Let $f : [0, \infty) \to [0, \infty)$ be defined by $f(x) = \log(3x + 2)$.

Give a formula for the inverse function $f^{-1}(x)$

Find the range $\text{Ran}(f)$.

Explain why f is one-to-one and onto.
Define the function \(f : [4, \infty) \to [0, \infty) \) by \(f(x) = \sqrt{x - 4} \).

Prove that \(f \) is one-to-one.
Find whether the following functions from \mathbb{R} to \mathbb{R} one-to-one or onto:

(a) $f(x) = e^x$

(b) $g(x) = \sin x$

(c) $h(x) = x^3 - x$
Let $f(x) = x^2$ and let $g(x) = x + 3$.

Find formulas for $f \circ g$ and for $g \circ f$.

Find the range of $f \circ g$ and the range of $g \circ f$.
Let $B \subseteq A$ and define the relation R on $\mathcal{P}(A)$ by

$$R(C, D) \iff B \cap C = B \cap D$$

Show that this is an equivalence relation.
The equivalence relation C_5 is defined on integers by $5|(x - y)$.

Find the partition induced by C_5 on the set

$A = \{ n \in \mathbb{Z} : 1 \leq n \leq 20 \} = \{ 1, 2, 3, \ldots, 20 \}$.

Give the equivalence class $[3]$ of 3 under this equivalence relation on A.
Let $A = \{\{1\}; \{1, 2\}; \{1, 4\}; \{1, 2, 3\}; \{1, 2, 4\}\}.$

(a) Determine the minimal elements of $A,$ the greatest lower bound of $A,$ and the smallest element, if any.

(b) Determine the maximal elements of $A,$ the least upper bound of $A,$ and the greatest element, if any.
Show that if R and S are both transitive, then $R \cap S$ is also transitive.
Show that for any relation $R \subseteq A \times B$, $\text{Ran}(R^{-1}) = \text{Dom}(R)$.
Define the relation $R(x, y)$ on $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \times \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ by $R(x, y) \iff x|y \& x \neq y$.

List the elements of R.

Find the domain and range of R.

Find the elements of the composition $R \circ R$.

Find the domain and range of $R \circ R$.
Prove that \(\lim_{x \to 4} \frac{5x^2 - 20x}{x - 4} = 20. \)
Show that for any real number x, there is a unique y such that $3x + 2y = 5$.
Prove that if $|x - 5| > 3$, then $x < 2$ or $x > 8$.
Prove that if $(\forall x)[P(x) \to Q(x)]$ and $(\exists x)P(x)$, then $(\exists x)Q(x)$.
Classwork Ten: Prove that $A \setminus (B \cup C) \subseteq A\setminus B$. NAME:
Prove that if $a|b$ and $c|d$, then $ac|bd$.
Show that if $x > 3$, then $x^2 - x > 6$.
Verify that $\bigcap_{i \in T} (A_i \setminus B_i) = (\bigcap_{i \in T} A_i) \setminus (\bigcup_{i \in T} B_i)$ by writing out in sentence form.
Show that $(\exists x)(P(x) \lor Q(x))$ is logically equivalent to $(\exists x)P(x) \lor (\exists x)Q(x)$

Use the rule that $(\forall x)(P(x) \land Q(x))$ is logically equivalent to $(\forall x)P(x) \land (\forall x)Q(x)$
Show that $P \to (Q \to R)$ is logically equivalent to $(P \land Q) \to R$.
Make Venn diagrams for the sets \((A \cup B) \setminus C\) and \(A \cup (B \setminus C)\).

Decide which set is necessarily a subset of the other.

Give an example where the two sets are different.
Write one or two alternative definitions for the following set:

\{1, 4, 9, 16, \ldots \}
Use the laws from the text to simplify $(P \land Q) \lor (P \land \neg Q)$.
Make a truth table for the formula $P \land (\neg P \lor Q)$.

Can you find a simpler formula which is equivalent to $P \land (\neg P \lor Q)$?

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$\neg P \lor Q$</th>
<th>$P \land (\neg P \lor Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>