from combinatorics such as finding a coloring of a graph, and finding a
homogeneous set for a partition. Problems from analysis include finding the zeros and the extreme
values of a continuous function on an interval, and solving certain standard differential equations.
We will also examine the problem of finding a maximal ideal of a Boolean algebra, and the related
problem from logic of finding a complete consistent extension of a theory.

8.1 Computable Combinatorics

In this section, we consider computable aspects of the coloring problem for graphs, and the partition
problem from Ramsey theory.

A graph G = (V, E) is given by a set V of vertices and a binary relation E; pairs (u, v) such that
E(u, v) (sometimes written uEv) are said to be edges. We assume that E is symmetric, that is the
edges are unordered, and irreflexive, that is, there are no edges from a vertex v to itself. For any
vertex v, let N(v) denote {u : uEv}. The degree δ(v) of a vertex v is the number of edges from v,
that is, the cardinality of N(v); more generally N(A) =

⋃

{N(v) : v ∈ A} for A⊆ V . Then we can
inductively define N i(A) by letting N0(A) = A and letting N i+1(A) = N(N i(A)). Note that A⊆ N i(A)
for i ≥ 2 as long as δ(v) 6= 0.

A coloring of G is a map F from V to a set K of colors. G is said to be k-colorable if there is
a coloring mapping to the set {1,2, . . . , k}. One of the most famous results of recent years is the
solution of the 4-coloring problem, showing that every planar graph can be colored with 4 colors.
The problem we want to examine is this: Given that G has a k-coloring, how hard is it to find such a
coloring. In particular, suppose that G = (ω, E) is an infinite computable graph which is k-colorable.
Does G have a computable k-coloring?

We say that the graph G = (ω, E) is computable if E is a computable relation. We will consider
here only highly computable graphs, where the degree function δ is also computable.

Proposition 8.1.1 (Bean 1976). If the highly computable graph G is k-colorable for some fixed finite
k, then G has a computable 2k-coloring.

Proof. We will give the argument when G is connected. Let v0 = 0, let G1 = {v0} ∪ N(v0) and let
Gn+1 = N(Gn) for each n ≥ 1. Then we have Gn ⊆ Gn+1 for all n, and

⋃

n Gn = V . Furthermore,
is v ∈ Gn, then N(v) ⊆ Gn+1. Now let X1 = G1 and let Xn+1 = Gn+1 \ Gn for all n ≥ 1. Then
⋃

n Xn = G1 ∪ [G2 \ G1] ∪ [G3 \ G2] ∪ · · · [Gn \ Gn−1] =
⋃

n Gn = V . Now for v ∈ X i, v ∈ Gi
and hence N(v) ⊆ Gi+1, so that N(v) ∩ Xn = ; for all n > i + 1. It follows by symmetry that
N(X i) ⊆ X i−1 ∪ X i ∪ X i+1. Now let K = {1,2, . . . , k, k + 1, . . . , 2k}. We compute the coloring
F : V → K on each set X i as follows. If i is odd, then we compute, by trial and error, a coloring
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Fi of X i using the colors {1, . . . , k} and if i is even, then we compute Fi using the colors from
{k + 1, . . . , 2k}. Then F(v) is defined to be Fi(v) when v ∈ X i. We now check that F is a legal
coloring of V . Suppose that uEv and that v ∈ X i . There are two cases by the above. Either u ∈ X i ,
so that F(u) = Fi(u) 6= Fi(v) = F(v), or u ∈ X i−1 ∪ X i+1, in which case F(u) and F(v) are chosen
from disjoint sets of colors, so that again F(u) 6= F(v).

If G is not connected, we just let Gn+1 = N(Gn)∪ {vn} and proceed as before.

Theorem 8.1.2. There is a highly computable, 3-colorable graph G with no computable 3-coloring.

Proof. Let φ0,φ1, . . . enumerate all (partial) computable functions from V = ω to {1,2,3}. We
build the computable graph G consisting of, for each e, a pair of "towers" to show that φe cannot
possibly be a 3-coloring of G. So there will be vertices ue and ve at the base of the e-towers. The
first step of the construction for each tower adds 3 vertices w1, w2, w3, so that (for the ue tower)
ue, w1, w2 are joined by edges and also w1, w2, w3 are joined by edges. Thus in any 3-coloring F of
G, F(ue), F(w1), F(w2) are all different and F(w3) = F(ue), and similarly for any ve column. For
each e, we continue this construction so that at stage s, we have vertices us

e and vs
e at the top of the

ue and ve columns which must receive the same color as ue and ve (respectively) in any 3-coloring
of G. Now we use these two e-towers to ensure that φe is not a legal 3-coloring of G. We keep
building the towers until φe(ue) and φe(ve) are both defined at some stage s. At that point there
are two cases.

Case I: If φe(ue) = φe(ve), then we create an edge between us+1
e and vs+1

e . Since the towers
are constructed to force φe(us+1

e ) = φe(vs+1
e ), but the edge forces them to have different colors, it

follows that φe is not a legal 3-coloring of G.
Case 2: If φe(ue) 6= φe(ve), then we connect us+1

e and vs+1
e with two new vertices x and y such

that x E y as well. This link will force them to have the same color, so that again φe is not a legal
3-coloring of G.

Next we consider a special case of the (Ramsey) partition problem. Let [N]i be the family of
subsets of N of cardinality i. In particular [N]2 is the set of unordered pairs of (distinct) natural
numbers. If C : [N]2 → {1,2, . . . , k} is a k-coloring of [N]2, then a subset A of N is said to be
homogeneous for C if there is a single color i such that C({a, b}) = i for all pairs a, b of elements
from A. Note that here a k-coloring is any map from [N]i to {1,2, . . . , k}.

The infinite version of Ramsey’s Theorem for pairs shows that for any k-coloring of [N]2, there
exists an infinite homogeneous set. More generally we have.

Theorem 8.1.3. For natural numbers r, k, for every function f : [ω]r → k, there is an infinite set
a ⊂ω such that f is constant on [a]r .

Proof. The proof is by induction on r. The base case r = 1 is immediate since for f : ω→ k, f
induces a partition of ω into k sets, Ai = {a : f (a) = i}, one of which must be infinite.

xxx

Theorem 8.1.4. There exists a computable partition f : [N]2→ {1, 2} such that no homogeneous set
for f is computably enumerable.

Proof. Let We be the eth computable enumerable set. We define our computable coloring C to
satisfy, for each e, the requirement Re that We is not both infinite and homogeneous for C .

For an individual requirement Re, we try to identify a pair ae < be in We which will have a
certain color, say C({ae, be}) = k, and ensure that, for almost all n, C({ae, n}) 6= C({be, n}). Thus if
We is infinite, then it cannot be homogeneous for C . It is important to note that another requirement
Rimight want to use one or both of ae, be. So we need to organize and prioritize the requirements.
That is, we give the ith requirement higher priority than the eth requirement if i < e.

The construction is in stages s so that we have colored all pairs {a, b} with a, b ≤ s by stage s.
This will make C a computable coloring. So at stage 1, we let C({0,1}) = 1.

After stage s, we will have defined C({a, b}) for all a, b ≤ s and, for certain e ≤ s, we will have
designated as

e < bs
e < s.
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Now at stage s+ 1, we check to see whether there is some new e ≤ s+ 1 so that W s+1
e now has

two elements a < b ≤ s which have not been used by any higher priority requirement, and that as
e

and bs
e are not defined. If so, then we take the least such e and the least such pair a, b ∈W s+1

e and
set as+1

e = a and bs+1
e = b. If there is i > e such that as

i and bs
i were defined but one or both of them

is now needed by requirement Re , then we cancel the designation for the i th requirement, so that
as+

i and bs+1
i are undefined. For other i ≤ s+ 1, we let as+1

i = as
i and bs+1

i = bs
i . Then we define

C({x , s+ 1}) for all x to be 1, unless x = bs+1
e for some i, in which case we let C(x , s+ 1) = 2.

Let us say that as
e and bs

e are permanently defined at stage s if for all t > s, at
e = as

e and bt
e = bs

e,
and let ae = l imsa

s
e and be = bs

e if this exists. as
e and bs

e are permanently undefined at stage s if for
all t ≥ s, at

e bt
e are undefined.

Lemma 8.1.5. For any e, there is a stage s such that as
e, bs

e are permanently defined or are permanently
undefined at stage s. Furthermore, if We is infinite, then there is a stage s such that as

e, bs
e are permanently

defined at stage s.

Proof. The proof is by induction on e. For e = 0, there are two cases. First, it may be that W0 has
≤ 1 elements, and in that case we never act for requirement R0so that a0 and b0 are permanently
undefined at stage 0. Otherwise, consider the least s such that W s+1

e has two distinct elements
a < b and let {a, b} be the least such pair. Then since there is no higher priority requirement, the
construction will make a = as+1

e and b = bs+1
e and these designations will never be canceled. Now

suppose the lemma holds for all i < e, and let s be large enough so that, for all i < e, as
e and bs

e are
either permanently defined at stage s or permanently undefined at stage s. It follows that if as

e and
bs

e are defined at stage s or at any later stage t, then they can never be undefined at a later stage.
This proves the first part of the lemma. Now suppose that We is infinite. Then there must exist
a < b in We different from all permanently defined as

i and bs
i with i < e. Let a < b be the least such

pair and let a, b ∈W t+1 for some t > s. There are two cases. If at
e and bt

e are already defined, then
as above they are permanently defined at stage t. If not, then the construction will make at+1

e = a
and bt+1

e = b and they will be permanently defined at stage t + 1.

Lemma 8.1.6. For any e such that We is infinite, We is not a homogeneous set for C.

Proof. By Lemma 8.1.5, there is stage s such that as
e and bs

e are permanently defined after stage
s. Then for all x ≥ s+ 1, we have C({x , ae}) = 1 and C({x , be}) = 2. Since We is infinite, it must
contain an element x ≥ s+ 1. It follows that We is not homogeneous for the coloring C .

This complete the proof of Theorem ??.

8.2 Computable Analysis

In this section, we discuss computablity of real numbers and of continuous functions, as well as
computable aspects of such standard results as the Intermediate Value Theorem.

8.2.1 Computable Real Numbers

Definition 8.2.1. A real number r is said to be computable if there is a computable sequence
{qn : n ∈ω} of rationals such that |r − qn| ≤ 2−n for all n.

Thus any rational number q is itself computable as the limit of a constant sequence. For a more
interesting example, it is easy to see that the transcendental number e is computable, by examining
the sequence of partial sums 1+ 1/2+ 1/6+ · · ·+ 1/n. To see that

p
2 is computable, just compute

decimals qn < rn to n places such that q2
n < 2 < r2

n . Then certainly l imnqn = l imnrn =
p

2. Since
rn − qn = 10−n, it follows that

p
2− qn < 10−n.

Given an infinite sequence x ∈ {0, 1}ω, we may form the real number rx =
∑∞

n=1 x(n)2−n−1.
Weaker notions of definability are also of interest.
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Definition 8.2.2. 1. A real number r is lower semi-computable if there is a computable, non-
decreasing, sequence {qn : n ∈ω} of rationals such that limn qn|= r.

2. A real number r is upper semi-computable if there is a computable, non-increasing, sequence
{qn : n ∈ω} of rationals such that limn qn|= r.

3. A real number r is approximable if there is a computable sequence {qn : n ∈ω} of rationals
such that limn qn|= r.

Proposition 8.2.3. For any real r, r is computable if and only if r is both lower semi-computable and
upper semi-computable.

Proof. Suppose first that r is computable and let {qn : n ∈ ω} be a computable sequence of
rationals such that |qn − r| ≤ 2−n. This means that r − 2−n ≤ qn ≤ r + 2−n for each n. Now let
sn = max{qn − 2−n : i ≤ n} for each n; this is clearly a non-decreasing sequence. For each n, we
have qn − 2−n ≤ sn ≤ qn, so that l imnsn = l imnqn = r. It follows that r is lower semi-computable.
The argument for upper semi-computability is similar.

For the other direction, let {pn : n ∈ ω} be a non-decreasing sequence of rationals and {rn :
n ∈ ω} be a non-increasing sequence of rationals such that l imnpn = r = l imnrn. Then we have
pn ≤ r ≤ rn for each n and l imnrn−pn = 0. So we can choose a sequence ni such that rni

−pni
< 2−i

and let qi = pni
. Then l imiqi = r and r − qi < rni

− pni
< 2−i .

Definition 8.2.4. A set D of rationals is a Dedekind cut if is closed downward, bounded above,
and contains no greatest element. For any real r, let Dr = {q ∈ Q : q < r}. This will always be a
Dedekind cut.

One version of the Completeness Principle for the real numbers is that every Dedekind D cut
has a supremum, which will be a real r such that D = Dr .

Proposition 8.2.5. For any real r,

1. r is lower semi-computable if and only if Dr is computably enumerable.

2. r is upper semi-computable if and only if the complement of Dr is computably enumerable.

3. r is computable if and only if Dr is computable.

Proof. Suppose that r is lower semi-computable and let {qn : n ∈ ω} be a computable, non-
decreasing sequence such that r = l imnqn. Then we have, for any rational q,

q < r ⇐⇒ (∃n)q < qn

For the other direction, suppose that Dr is computably enumerable and that r is not a rational
itself. Then let p0, p1, . . . be a computable enumeration of Dr and define the increasing sequence
qn = pin as follows: Leti0 = 0, so that q0 = p0. For each n, let in+1 be the least i > in such that
qn < pi. This is an increasing sequence by construction, so the limit s must exist and s ≤ r since
each qn < r. Furthermore, for each n and each i < in, we can see by induction that pi < pin . (This
is trivial for i = 0, so suppose that i < in+1. There are two cases. If i ≤ in, then by induction
pi ≤ pin < pin+1

. If in < i < in+1, then by the choice of in+1, we must have pi ≤ pin .) Since the
sequence in is strictly increasing, we have n≤ in and therefore pn ≤ pin . Now suppose by way of
contradiction that s = l imnqn < r. Then by the density of Q, there is a rational p with s < p < r.
Then p = pn for some n, so that p ≤ pin ≤ s. It follows that r is lower semi-computable.

A similar argument works for upper semi-computable in each direction.
For the third clause, r is computable if and only if r is both lower and upper semi-computable,

by Proposition 8.2.3, which is if and only if Dr is both lower and upper semi-computable, which is
if and only if Dr is computable, by Proposition 6.4.9

Proposition 8.2.6. For any real r ∈ [0, 1], r is computable if and only if r = rx for some computable
x ∈ 2ω.
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Proof. For the first direction, suppose that r is computable and therefore {q ∈ Q : q < r} is
computable. If r is a dyadic rational, that is, of the form i2−n for some nonnegative integers i and
n, then r = rx where x is eventually 0. Otherwise, for all dyadic rationals q, q < r if and only if
q ≤ r. We define the function x ∈ 2ω such that r = rX by recursion as follows. Let x(0) = 1 if 1

2
< r

and x(0) = 0 otherwise (in which case r < 1
2
. Given x(0), . . . , x(n), let qn =

∑

i≤n x(i)2−i−1 and let
x(n+ 1) = 1 if qn + 2−n−2 < r, and x(n+ 1) = 0, otherwise. It follows from this construction that
qn < r, qn + 2−n−1, so that r = l imnqn. But by definition of x , rx =

∑∞
i=0 x(i)2−i−1 = l imnqn.

For the other direction, suppose that we are given a computable x and r = rx and let qn =
∑n

i=0 x(i)2−i−1. Then for each n,

rx − qn =
∑

i=n+1

x(n)2−i−1 ≤
∑

i=n+1

2−i−1 = 2−n.

Then r = l imnqn and it follows that r = rx is computable.

8.2.2 Computable Real Functions

There are several equivalent notions of computability for real functions. For simplicity, we will
consider functions F : [a, b]→ [a, b] for some computable reals a < b. A computable real function
may be viewed as an effectively continuous function.

Definition 8.2.7. Fix computable reals a < b. A real function F : [a, b]→ [a, b] is computable if
there is a computable sequence fn of functions fn :Q×→Q and a computable function φ : N→ N
such that, for every real r ∈ [a, b], every rational q ∈ [a, b], and every n ∈ N, if |q− r| < 2−phi(n),
then F(r)− fn(q)|< 2−n.

Definition 8.2.8. A function µ : N→ N is a modulus function for a continuous function F : [a, b]→
[a, b] if for every n and every r, s ∈ [a, b], |r − s| ≤ 2−µ(n) implies that F(r)− F(s)| ≤ 2−n.

It is easy to see that F is continuous if and only if it has a modulus function.

Proposition 8.2.9. If F : [a, b]→ [a, b] is computable, then F has a computable modulus function
and F is continuous.

Proof. Let F , { fn : n ∈ ω}, and φ be given as above and suppose that |r − s| ≤ 2−φ(n+1) for reals
r < s ∈ [a, b]. Then there exists a rational q between r and s such that q − r and s − q are both
≤ 2−φ(n+1. It follows that |F(r) − fn+1(q)| and F(s) − fn+1(q)| are both ≤ 2−n−1 and therefore
|F(r)− F(s)| ≤ 2−n. Thus µ(n) = φ(n+ 1) is a computable modulus function for F .

Another approach to computable real functions is via approximations of continuous functions
by simple functions such as polynomials or piecewise linear functions. In particular, polynomials
with rational coefficients, as well as piecewise linear functions with rational critical points, will
map rational points to rational points. Thus a computable sequence of such functions will provide
a sequence of rational functions { fn : n ∈ω} as above. The following is equivalent to our definition
above.

Definition 8.2.10 (Pour-El). Fix computable reals a < b. A real function F : [a, b] → [a, b] is
computable if there is a computable sequence Pn of rational polynomials and a function φ : N→ N
such that, for all r ∈ [a, b], |F(r)− Pk(r)| ≤ 2−n whenever k ≥ φ(n).

It is not hard to approximate piecewise linear functions by polynomials and vice versa, hence
we have another equivalent alternative definition.

Definition 8.2.11. Fix computable reals a < b. A real function F : [a, b]→ [a, b] is computable if
there is a computable sequence Pn of rational piecewise linear functions and a function φ : N→ N
such that, for all r ∈ [a, b], |F(r)− Pk(r)| ≤ 2−n whenever k ≥ φ(n).
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Theorem 8.2.12 (Computable Intermediate Value Theorem). For any computable real function
F : [a, b] → [a, b] → [a, b] and any computable real c such that F(a) < c < F(b), there exists a
computable real r such that F(r) = c.

Proof. For simplicity, we give the argument when a = 0, b = 1 and c = 0. There are two distinct
cases. First suppose that F(r) = 0 for some dyadic rational i/2k. Then clearly such a zero r
is computable. Thus we may assume that F(r) 6= 0 for any dyadic rational r. It follows that
F(1/2) 6= 0 and without loss of generality F(1/2) > 2−n for some n. Now for all m ≥ µ(n+ 1),
| fm(1/2)− F(1/2)| ≤ 2−n−1, so that fm(1/2)≥ 2−n−1. So we just compute fm(1/2) for m = 0, 1, . . .
until we find m and n such that m≥ µ(n+1) and fm(1/2)≥ 2−n−1. This will tell us that F(1/2)> 0.
Similarly, if F(1/2)< 0, then we will eventually learn this. If we see that F(1/2)> 0, then there
must be a zero in the smaller interval [0, 1/2], so we next examine the value F(1/4); if F(1/2)< 0,
then we look at [1/2, 1] and examine F(3/4). Continuing in this fashion, after n steps we will have
an interval of diameter 2−n which must contain a zero of F ; let qn be the midpoint of this interval.
Then the sequence qn is computable and the intersection of these intervals willl be a singleton {r}
such that r = l imnqn, |qn − r| ≤ 2−n, and F(r) = 0.

It can be shown that there is no uniform algorithm which computes the zero r ∈ [a, b] from the
values a, b.

On the other hand, if say F(r)≥ 0 for all r ∈ [a, b], then it is possible that F(r) = 0 for some r
but not for any computable r.

Theorem 8.2.13. There is a computable real function F on [−1, 1] such that F(r) = 0 for infinitely
many reals in [−1,1] but there is no lower semi-computable r real in (−1, 1) such that F(r) = 0.

Proof. Let φe be the eth partial computable function mapping Q∩ [0, 1]→ {0, 1}, so that r ∈ [0, 1]
is a computable real if and only if φe is the characteristic function of {q ∈Q : q < r}. We want to
satisfy for each e, the following requirement:

Re: If φe is total and is the characteristic function of a Dedekind cut Dr for some r = re, then
F(re)> 0.

At the same time, we need to have F(x) = 0 for some x ∈ [−1,1].
For each individual requirement Re, we look for rationals p < q with q − p < 2−e−1, and

either q > −1 or p < 1, and a stage s such that φs
e(p) = 1 and φs

e(q) = 0, so that we know that
p < r < q.Then we can ensure that F(r)> 0 by adding a triangular bump F s

e to F , where F s
e (x) = 0

if either x ≤ p or x ≥ q, F( p+q
2
) = 2−s−1, and the function is linear from (p, 0) to ( p+q

2
, 2−s−1 and

from there to (q, 0).
The construction of F : [−1,1]→ [−1,1] is now given in stages. Initially we have F(x) = 0

for all x . At stage s + 1, we look for the least e such that p and q exist as above, and such that
requirement Re has not yet been satisfied. Then we add the function Fs = F s

e , described above, to
F . Once this has been done for e, we say that the eth requirement is satisfied, and we no longer
act on it at future stages. Then we define F(x) =

∑

s≤n Fs(x). and let the piecewise linear function
Pn(x) =

∑

s≤n Fs(x). Then we have Fs(x)≤ 2−s−1 for all reals x , so that

F(x)− Pn(x) =
∑

s>n

Fs(x)≤
∑

s>n

2−s−1 = 2−n−1.

Thus F(x) is a computable function, according to Definition 8.2.10.
We need to check that F(x) does equal zero for some x ∈ [−1,1]. The explanation is that for

each e, the domain of the bump F s
e corresponding to action on Requirement e has diameter < 2−e−1.

Thus the total measure of the union of these domains is <
∑

e 2−e−1 = 1, and it follows that the
measure of {x ∈ [−, 1, 1] : F(x) = 0} is at least 1.

Now suppose that r ∈ [−, 1, 1] is a computable real. Then for some e, φe is the characteristic
function of {q : q < r}. Since the rationals are dense, there must exist rationals p, q with p < r < q
and q− p < 2−e. Then at some stage s, we will see φs

e(p) = 1 and φs
e(q) = 0. Since there are only

finitely many natural numbers d < e, eventually there will be a stage s where e will be the least not
yet acted on, and we will add the function F s

e at that stage. Therefore F(r)> 0.
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8.3 Exercises

1. Find a computable sequence qn of rationals to show that sin 2 is computable.

2. Show that a real r is lower semi-computable if and only if {q ∈ Q : q < r} is computably
enumerable.



90 CHAPTER 8. COMPUTABLE MATHEMATICS



Chapter 9

Boolean Algebras

91



92 CHAPTER 9. BOOLEAN ALGEBRAS



Chapter 10

Real Numbers

93



94 CHAPTER 10. REAL NUMBERS



Chapter 11

Nonstandard Analysis

95



96 CHAPTER 11. NONSTANDARD ANALYSIS



Chapter 12

Algorithmic Randomness

97



98 CHAPTER 12. ALGORITHMIC RANDOMNESS



Bibliography

99


