Σ_1^0 and Π_1^0 equivalence structures

Douglas Cenzer, Valentina Harizanov, and Jeffrey B. Remmel

Abstract

We study computability theoretic properties of Σ_1^0 and Π_1^0 equivalence structures and how they differ from computable equivalence structures or equivalence structures that belong to the Ershov difference hierarchy. This includes the complexity of isomorphisms between Σ_1^0 equivalence structures and between Π_1^0 equivalence structures. Any Σ_1^0 equivalence structure \mathcal{A} with infinitely many infinite equivalence classes is isomorphic to a computable structure. On the other hand, there are Σ_1^0 equivalence structures with finitely many infinite equivalence classes, which are *not* isomorphic to any computable structure. If Σ_1^0 equivalence structures \mathcal{A}_1 and \mathcal{A}_2 are isomorphic to a computable structure \mathcal{A} that is computably categorical or relatively Δ_2^0 categorical, then \mathcal{A}_1 and \mathcal{A}_2 are Δ_2^0 isomorphic.

If \mathcal{B} is a computably categorical computable equivalence structure and \mathcal{A} is a Π_1^0 structure which is isomorphic to \mathcal{B} , then \mathcal{A} and \mathcal{B} are Δ_2^0 isomorphic. If \mathcal{B} is a computable equivalence structure which is *not* computably categorical, then in several cases we construct a Π_1^0 structure \mathcal{A} which is isomorphic to \mathcal{B} but is *not* Δ_2^0 isomorphic to \mathcal{B} . The simplest case is when \mathcal{B} consists of infinitely many classes of sizes 1 or 2, and no other classes; if \mathcal{B} is Δ_2^0 categorical, then we show that the Π_1^0 structure \mathcal{A} is moreover not Δ_2^0 isomorphic to any Σ_1^0 structure.

The spectrum question is to determine the possible sets (or degrees of sets) that can compose the elements in equivalence classes of size k, for some fixed k, in a computable equivalence structure. For example, for any infinite c.e. set B, there is a computable equivalence structure with infinitely many equivalence classes of size 1, infinitely many classes of size 2, and no other equivalence classes, such that $B = \{x : card([x]) = 2\}$.

We explore the connection between the complexity of the character $\chi(\mathcal{A})$ and the theory $Th(\mathcal{A})$. If $Th(\mathcal{A})$ is decidable, then the character $\chi(\mathcal{A})$ is computable. If an equivalence structure \mathcal{B} has a computable character, then there is a decidable structure \mathcal{A} isomorphic to \mathcal{B} .