Degrees of difficulty of generalized r.e. separating classes

Douglas Cenzer and Peter G. Hinman

Abstract

Important examples of Π_1^0 classes of functions $f \in {}^{\omega}\omega$ are the classes of sets (elements of ${}^{\omega}2$) which separate a given pair of disjoint r.e. sets: $S_2(A_0, A_1) :=$ $\{f \in {}^{\omega}2 : (\forall i < 2)(\forall x \in A_i)f(x) \neq i\}$. A wider class consists of the classes of functions $f \in {}^{\omega}k$ which in a generalized sense separate a k-tuple of r.e. sets (not necessarily pairwise disjoint) for each $k \in \omega$: $S_k(A_0, \ldots, A_{k-1}) := \{f \in {}^{\omega}k : (\forall i < k)(\forall x \in A_i)f(x) \neq i\}$. We study the structure of the Medvedev degrees of such classes and show that the set of degrees realized depends strongly on both k and the extent to which the r.e. sets intersect. Let S_k^m denote the Medvedev degrees of those $S_k(A_0, \ldots, A_{k-1})$ such that no m+1 sets among A_0, \ldots, A_{k-1} have a nonempty intersection. It is shown that each S_k^m is an upper semi-lattice but not a lattice. The degree of the set of k-ary diagonally nonrecursive functions DNR_k is the greatest element of S_k^1 . If $2 \leq l < k$, then $\mathbf{0}_M$ is the only degree in S_l^1 which is below a member of S_k^1 . Each S_k^m is densely ordered and has the splitting property and the same holds for the lattice \mathcal{L}_k^m it generates. The elements of S_k^m are exactly the joins of elements of S_i^1 for $[\frac{k}{m}] \leq i \leq k$.