Equivalence Structures and Isomorphisms in the Difference Hierarchy

D. Cenzer, G. LaForte and J.B. Remmel

August 23, 2007

Abstract

We examine the notion of structures and functions in the Ershov difference hierarchy, and of equivalence structures in particular. A equivalence structure $\mathcal{A} = (A, E)$ has universe $A = \omega$ and an equivalence relation E. The equivalence class [a] of $a \in A$ is $\{b \in A : aEb\}$ and the *character* K of A is $\{\langle k, n \rangle \in (\omega - \{0\})^2 : \mathcal{A} \text{ has at least } n \text{ classes of size } k\}$. It is known that for any character K, there exists an equivalence structure with character K if and only if K is Σ_2^0 but that there exists a Δ_2^0 character such that any equivalence structure with character K must have infinite equivalence classes. We show: (1) for any n-c.e. character K, there is an equivalence structure with character K and no infinite equivalence classes; (2) there is an ω -c.e. character K such that any equivalence structure with character K must have infinite equivalence classes; (3) For any Δ_2^0 character K, there exists a d.c.e equivalence structure with no infinite equivalence classes and character K. We define the notions of α -c.e. functions and graph- α -c.e. functions and show: (1) Any nonempty Σ_2^0 set is the range of 2-c.e. function; (2) for every n, there is an (n + 1)-c.e. function which is not graph-n-c.e.; (3) there is a graph-2-c.e function that is not ω -c.e.; (4) there is a 2-c.e. bijection such that f^{-1} is not ω -c.e. We define the notions of (weakly) α -c.e. and of graph- α -c.e. isomorphisms and show: (1) For each n, there exist computable equivalence structures which are n + 1-c.e. isomorphic but not weakly *n*-c.e. isomorphic; (2) there are computable equivalence structures which are graph-2-c.e isomorphic but not weakly ω -c.e. isomorphic. We show that a computable equivalence structure is computably categorical if and only if it is weakly $\omega\text{-c.e.}$ categorical, by examining all cases. We show that any computable equivalence structure with bounded character K (and any number of infinite equivalence classes) is relatively graph-2-c.e. categorical and we show that any computable equivalence structure with a finite number of infinite equivalence classes is relatively graph- ω -c.e. categorical. It follows that a computable equivalence structure is Δ_2^0 categorical if and only if it is graph- ω -c.e. categorical.